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Abstract

Whole genome transcriptional profiling has become a standard genomic approach to investigate 

biological processes. RNA sequencing (RNAseq) in particular has witnessed myriad applications 

in genetics and various biomedical fields. RNAseq involves a relatively simple experimental 

protocol of RNA extraction and cDNA library preparation, and because of decreasing next-

generation sequencing cost and lower computational burden for data processing, has obtained a 

central role in the modern biology. The recent application of RNAseq methodology to single cell 

transcriptional profiling has enabled the more precise characterization of cell lineage and cell state 

genetic profiles. The development of bioinformatic and statistical tools have provided for 

differential gene expression (DE) analysis, RNA isoform analysis, haplotype specific analysis of 

gene expression (allele specific expression - ASE), and analysis of expression quantitative trait 

loci (eQTL). We give an overview of these and recent developments in RNAseq methodology with 

emphasis on quality control, read mapping, feature counting, DE, ASE and eQTL analysis, and 

fusion transcript detection. We describe utilization of RNAseq as a diagnostic tool in Mendelian 

diseases, complex phenotypes and cancer and give an overview of long read RNAseq technology. 

Furthermore, we discuss in detail the recent revolution in single cell transcriptomics that is 

reshaping modern biology.
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INTRODUCTION

Transcriptional profiling at a whole genome level was enabled by a number of technological 

advances as well as characterization of the genomic architecture in different species through 

sequencing of large numbers of expressed transcripts and whole genome sequencing. 

Initially, microarrays, or gene chips, of various designs were constructed by the 

immobilization of thousands of short DNA segments (probes) to a solid surface, and these 

arrays were queried by hybridization to fluorescently labeled cDNA “targets.” There were 

numerous technical and methodological challenges to this approach but a large number of 

microarray studies provided substantial breakthroughs in our understanding of biological 

processes. In the field of cardiovascular research, microarray studies profiled gene 

expression changes associated with vascular disease, cardiac failure, etc. Another approach 

to transcriptional profiling was the serial analysis of gene expression (SAGE) method, which 

introduced the concepts of sequencing and counting transcripts that would later be applied in 

RNA sequencing (RNAseq). SAGE was based on the generation of short cDNA sequences 

that were concatenated, sequenced, and the number of tags identified and summed for each 

RNA counted. Perhaps most importantly, these transcriptomic approaches provided for the 

development of innovative bioinformatic tools and spurred the development of gene 

ontology frameworks that continue to serve as a basis for evaluation of transcriptomic data 

and interpretation of differences in gene expression in the context of biological function.

RNA sequencing, or RNAseq, is a type of whole genome transcriptome profiling based on 

the application of high throughput sequencing and it is generally used to quantify and 

characterize the entire RNA population present in a specific cell or tissue and under different 

biological contexts. RNAseq has a wide variety of applications in modern biological and 

biomedical research (Figure 1)1,2. RNAseq employs a straightforward experimental protocol 

for cellular RNA extraction and library preparation (Figure 2). The first two papers that used 

massively parallel sequencing of RNA molecules appeared in 20083,4. RNAseq has 

dramatically improved since its early years of development in terms of data quality and 

compared to microarrays offers a wider dynamic range of gene expression values, higher 

genomic coverage and less artefactual constraints such as cross-hybridization. RNAseq has 

been essential for systematizing non-translated RNA molecules into classes such as long 

non-coding RNA (lncRNA), microRNA (miRNA), and small nucleolar RNA (snRNA)5,6. 

RNAseq has found a specific application in cancer research, where it has been essential in 

detecting gene fusions7. Furthermore, recent development of single cell RNAseq methods 

has enabled accurate profiling of cellular diversity in tissues in their native in vivo 

environment using a limited number of reads from each cell8–10. RNAseq has made possible 

quantitation of RNA isoform species changing transcriptomics from a gene-centric paradigm 

to one focused on individual genetic isoforms. In this review, we present an overview of the 

main applications of RNAseq methodology on a cell population level, as well as recent 

advances in single cell transcriptomics and discuss potential future directions.
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CELL POPULATION BASED RNASEQ

RNA library preparation, next gen sequencing, and read mapping

Preparing a high-quality sequencing library has a critical role to the outcome of RNAseq 

experiment (Figure 2). The decision of choosing the best library protocol depends on the 

primary objective of an experiment, i.e. whether the objective is to study mRNA, small RNA 

or the entire transcriptome. RNA purification generally falls into two categories, i.e. phenol-

chloroform based (TRIZol) and the silica-gel based column methods (Qiagen), while mRNA 

enrichment is generally achieved either by poly(A)+ selection or by ribosomal RNA 

depletion. Ribosomal depletion allows for simultaneous assessment of polyadenylated and 

non-polyadenylated RNAs. However, ribosomal depletion methods might suffer from 

problems of high number of reads mapping to intronic regions. A comparative study showed 

that Poly(A)+ selection protocols produce the highest proportion of exonic reads regardless 

of the extraction method (exonic: 86% and 91%, intronic: 10% and 6%, TRIzol and Qiagen, 

respectively)11. Conversely, ribosomal depletion methods (RiboZero) produced between 

15% to 35% intronic reads using Qiagen and TRIzol. Furthermore, the separation of nuclear 

and cytoplasmic fractions showed that the majority of intronic reads come from the nuclear 

fraction (where they can constitute up to 60%). In addition, the majority of the intronic reads 

were mapped in the same orientation as the underlying corresponding gene, which together 

indicates that their origin is not primarily anti-sense RNA, but rather unprocessed or 

partially processed RNAs species (hnRNA).

Detecting splicing events is directly dependent on the number of reads covering splice 

junctions. Library preparation can to some degree influence the number of splicing reads. It 

has been shown that the highest yield is produced with Qiagen/poly(A)+ RNA-seq 

purification and selection protocols (10.5% mapped reads), while TRIzol/poly(A)+ 

performed with similar yield (~9.2%)11. On the other hand, ribosomal depletion methods 

(RiboZero) performed less well (9.4% and 6.4%, Qiagen and TRIzol, respectively). 

Cytoplasmic and nuclear RNA isolates produced 10.6% and 2.9% of junction reads, 

indicating that mature RNA transcripts are being actively transported to the cytosol, while 

nuclear fraction contains more unspliced intermediates.

Modern sequencing machines and algorithms have dramatically improved the quality of 

sequencing in the last 10 years during the next generation sequencing expansion. Today, the 

various aspects of quality control (QC) are thus often overlooked when analyzing RNA 

sequencing data. Generic QC tools, such as FastQC modules, perform per base sequence 

quality control that informs on quality across the sequence, especially at the beginning and 

near the end of the read. In addition, FastQC modules report on per base/sequence GC 

content (detecting general or end-of-the-read GC/AT biases), library adapter content and per 

base N content (removal of poor quality base calls). FastQC also detects duplicated 

sequences (indicating PCR biases, particularly important in case RNAseq is used in allele 

specific expression analysis), overrepresented sequences (indicating either highly 

biologically significant sequences, like polyA stretches, or library contamination/

duplication), and overrepresented k-mers (either biologically significant k-mers generally 

equally distributed across the read or sequencing errors appearing randomly throughout the 
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read or increasing at the end of the read). For allele specific expression analysis12, it is 

recommended to remove duplicates using Picard MarkDuplicates or samtools rmdup 

modules. In addition, Picard contains the CollectRnaSeqMetrics module that produces RNA 

alignment metrics for a Sequence Alignment Map (SAM) file or its binary format (BAM). It 

estimates the 5′-3′ bias that results from errors of reverse transcriptase during library 

construction, and leads to the over-representation of ends of transcripts. Other tools that 

produce RNAseq specific QC metrics include RSeQC and RNA-SeQC13.

A significant issue with RNAseq is estimating the depth of sequencing that will profile the 

number of detected genes and transcripts to the point of saturation (Figure 3). In some cases, 

achieving the modest number of 30M reads is considered sufficient, even though it may be 

far from the saturation point. Saturation point may be estimated from mapped reads using 

tools such as Preseq. If the purpose of the experiment is to study differential expression on 

the gene level, such modest read numbers may be sufficient. However, gene transcripts can 

be expressed at very different levels, from a single copy to thousands and millions of copies 

per cell. Therefore, many low level transcripts require deeper sequencing of the 

transcriptome to be discovered. If the purpose is accurate quantification of known transcripts 

or to reveal novel transcripts, more extensive sequencing is needed. In experiments where 

sensitivity of detection is paramount, it is recommended to use a minimum sequencing depth 

of 100–200 M paired end reads with read length 75bp or longer. Technical variation in 

RNAseq can be determined by performing technical replicates, i.e., by repeatedly 

sequencing one cDNA library. Biological replicates, on the other hand, are performed by 

sequencing different cDNA libraries from repeated biological experiments. Preferably one 

should aim to design experimental setups so that both technical and biological replication is 

included. However, this may be cost-inefficient and may increase the computational burden 

in analysis. As biological replicates by default read out on technical variation, it is generally 

accepted that they obviate the need for technical variation in most experimental designs. On 

the other hand, technical variation could be estimated from the Poisson distribution. In an 

ideal RNAseq experiment counts of reads are multinomial and therefore follow the Poisson 

distribution. In that case, the variance is approximately equal to the mean, and the overall 

variance in counts that stems from the technical variation could be approximated using the 

abundance of transcripts. Therefore, it is possible to complete the statistical analysis without 

any technical replicates (as exemplified with count based tools, such as EdgeR and DESeq).

Mapping of RNAseq reads to the genome or transcriptome (in case the transcriptome 

assembly is available) represents a significant challenge, due to the non-contiguous structure 

of the transcriptome and relatively small sequencing read length. For example, the maximum 

read length of the majority of sequencing platforms (except those that are specialized in long 

read sequencing) is smaller than the average length of the exon. Current Illumina NovaSeq 

standard read length is 150bp for single end sequencing and 2×150bp for paired end 

sequencing, while exons possess the average length of 171 bp and the length of 20% of 

exons in the human genome is greater than 200bp14,15. Therefore, mapping tools need to be 

computationally sophisticated to decipher the origin of the read. This is difficult if a gene 

has several isoforms or gene paralogs that share significant homology as the mapping 

algorithm needs to be able to assign reads with sufficient certainty to the correct gene or 

gene isoform.
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Various aligners have been developed to address the problem of accurate mapping of 

RNAseq reads to the genome. TopHat16, now superseded by HISAT2 for population-based 

mapping17, aligns reads to the genomes initially with a short read aligner Bowtie18, and 

subsequently identifies exon-intron junctions. Similar two-step strategy of initial read 

mapping that is used to discover splice junctions and drive subsequent final alignment has 

been applied in tools like MapSplice19 and GEM20. Unlike TopHat that is based on a short 

read mapper, STAR21 offers mapping of longer reads which is concurrent with the emerging 

third-generation sequencing technologies. STAR calls splice junctions in a single alignment 

protocol using the two-step sequential Maximal Mappable Prefix (MMP) concept (unlike 

e.g. Mummer22 that finds all possible Maximal Exact Matches), without any a priori 

database knowledge and without a preparatory contiguous read alignment, therefore 

dramatically reducing the mapping time. Second pass STAR mapping is a custom algorithm 

that makes a splice junction database from junctions found in the first mapping pass, filters 

out non-canonical junctions, generates a genome with junctions from the first pass and 

aligns reads across the previously detected junctions. Second step STAR mapping generally 

increases mapping percentage up to 2 percent. Reference free assemblers, such as Oases 

(based on preliminary assembly by Velvet)23,24 and Trinity25, produce transcripts in the 

absence of any genomic assembly. Mapping of RNA sequence reads is followed by the read 

counting step performed by read summarization tools such as, featureCounts26, SAMMate27 

or htseq-count28.

Recently, mapping-free lightweight algorithms were developed, such as Sailfish29 and 

Kallisto, with an accompanying differential expression tool Sleuth30,31. Sailfish replaces the 

read mapping step and instead implements fragmenting reads into their constituent k-mers or 

‘mini-reads’ and subsequently performs the ‘exact’ mapping of the k-mer. Salmon32, the 

successor to Sailfish software, avoids the need to build a k-mer size index, and therefore 

requires substantially less computational memory. By contrast, Kallisto introduced the idea 

of pseudo-alignments, i.e. determining transcripts which are compatible with the read, 

instead of determining where in each transcript the read aligns. This dramatically reduces 

the time and computing power of analysis, from hours to minutes, with up to 15 million 

processed reads per minute on a standard desktop computer, while preserving the accuracy 

of pseudo-aligning. Bootstrap analysis showed that the variance on a single subsample is 

equal to the variance calculated from various subsamples, emphasizing the high accuracy of 

this approach30. Kallisto therefore allows for efficient analysis and re-analysis of data 

against different transcriptomes, development of fast bootstrapping algorithms, and 

autonomy from high computing power and cloud services. Kallisto’s extension Sleuth 

utilizes Kallisto bootstraps to effectively distinguish between technical and biological 

sources of variance and subsequently estimate “true” biological variance31. In everyday 

practice, when fast and accurate transcript estimation is paramount, Kallisto or Salmon tools 

represent a balanced choice. However newer tools (such as pufferfish) that require much less 

computational memory and disk storage for hash table construction during the genome 

indexing step may become new standard in the future (current pseudo-alignment tools may 

use up to 150GB of RAM for an index of the human genome and up to 300GB for the 

collection of bacterial genomes, which vastly exceeds the 32–64GB memory size of 

moderate servers). Pufferfish proved faster and with lower memory and disk space 
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requirements than kallisto in index construction, index loading and k-mer querying of the 

input reads.

Differential expression analysis strategies

Differential expression analysis tools have progressed significantly during the evolution of 

RNAseq. Since the first commonly accepted algorithm was developed, i.e. cuffdiff33, 

multiple tools have been developed and tested, such as DESeq, DESeq2, edgeR, limma, 

baySeq, NOISeq, PoissonSeq, SAMSeq, DEXSeq and DEGSeq. Choosing one of these that 

is appropriate for a particular experimental setup may represent a challenge. A recent 

study34, has shown that in case the number of biological replicates is low, i.e. generally less 

than 12, the true positive rate (TPR) is the highest with DEG-Seq, NOI-Seq, cuffdiff and 

edgeR, while for replicate numbers over 12, in which case the number of false positives 

(FPR) may significantly rise, DESeq was highlighted as the best performing tool in 

minimizing the number of false positives (Figure 3). When evaluated on the basis of fold-

change (FC), for higher FC genes the number of replicates does not influence the true 

positive rate, while for lower and middle FC genes the number of replicates is crucial in 

maintaining TPR. Nevertheless, certain tools outperformed others for lower FC genes with 

smaller number of replicates, such as NOI-Seq, in maintaining high TPR, while tools like 

DESeq in case of lower FC and less replicates preserved lower rate of FPR. In addition, a 

previous comparative study35 recommended limma and DESeq in case biological replicates 

are less than 5 per condition, and found edgeR to be overly sensitive in this situation. In 

everyday experimental practice it is rare to have greater than 5 replicates, and DESeq 

represents a commonly used algorithm with balanced performance.

One of the drawbacks in RNAseq data analysis is the problem of over-dispersion36,37, i.e. 

the greater variance in data than what is approximated by a Poisson distribution, that itself 

represents an approximation of multinomial distribution of independently sampled reads 

across a population. EdgeR approximates a negative binomial distribution and a linear 

relationship between a mean and a variance, however this would be valid only for larger 

number of replicates per condition, while in practice these number of replicates are never 

achieved. DESeq, on the other hand, models mean-variance relationship for each gene by 

estimating a dispersion value, and then modeling a curve through these estimates and 

selecting a new dispersion value for each gene from the fitted line. DESeq2, conversely, 

seeks to remove mean-variance dependence by performing one of the two different 

transformations of the variance, regularized logarithm or variance stabilizing transformation.

Overall, the tools and strategies applied in RNAseq data analyses depend on the type of 

analysis in question, as three basic classifications emerge: differential gene expression 

(DGE), differential transcript usage (DTU) and differential transcript expression (DTE). 

DGE utilizes genes as a set of non-overlapping independent targets, to which counts could 

be unambiguously assigned. The problem appears when trying to apply count based method 

to transcript analysis, such as DTU or DTE, as transcripts of a single gene represent 

overlapping targets. It is an open question whether transcript-level counts could be analyzed 

in a manner of non-overlapping targets such as gene-level counts using count based edgeR/

DESeq tools. Partitioning of the reads aligning to multiple transcripts will result in fractional 
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estimated counts for transcripts, and whether their overall accuracy is perturbed with 

introduction of fractional estimated counts to the count based methods is still debated38. In 

addition, as the mean-variance relationship remains the same, transcript-level estimates 

when properly combined to the gene-level could be used in edgeR/DESeq, either summed 

up or by selecting the strongest isoform38.

DE genes can be classified into functional or structural categories, in order to assess the 

overall effect of the experimental treatment. The Gene Ontology (GO) Consortium defines 

classes to describe gene function via either molecular activities, compartmentalization or 

using larger pathways of gene products. Common ontology tools include DAVID, GOSTAT, 

REACTOME, ENRICHR or PANTHER. Ingenuity Pathway Analysis (IPA) clusters DE 

genes to define significantly affected signaling and metabolic pathways and it is showed to 

be informative in generating biochemical signaling cascades and simulating directional 

consequences of gene activity. Gene Set Enrichment Analysis (GSEA), instead of 

calculating thresholds, uses ranking information to correlate gene sets with the phenotypic 

class, thus determining whether a gene member shows a tendency to occur toward the top or 

bottom of the list.

RNAseq can define cellular and biochemical pathways that are perturbed in a disease state 

regardless of the underlying mutations, hence it could bridge different cardiovascular 

diseases (e.g., hypertrophic cardiomyopathy and dilated cardiomyopathy, fulminant 

myocarditis and chronic myocarditis) on a molecular level. Thus, RNAseq could aid in 

defining the possible disease pathways that could be targeted with therapy without knowing 

the exact mutation that disturbs the pathway.

A complete end-to-end RNAseq workflow consists of selection of individual tools for read 

aligning, expression modeling and differential expression and their incorporation into a 

functional computational workflow. The number of possible combinations increases 

exponentially the number of possible workflows. The choice of DE analysis carries the 

strongest impact, with more modest effects observed with different read aligners and 

expression modelers39.

Mapping quantitative expression trait loci with RNAseq

Expression quantitative trait loci (eQTLs) are genomic variants that modulate the expression 

of one or more genes. Such genes are usually proximal to the variant (cis-eQTLs), however 

they may also be distant genes (trans-eQTLs), whose expression is influenced through the 

regulation of a nearby transcription factor (Figure 3). Introduction of RNAseq in eQTL 

analysis represented a substantial improvement compared to the microarray approach. First, 

RNAseq carries information on the expression that originates from individual alleles, 

making it possible to study allele specific QTLs (i.e., if the variant influences allele specific 

expression of a gene in cis or in trans), in case variants do not fall into the same haploblock 

(Figure 3). Next, it generates an unparalleled body of information to study isoform 

expression, therefore making it possible to study the influence of a variant on particular 

RNA isoform expression (isoform percent spliced in – isoform psiQTL). Finally, it allows 

the study of exon eQTLs and exon splicing QTLs (also termed exon percent spliced in – 

exon psiQTL) that utilize only a subset of the information generated by RNAseq, focusing 
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either on individual exons or individual exon-exon junctions, respectively. Mapping of 

eQTLs has now been accomplished by the Genotype-Tissue Expression (GTEx) consortium 

and made available through the GTEx portal. While such information provides fundamental 

insights into mechanisms of variation in gene expression in various biological contexts, it 

also serves as a critical type of information for the identification of causal variants and genes 

in regions of the human genome that have been associated with a specific trait or complex 

human disease. The vast majority of genetic variation that contributes to heritable disease 

risk are estimated to be a function of single nucleotide polymorphisms that serve as eQTLs 

to regulate causal gene function.

Allele-specific analysis for cis-effects, imprinting and nonsense-mediated decay

Allele specific expression (ASE) or allelic imbalance analysis refers to the analysis of 

expression variation between the two parental gene copies of a single gene in a diploid 

individual. ASE is usually distinguished by multiple heterozygous sites present in the coding 

sequence of the gene that are used to detect differences in allelic expression. ASE has 

become essential for studying various biological mechanisms, such as the effects of cis-

regulatory variation on neighboring gene expression (Figure 3), genetic imprinting and 

nonsense-mediated decay (NMD), i.e., the induction of RNA degradation mechanism by 

variants that generate premature stop codons12. The limiting step in detecting ASE is the 

presence of heterozygous single nucleotide polymorphisms (SNP) in the exonic regions of 

genes. One of the advantages of ASE is that by using both alleles as a perfect pair of 

experimental and control variables, variants can be used even if their population frequencies 

are low (rare variants). In addition, given that inter-individual variation is not a factor as with 

eQTL analysis, the number of individuals that need to be included in the analysis is much 

smaller, making ASE a good tool for fine mapping GWAS causal variants and genes. 

However, it is important to emphasize that, as with eQTL variants, ASE variants do not 

necessarily confer causality, as due to linkage disequilibrium another variant in high LD 

might actually be causal or the allele specific effect may appear due to higher order 

epigenetic effects, such as imprinting.

Several tools have been developed to obtain allelic counts, and specially designed to address 

major pitfalls of the allelic analysis12,40,41. The major limitation to ASE data analysis is the 

reference allele bias42. This bias originates from the preferential mapping of the read that 

contains an allelic variant present in the reference genome compared to the read that 

contains the alternative variant. Mapping score will inevitably be higher for the read 

containing the reference allele, therefore it is expected that false positive ASE events are 

found in favor of the reference allele. Indeed, computational simulations with over 9.5 M 

common SNPs and indels (using simulated single-end 50 bp reads) revealed that 15.6% of 

variants will show reference bias and in some cases the complete loss of mapping to the 

alternate allele is observed43. The reference bias could be alleviated by constructing a 

diploid genome, either from parental genomes in case they are available or by incorporating 

personal variants into the reference genome and phasing heterozygous variants using 1000 

Genomes Project reference panels, producing as a result two parental haplotypes. For 

example, in a recent study, using this approach to remove the reference bias, 63K total SNVs 

associated with ASE were detected using 382 individuals from the 1000 Genomes Project, 
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with the reproducibility rate of 75%41. Another suggested solution, implemented in the 

software package WASP44, consists of flipping the detected allele in the read being 

sequenced and subsequently discarding the read in case the flipped read does not map to the 

same genomic location. Finally, ASEReadCounter12 has been developed and integrated into 

the GATK v.3.4 toolkit and it represents a post-mapping tool that utilizes already aligned 

RNAseq reads to the reference genome. After filtering reads based on mapping and quality 

control filters, ASEReadCounter finds bi-allelic heterozygous variants and counts the 

reference and alternative allele reads. Other sources of variation have been described and 

reviewed elsewhere. Nevertheless, for those genes where an informative exonic variant can 

be identified, ASE is a highly valuable tool for mapping causal variants and genes in the 

GWAS loci.

Several other sources of errors exist in the ASE analysis. For example, errors could be 

introduced by overlapping mates in paired end RNAseq, since heterozygous variants could 

be counted twice for each read pair, which may introduce biases. In addition, removing low 

quality reads is necessary to prevent incorrect base calls at heterozygous sites. Furthermore, 

filtering out duplicate reads, originating from PCR amplification during library preparation, 

is necessary in case they are prevalent in the data set. The next type of error occurs when the 

homozygous variant is incorrectly called as heterozygous, which leads to preferential 

mapping to one allele leading to the false positive ASE signal. Another important bias is 

called the ambiguous mapping bias, and it occurs when reads containing one allele are 

preferentially mapped due to the random sequence homology of the reads with the 

alternative allele to another genomic location. Such reads will be mapped to multiple 

locations and removed due to mapping ambiguity leading to false positive ASE calls.

Isoform identification and differential isoform expression

As tracing down the precise transcript of origin for sequenced reads could be ambiguous, 

due to the existence of multi-transcript genes (alternative promoters and splicing), multi-

gene families (gene paralogs) and pseudogenes, the precise attribution of reads to transcripts 

is currently impossible. For example, a read that spans an exon-exon junction common to all 

isoforms of a gene, could be equally attributed to any isoform. Due to this uncertainty, the 

Poisson distribution cannot approximate the read distribution, as the Poisson distribution 

requires non-overlapping genomic intervals, such as genes. Therefore, the count based 

methods, such as EdgeR that introduce Poisson modeling, only function on the level of 

genes as a whole, and would fail to model transcripts properly. In the analysis of genes, 

technical replicates become unnecessary as variance can be estimated from the mean in a 

Poisson distribution, therefore various methods focus on estimating biological variance by 

borrowing power across genes to obtain reliable variance estimates. On the other hand, 

transcript (isoform) analysis requires alternative statistical approaches to model read counts 

as they can only be estimated and not precisely determined45,46.

DEXSeq47 restricts the analysis to specific exons or exon-exon junctions, however this 

approach does not provide isoform information, and cannot detect biological phenomena 

such as isoform switches. However, while the direct transcript of origin of reads may be 

difficult or impossible to estimate, it is possible to infer a relative number of reads for each 
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isoform, which requires a new statistical approach in differential expression analysis48. 

Recently, mapping free tools such as Sailfish and Kallisto, as discussed above, have 

introduced pseudo-alignments that produce a list of transcripts that are compatible with each 

read while avoiding mapping. These algorithms have brought substantial improvement in the 

number of (pseudo)aligned reads (86.5% Bowtie2; 90.8% kallisto), as well as in the 

accuracy in the estimated read count of each transcript, while showing similar performance 

on gene paralogs as other tools.

Splicing QTLs are estimated to be a major contributor to complex human traits, hence their 

accurate detection is paramount49,50. However, various technical challenges exist to define 

both individual exon-exon junctions and complete transcript isoforms using short-read data. 

Typically, single splice events are easier to study, such as skipping or inclusion of an exon, 

and exon extension or shortening from alternative 5′ or 3′ splice sites. In contrast to event-

centric methods, transcript reconstruction methods commonly suffer from problems of 

ambiguous isoform calls, i.e. except for the simple scenarios, more than one combination of 

transcripts can explain the observed distribution of reads. Novel approaches including long 

read and Hybrid-Seq technologies may facilitate the completion of the full splicing 

catalogue, revealing complete transcripts. Recently, a tool called LeafCutter defined 42,716 

clusters of alternatively excised introns and 5,774 sQTLs at 5% FDR using 372 

lymphoblastoid cell line (LCL) RNA-seq samples from gEUVADIS51. LeafCutter defined 

from 10.8% to 19.3% unannotated alternatively spliced introns from the 14 GTEx tissues.

RNAseq in genetic diagnosis of Mendelian diseases, complex diseases and cancer

In addition to its main application in biomedical research, RNAseq could be effectively used 

as a complementary diagnostic tool for Mendelian diseases. Current genetic diagnostic tools, 

whole-exome sequencing (WES), and whole-genome sequencing or (WGS), lack the 

capacity for functional interpretation of genetic variants. In a recent study, transcriptome 

sequencing was performed in patients’ skeletal muscle cells in a cohort of 50 patients with 

rare and undiagnosed muscle disorders and compared to 184 GTEx control samples52. Only 

RNAseq was able to validate known mutations that alter splice sites and to discover novel 

splice-altering variants, giving a diagnosis rate of 35%. In addition, a novel de novo 

mutation in COL6A1 that was not identified in the 1000 Genomes Project was found and 

noted to introduce a splice-gain event that disrupted the triple helical domain of the encoded 

protein. This variant was highly recurrent as it was identified in 25% of unresolved patients 

in a separate cohort of muscular dystrophy patients in which previous genetic analyses were 

negative. Thus, RNAseq in relevant tissues provides for the identification of causal variants 

in rare diseases that were unable to be detected with current diagnostic methods, including 

WES and WGS.

In another study, RNAseq was combined with exome data from 1,812 cancer patients to 

identify in total ~900 somatic exonic variants that disrupt splicing, therefore implicating 

aberrant splicing as a mechanism for cancer pathogenicity53. In an allele-specific analysis, 

163 somatic exonic variants were identified that promoted intron retention and exon 

skipping, respectively, providing robust evidence of causality. Allele-specific association, on 

the other hand, is not sensitive enough to detect splicing disruption that occurs at the 
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intermediate level, where some transcripts will still show normal splicing. Therefore, authors 

applied ratio-based splicing analysis, where they calculated the ratio of abnormally to 

normally spliced RNAseq reads using the background distribution of ratios from ~2,500 

RNAseq data sets obtained from normal tissues. This resulted in identification of 848 exonic 

SNVs linked to the five types of abnormal splicing (intron retention, exon skipping, intronic 

cryptic site activation, exonic cryptic site activation, combinatorial abnormal splicing), with 

exon skipping and intron retention as the most frequent events (503 and 338, respectively). 

Interestingly, variants causing intron retention were significantly enriched in tumor 

suppressor gene sets, including seven variants in TP53 and three in CDKN2A. In addition, a 

variant in SPSB3, a gene previously not associated with tumor suppression, promoted intron 

retention in two patients with kidney cancer, indicating the potential of RNAseq as a 

discovery tool for novel candidate genes in cancer.

The role of RNAseq in determining causal variants in complex diseases and phenotypes has 

been essential, especially in the context of defining eQTL variants and fine mapping of 

GWAS variants in order to define the true causal variant(s). In a recent study49, it was shown 

that splicing QTLs play a central role in the genetics of complex phenotypes, in some cases 

equal or even larger than that identified for expression QTLs. This study found 2,893 

splicing QTLs in Yoruban lymphoblastoid cell lines. Although they exhibited no effect on 

gene expression levels, they were major genetic contributors to complex traits. For example, 

there was an enrichment of low p-value sQTLs in multiple sclerosis GWAS loci, and this 

predominance over eQTLs was robust with different detection cut-offs. A similar trend was 

observed for height GWAS loci, while eQTLs were dominant in rheumatoid arthritis GWAS 

loci. The study showed that QTLs identified in LCLs are informative for the estimation of 

contribution of different regulatory mechanisms to complex phenotypes, an effect that is 

probably the consequence of sharing of QTLs across tissues and ethnicities.

In coronary artery disease genomics54 (Figure 4A), RNAseq was used to determine eQTLs 

in ~600 coronary artery disease patients in the STARNET cohort55. RNA was isolated and 

sequenced from blood, internal mammary artery, atherosclerotic aortic root, subcutaneous 

fat, visceral abdominal fat, skeletal muscle, and liver with up to 30 million reads per sample. 

A total of 8 million eQTLs were discovered from the seven tissues, out of which ~4 million 

were unique SNP-gene pairs. Of the 19,926 genes that were expressed, 76.2% were defined 

as eGenes containing at least one cis-eQTL, indicating a large regulatory network across 

tissues. Meta-analysis of CAD GWAS has yielded 54 lead risk SNPs and 38 were cis-eQTLs 

identified in STARNET. This confirms the central role of gene expression profiling with 

RNAseq in fine-mapping of GWAS variants and inferring the causal variant.

In the downstream analysis of complex disease variants, RNAseq has played a crucial role in 

providing evidence as to which variant or gene might be causal, by using a variety of 

approaches (DE genes, DE isoforms, isoform psiQTL, exon eQTL, exon psiQTL, aseQTL, 

etc.) (Figure 4B). In addition, downstream knock-out or overexpression studies of GWAS 

genes have proven beneficial. For instance, using RNAseq in cultured cells, coronary artery 

disease GWAS candidate gene TCF21 was confirmed to promote pro-migratory and 

synthetic phenotype of coronary artery smooth muscle cells recapitulating the disease 

phenotype in vitro56, similar to the treatment of pro-migratory factors such as PDGF (Figure 
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4C). RNAseq network analysis of CAD GWAS genes showed the existence of two distinct 

clusters of interconnected genes, one with smooth muscle cell- (TCF21, PDGFD, etc.) and 

the other one with lipid- related genes (APOA1, APOB, etc.)56 (Figure 4D). In the 

STARNET study55, the network constructed using cis- and trans- eQTL connections defined 

with multiple diseased tissues revealed a core network in HCASMC and liver tissues, 

consisting of TCF21, PDGFD, and LIPA genes (Figure 4E). RNAseq has also been 

beneficial in profiling differences in mouse disease models (e.g. high fat diet mouse model 

of CAD) and in knockout mice for the GWAS genes (Figure 3).

Long-read RNAseq as the future of transcriptome analysis

RNAseq using short-read sequencing carries a major limitation in the process of 

transcriptome reconstruction using fragmented cDNA molecules. As short-read sequencing 

can only capture the neighboring exon-exon junctions, how distant exon-exon pairs combine 

in a transcript, whether in a co-associated, mutually exclusive or independent manner 

(Figure 3), remains undetected. Therefore, studies have shifted towards long-read 

sequencing technologies (PacBio, Illumina MOLECULO, Oxford Nanopore Technologies, 

10X Genomics) in order to capture full length mRNA molecules. By capturing the entire 

exon-intron structure of mRNA within a single read, even the rarest of isoforms become 

detectable, therefore revealing the full complexity of the transcriptome. RNAseq has been 

successfully conducted using both single-molecule long-read PacBio57,58 and synthetic 

long-read MOLECULO methodologies59. Using PacBio methodology ~25,600 distinct full-

length isoforms were identified out of ~14,200 spliced GENCODE genes. PacBio provides 

high quality full length mRNA up to 1.4kb, while for longer genes the quality of 5′ 
sequence deteriorates, with their exon-intron structure still being well preserved. Illumina 

MOLECULO technology involves breaking DNA into 10kb fragments which are then 

marked with a unique barcode, sheared and sequenced on the standard platform and 

subsequently reconstructed using the barcode information into synthetic long reads that 

represent the original RNA molecules. Using MOLECULO, a total of 14.5% of all spliced 

reads in human brain had combinations of exons that are novel compared to the GENCODE 

transcript annotation, affecting ~13,800 human genes 59. Similar results were observed in 

the mouse brain, as 18% of reads showed novel combinations of splice sites affecting 8,600 

genes. Oxford Nanopore MinION sequencing technology was successfully used in B1a cells 

on a transcriptome-wide single cell level to identify 1799 unannotated transcription start 

sites, 1435 unannotated end sites, 589 5′ splice sites and 536 3′ splice sites that did not 

match the GENCODE annotation60. The validity of the findings was confirmed with high 

degree of overlap with CAGE data derived from 5′ ends of transcripts.

PacBio systems, unlike Illumina’s sequencing of a clonal population of fragments, capture a 

single DNA molecule using polymerase immobilized to the bottom of the well and let the 

DNA strand pass through. PacBio systems can produce more than half of the reads with 

lengths greater than 20kb, and a maximum read length of over 60kb, depending on the 

stability of the polymerase. PacBio systems RSII and Sequel can achieve single pass 

accuracy of 86% with errors randomly distributed within each read. Therefore, sequencing 

with 20X and 40X coverage allows accuracy of 99.99% and 99.9999%, respectively, due to 

‘consensus accuracy’ and rivals the accuracy of Sanger sequencing. Therefore, achieving the 
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necessary fidelity of the long read systems is tightly correlated to the coverage of the 

sequenced transcript. Since a single run on the Sequel can produce 500K reads, multiple 

runs are still needed to achieve sufficient coverage for accurate sequencing of the complete 

human transcriptome that potentially contains more than 200K transcripts (GENCODE, 

version 27). This increases the cost burden of long range sequencing. The 10X Genomics 

emulsion-based system can partition large fragments up to ~100kb and amplify smaller 

fragments of DNA each with a barcode identifying the original large fragment61. Higher 

accuracy of 10X Genomics systems (usually coupled with Illumina sequencing) compared to 

PacBio is met with difficulties in reconstructing the transcripts, lack of the full coverage of a 

fragment, partially limited by the number of barcodes, and increased cost of the platform.

One of the emerging long-read technologies is Oxford Nanopore Technologies (ONT) with 

platforms like MinION and PromethION. Similar to PacBio, ONT brings longer read lengths 

(reaching up to 300kb) and real-time analysis, and in addition carries an advantage of 

portability of the device, ease of set up, and fast library preparations, making it a perfect 

choice for field applications. However, it suffers from higher error rates similar to PacBio’s 

single pass quality, which represents a drawback for applications in transcriptomics. ONT 

compared to all other technologies directly reads a sequence of the single-stranded DNA 

(ssDNA) by detecting the changes in electrical current as the native molecule is driven 

through the nanopore. MinION utilizes a DNA template and its complement connected via a 

hairpin adapter, hence, the template passes first followed by the adapter and the template, 

giving rise to ONT 1D and 2D reads (ONT 1D are template and complement reads, whereas 

the ONT 2D read represents a consensus of the two 1D reads and possesses higher 

accuracy). Comparative analysis of PacBio and ONT systems revealed that compared to 

PacBio error rates (14.20% for subreads and 1.72% for circular consensus sequence reads), 

ONT 1D reads carry higher error rates (20.19%), while ONT 2D is comparable to PacBio 

subread accuracy (13.40%)62. On the other hand, ONT produces higher yields per flow cell 

than PacBio, as a single nanopore may process multiple molecules, while the reusability is 

not an option in PacBio. Various Hybrid-Seq approaches (PacBio+Illumina, ONT+Illumina) 

show better performance compared to long reads in the transcriptome analyses, which may 

constitute the future of transcriptomics.

Non-coding RNA discovery

Various noncoding RNAs (ncRNAs) are produced by RNA polymerase II transcription from 

the mammalian genome (long non-coding RNAs or lncRNA, small regulatory RNAs such as 

miRNA, nonsense mediated decay transcripts, etc) with important contributions to gene 

expression and genome maintenance. In GENCODE version 27, out of 200,401 annotated 

human transcripts there are 27,908 long non-coding transcripts. As the typical lncRNA is 

biochemically identical to an mRNA, the general methods of identifying lncRNA involve 

RNA sequencing with either oligo(dT)- selected poly(A) RNAs or using libraries depleted of 

the rRNAs, and applying several filtering steps to remove artefactual transcripts and protein-

coding genes, in order to annotate the remaining transcripts as lncRNAs63. On the other 

hand, in order to study specific classes of lncRNAs it is paramount to isolate pools that 

contain lncRNAs of interest. This could be achieved with immunoprecipitation-based 

approaches, such as RNA immunoprecipitation (RIP), in order to enrich for lncRNAs 
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connected to particular proteins or protein complexes64. In order to eliminate the interactions 

of lncRNAs and proteins that appear through the DNA mediator, the isolates can be treated 

with enzymes such as RNase H (to degrade RNA in RNA-DNA complexes) and DNase I to 

digest DNA. The control library could be made with RNase A that fragments single stranded 

RNA molecules and RNase V1 that fragments RNA-RNA complexes. After elution of co-

immunoprecipated molecules, RNA sequencing could identify lncRNAs that reside within 

the specific protein complexes. A similar method termed CLIP (cross-linking and 

immunoprecipitation), uses ultraviolet (UV) irradiation to cross-link RNAs to protein (but 

not protein to protein) and treatment with RNase to preserve only those RNA regions that 

are interacting with the protein. RNA-chromatin immunoprecipitation or RNA-ChIP, on the 

other hand identifies lncRNAs that bind chromatin.

GRO-Seq (Global Run-On sequencing) is a method to assay nascent RNA based on re-

initiation of transcription by RNAPol II in vitro with labeled nucleotides65. GRO-Seq is 

highly efficient in detecting non-polyadenylated non-coding RNAs, such as enhancer RNAs 

(eRNAs). The number of eRNAs in the human genome was estimated to be from 40,000 to 

65,000 using the cap analysis of gene expression (CAGE), which makes up a significant 

fraction of total transcriptome in the genome. However, eRNAs are still difficult to study due 

to their very labile nature, low abundance and high turnover rates. A more precise method 

named Precision nuclear Run-On and sequencing assay (PRO-seq) enables mapping 

transcriptionally-active Pol II at single base-pair resolution. Non-coding RNAs of low or 

transient expression such as eRNA could be more efficiently selected using CaptureSeq, 

which focuses on the RNAs of interest by capturing specific RNAs using pre-designed 

oligonucleotide probes.

SINGLE CELL RNASEQ

Developmental and disease mechanisms are most often cell type-specific processes. 

Therefore, bulk RNA sequencing of relevant tissues can be insensitive to cell type-specific 

changes in transcriptional activity. Even worse, these data can be misleading due to variation 

in the proportion of cell types present in different samples and confounding effects from 

other cell types that are active in the process being investigated. Although cell surface 

markers, and genetic lineage tracing in model systems, can be used to isolate specific 

populations of cells prior to sequencing, these methods depend on a small number of 

markers. The result is often imperfect with respect to sensitivity and specificity of selection, 

leading to isolation of only a subset of the cell type of interest or the inadvertent inclusion of 

multiple cell types. Recent advances have allowed RNA sequencing of hundreds to 

thousands of individual cells, overcoming many of these issues and revolutionizing our 

understanding of cell type-specific processes in vivo within the relevant tissue environment. 

The first transcriptomic analysis of a single cell was performed in 1988 by Rappolee and 

colleagues66 using gene-specific PCR, and the first whole-transcriptome amplification of a 

single cell was achieved in 1990 by Brady and Iscove67. Subsequent improvements in 

biochemical methods in conjunction with the breakthroughs in next generation sequencing 

have led to the current revolution in single cell RNAseq (scRNA-seq) which is providing 

unprecedented resolution to the study of complex developmental and human disease 

processes.
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Thus far, single cell methodologies have had limited but demonstrative application to 

cardiovascular research. In 2016, two groups independently used scRNA-seq in anatomically 

defined areas of the developing mouse heart to create a single cell atlas of all major cardiac 

cell types during different stages of cardiac development68,69 (Fig 5A). From e8.5-e10.5 

embryonic mouse hearts, Li et. al. used a random forest machine learning algorithm to 

predict the anatomical location of individual cardiomyocytes with >91% accuracy based 

upon their transcriptional profiles (Fig. 5B). This algorithm also showed good performance 

in predicting the localization of Isl-1 lineage-traced cells, which are known to specifically 

populate the right ventricle and outflow tract. DeLaughter et. al. characterized the 

transcriptomic profiles of anatomically separated cells at various time points from e9.5 to 

post-natal day 21. They identified the emergence of cardiac fibroblasts at the expected time 

point around e12.5, and catalogued the gene expression programs of cardiomyocytes (CMs) 

from development to maturity. They also used these developmental stage-specific 

transcriptional profiles to estimate the maturity of CMs derived from stem cells69. Both 

groups analyzed the effect of Nkx2-5 deficiency on CM gene expression and found defects 

in CM maturation. Further, Li et. al. found that Nkx2-5−/− CMs more closely resembled 

atrial rather than ventricular CMs68. Both papers illustrate the enormous potential of single-

cell transcriptional profiling to identify cell type-specific defects in animal models of gene 

knockout. Likewise, the use of single-cell RNAseq in human tissue samples will allow 

investigation of cell type-specific defects in patients with pathogenic mutations, and reveal 

cell-type specific changes during various cardiovascular disease processes.

Cell capture methods

All high-throughput methods for scRNA-seq rely on a suspension of viable single cells. 

While this is straightforward when dealing with cultured cells, obtaining a high-quality 

single cell suspension via enzymatic dissociation of a primary tissue is often challenging. 

Incomplete dissociation can bias the population towards cells that more readily detach from 

their microenvironment, whereas overly-aggressive dissociation can potentially alter the 

cells’ transcriptional profile and affect cell viability. Further, as the dissociation protocol can 

vary greatly depending on the organism and the tissue of interest, this must be carefully 

optimized for each scenario. Recent advances enabling RNA-seq of single nuclei (snRNA-

seq)70 and incorporation of these methods into existing71,72 and novel73 high-throughput 

cell capture technologies are now allowing analysis of single-cell transcription in fresh 

frozen and possibly fixed tissue samples. Although the majority of reads arising from 

snRNA-seq are intronic, analysis of these unprocessed nuclear RNAs has been shown to 

correlate well with mature gene expression72–74.

The first scRNA-seq experiments relied on manual picking of small numbers of individual 

cells into separate tubes and/or wells75–77. Reverse transcription and amplification of cDNA 

was then carried out in microliter reaction volumes. The throughput for these plate-based 

methods was increased dramatically by sorting individual cells into 96- or 384-well plates 

followed by robotic automation of subsequent pipetting steps78,79. An alternative strategy 

was developed by the Quake group80, in which a suspension of single cells is loaded into a 

valve-based microfluidic chip. These microfluidic valves are then used to direct single cells 

into hydrodynamic capture sites and also to control the flow of reagents into individual 
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nano-liter-sized cell reaction chambers. Cell lysis, reverse transcription, and PCR are 

automated on the chip. This confers a number of advantages, including simplifying the 

workflow and reducing reagent costs. In addition, the nano-liter reaction volume results in 

decreased amplification bias81 and increased sensitivity81,82 compared to the same 

chemistry conducted on a micro-liter scale. However, the capture of cells is dependent on 

cell size, requiring different microfluidics chips for cell of different sizes. In a biological 

sample containing cells of various sizes, this risks biasing cell capture to specific subsets of 

cells. Finally, although this method reduces reagent costs, the microfluidics chips are 

expensive. Other microfluidic approaches allow the culturing of single cells within capture 

sites, with resulting cell progeny being captured by downstream cell traps, and therefore 

allow tracking of transcriptional changes over multiple lineage generations83.

The application of droplet-based microfluidics to isolate single cells and capture their 

mRNA with cell- and molecule-specific primers now allows the routine processing of tens of 

thousands of cells in a single experiment. In these methods, two aqueous solutions, one 

containing a suspension of single cells and the other containing a lysis solution with oligo-

dT primers affixed to a bead or hydrogel, are combined via separate microfluidics channels 

and then immediately “chopped” into individual droplets by orthogonal streams of an oil 

solution (Fig. 6A). Every primer on an individual bead or hydrogel contains the same cell 

barcode, but each primer also contains an additional unique barcode (unique molecular 

identifier, UMI, Fig. 6B). Thus, when a cell and primer-coated bead/hydrogel are 

encapsulated within the same droplet, the cell is lysed and its polyadenlyated RNA is 

captured by the oligo-dT primers. Reverse transcription then incorporates the cell and UMI 

barcodes from each primer into the resulting cDNA strands. In this way, all captured mRNA 

molecules from a given cell will contain the same cell-specific barcode, but each mRNA 

molecule will contain its own UMI barcode. The aqueous-oil emulsion is then broken, 

allowing library preparation in bulk solution. This technology was developed independently 

by the McCarroll and Kirschner labs in 2015, with the names Drop-seq and inDrop, 

respectively. These techniques require the purchase of specialized equipment, but the setup 

and consumable costs are modest, especially compared to commercially-available systems. 

The primary drawback of these techniques is that only the 3′ end of the mRNA is 

sequenced, making them unsuitable for studies of alternative splicing or allelic expression 

imbalance. While this method is typically limited to capturing tens of thousands of cells per 

experiment, a dataset of 1.3 million single cells from two embryonic mouse brains was 

recently accumulated by repeating cell capture many times75. However, this data set was 

generated by 10X Genomics, a commercial provider of the inDrop technology, and would 

currently be prohibitively expensive for the typical lab to generate.

In 2017, two novel barcoding strategies were developed that have the potential to increase 

throughput to hundreds of thousands and even millions of single cells in a single experiment 

using widely-available laboratory tools73,84. These methods were developed independently 

by the Shendure and Seelig laboratories, and are named sci-RNA-seq and SPLiT-seq, 

respectively. A major advance integral to both techniques is the ability to perform reverse 

transcription and barcoding in situ in a suspension of fixed, permeabilized cells, essentially 

using each cell as its own reaction chamber. In this method, cells are seeded into 96- or 384-

well plates, with each well containing a unique barcoded primer for reverse transcription 
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(RT). After RT, cells are pooled together and split again into another 96-or 384-well plate 

with different well-specific barcodes. These techniques can be scaled up via multiple rounds 

of ‘split-pooled’ barcoding to allow the generation of hundreds of thousands to millions of 

uniquely barcoded single cell cDNA libraries in a single experiment, considerably reducing 

the cost of per-cell library preparation73,84. The authors used sci-RNA-seq to characterize 

the transcriptomes of 42,035 single cells from C. elegans at the L2 stage, effectively 

analyzing the single-cell transcriptional landscape of an entire organism. Likewise, SPLiT-

seq was used to sequence the transcriptome of 109,069 single cells from an entire postnatal 

day 5 mouse brain, characterizing the transcriptome of an entire organ at single-cell 

resolution. Another attractive feature of these methods is that they use only readily available 

laboratory equipment and off-the-shelf reagents, which could help bring single-cell 

capability to the average laboratory.

In a vastly different approach, George Church and colleagues created a method to perform 

RNAseq, potentially from single cells, in situ in tissue sections85. Unlike the methods above, 

this approach preserves information regarding the cells’ location within the tissue 

environment. In this technique, cDNA produced by in situ RT is cross-linked and 

circularized, followed by rolling circle amplification and another cross-linking step. The 

amplified cDNA is then sequenced via the incorporation of fluorescently-labeled sequencing 

probes (SOLiD sequencing chemistry) using sophisticated microscopy and image processing 

techniques.

Single-cell chemistries

A number of different chemistries for generating amplified cDNA libraries have been 

developed over the past eight years. These chemistries differ most fundamentally in three 

key aspects: i) transcript coverage, ii) the method of cDNA amplification, and iii) barcoding 

strategy (Table 1). Most chemistries for single-cell RNAseq rely on oligo-dT based primers 

to capture cellular mRNA, except for SUPeR-seq87 and MATQ-seq88, which use random RT 

primers with a fixed anchor sequence and can therefore capture non-polyadenylated 

transcripts. Interestingly, one group found that long non-coding RNAs were also enriched 

with the use of single-nucleus RNAseq using an olido-dT based chemistry72.

While the majority of chemistries ultimately incorporate only the 3′ end of each mRNA into 

the final library, the STRT-seq75 and Smart-seq92 protocols and their derivatives use 

template switching during RT to incorporate a PCR “handle” after encountering the 5′ end 

of the mRNA molecule. In STRT-seq, this produces both 5′ and 3′ bias75, but in Smart-seq, 

long-range PCR is used to amplify the full-length cDNA molecule resulting in more even 

coverage across the transcript77,92, albeit still with a 3′ end bias. The chemistry used in 

Drop-seq also uses 5′ template switching during cDNA amplification, but selects for the 3′ 
end during library preparation. The SUPeR-seq87 and MATQ-seq88 chemistries also lead to 

greater coverage of the entire transcript and allow discovery of non-polyadenylated 

transcripts. The remaining chemistries produce libraries covering the 3′ end of the mRNA 

molecule, which can only be used to obtain gene counts. However, one advantage of limiting 

coverage to the 3′ end is that fewer sequencing reads are used on a given cDNA molecule.
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Two primary methods of cDNA amplification (in vitro transcription and PCR) are used, each 

with distinct advantages and disadvantages. In vitro transcription (IVT, used in CEL-seq86 

and CEL-seq276) is a linear amplification process, and results in fewer non-specific 

byproducts than does PCR amplification (used in STRT-seq75, Smart-seq92, Macosko10, 

STRT-seq-2i90, SPLiT-seq84 and sci-RNA-seq73). In addition, IVT is highly strand-specific, 

which allows accurate gene calling for areas in which different genes occupy the same 

location on sense and anti-sense strands. However, IVT is not able to achieve the same level 

of robust amplification inherent in an exponential PCR amplification reaction, and has a 

strong 3′ end bias. Despite the differences between these methods, a recent comparison 

between different single cell RNAseq chemistries showed little difference in sensitivity or 

accuracy of IVT-based methods compared to PCR-based methods, when performed using 

similar cell capture strategies82. Instead, these methods appeared to be more dependent on 

reaction volume, with the smaller nanoliter volumes conferring a significant benefit in 

sensitivity. For example, at a sequencing depth of 1 million reads per cell, CEL-seq2 has an 

estimated detection limit of 2 mRNA molecules per cell when performed at a nanoliter scale 

but 13 mRNA molecules when performed at a microliter scale82.

In general, most techniques incorporate cell and/or UMI barcoding during the RT step. With 

this strategy, each cell is exposed to a set of oligo-dT primers that contain the same cellular 

barcode. However, each primer within this set can also contain an additional unique 6–10 

nucleotide barcode (unique molecular identifier, UMI). UMI barcodes are included to 

combat biases during PCR amplification; during analysis, all reads with the same UMI (i.e. 

PCR replicates) are collapsed into a single gene count. In most plate-based cell capture 

strategies, different cell/UMI barcodes are simply added to specific wells of each plate. In 

droplet-based microfluidic approaches, however, barcoded oligo-dT primers are affixed to a 

substrate (bead or hydrogel) to allow their segregation into droplets. Cellular barcodes can 

be added after cDNA generation (Smart-seq92/SMARTer), but this requires each cell’s 

cDNA to be processed separately. The application of unique cellular barcodes to each cell’s 

cDNA is the fundamental determinant of a method’s scalability - the random incorporation 

of any of a large number of possible barcodes (as in Drop-seq10 and inDrop89) or multiple 

rounds of randomly-incorporated barcodes (as in sci-RNA-seq73 and SPLiT-seq84) allow 

these techniques to surpass the scale of their predecessors by orders of magnitude.

The power to detect lowly-expressed genes is dependent on i) mRNA capture rate achieved 

with each cell capture/chemistry combination and ii) sequencing depth. The mRNA capture 

efficiency (i.e. the fraction of cellular mRNA that undergoes RT and barcoding) varies 

between ~10–50% for current techniques10,77,93,94. As noted above, smaller nanoliter 

reaction volumes have been shown to achieve greater sensitivity81,82, with valve-based 

microfluidics and their paired chemistries currently possessing the best sensitivity82. 

Sensitivity is also strongly dependent on the sequencing depth per cell82. However, 

sequencing to near-saturation (~1 million reads/cell)82 quickly becomes cost-limiting as the 

number of cells increases. Therefore, until the costs of sequencing decrease substantially, the 

higher-throughput methods will inevitably result in lower sequencing depth per cell and thus 

lower sensitivity.
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Ultimately, the choice of cell capture method, chemistry, and depth of sequencing will be 

determined by the experimental question. Users wishing to survey the transcriptional 

landscape of a whole tissue or those interested in identifying rare cell types will choose 

higher-throughput techniques, whereas those who would like to study more subtle effects on 

gene expression in a readily-defined subtype of cells may choose lower-throughput methods 

at nanoliter scale with a near-saturation sequencing depth.

Single-cell RNAseq data analysis

Due to the large number of cells and genes captured by scRNA-seq techniques, the resulting 

datasets can confer great power to downstream analyses. However, it is important to recall 

that these data are derived from an extremely small amount of starting material (often <10pg 

RNA per cell) that has undergone many rounds of amplification in order to be detected. With 

the very low amounts of mRNA present in a single cell and relatively low mRNA capture 

efficiency, detection of transcripts in a given cell is inherently stochastic, particularly for 

genes with low expression levels. This leads to a high number of so-called ‘dropout’ events, 

in which a gene is expressed in a cell but is not detected, leading to a zero value. In addition, 

the large number of PCR cycles required to detect the initial cDNA molecules can also 

introduce significant biases based upon differential PCR efficiency for different transcripts 

and in different cells. Variation in library construction and sequencing depth between cells 

can also add to this technical noise. Layered on this is additional biological noise, which can 

come from differences in individual cell cycle state95 or the bursting kinetics of gene 

expression96. Thus, a number of novel analysis strategies have been developed to model 

these sources of noise in scRNA-seq data, bringing out clearer and more reliable signals 

from these data. Experimental methods to reduce technical noise are discussed first, 

followed by in silico normalization and noise modeling strategies.

Spike-ins, UMIs and batch effects—The addition of a known amount of RNA spike-ins 

to each cell’s lysis environment (usually 1–5% of expected endogenous mRNA molecules86) 

can help control for the effect of between-cell variability in lysis, RT, PCR, library 

preparation and sequencing depth. This is most commonly performed using a synthetic 

mixture of 92 unique poly-adenylated RNAs developed by the External RNA Controls 

Consortium (ERCC)97. Because the transcripts in the ERCC mix span a concentration range 

of 106, they can also be used to determine the relative levels of endogenous transcripts. As 

these spike-in RNAs are relatively short (250–2000nt), have short (20nt) poly-A tails and are 

not capped at the 5′ end, they can lead to under-estimates of transcript abundance by as 

much as an order of magnitude82 and therefore cannot be used for absolute quantification. 

The optimal amount of spike-in needs to be determined beforehand for each cell population 

under examination to ensure that they are detected but do not overwhelm the endogenous 

mRNA signal.

The incorporation of unique molecular identifiers (UMIs) is another widely-used method to 

reduce technical noise from biases in PCR amplification and sequencing depth. Compared to 

simply counting the number of reads mapping to a given gene, which includes many PCR 

replicates, collapsing all reads containing a given UMI (and thus derived from the same 

cDNA molecule) into a single read count can reduce technical noise by approximately two-
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fold93. UMI counting can in theory also be used for quantification, but this requires each 

transcript be counted at least once and thus requires each cell be sequenced to saturation98. 

Importantly, UMIs can be used together with exogenous RNA spike-ins to account for 

between-cell variability in the experimental protocol. Because the same number of spike-in 

molecules are added to each cell’s reaction environment, and each captured spike-in 

molecule is tagged with a UMI, it is possible to create a relative scaling factor for each cell 

based upon the cell’s average spike in UMI count. This scaling factor can help normalize for 

technical variation in most steps in the experimental workflow, including relative RT 

efficiency. Many of these considerations are also nicely reviewed by Grun, et. al99 and 

Stegle, et. al100.

Batch effects can be confounding when two different experimental conditions are processed 

completely separately, leading to uncertainty regarding whether differences observed 

between the two conditions are the result of an important biological property or simply 

result from the differences in sample processing. To avoid confounding batch effects in 

scRNA-seq experiments, the goal is to merge the different experimental conditions at the 

earliest possible stage in sample processing. In the most ideal situation, different 

experimental conditions would be identifiable on the transcriptional level (i.e. a strongly-

expressed transgene present in one sample but not the other) such that these samples could 

be pooled prior to cell capture. Alternatively, using plate-based technologies, cells from 

different experimental conditions could be sorted into known subsets of wells, allowing the 

two groups to be identified later. However, as these ideal conditions are most often not met, 

cell capture, lysis, RT, and library preparation occur separately for different experimental 

conditions. In these cases, it is common practice for libraries to be pooled together and 

sequenced on the same sequencing lane(s) to avoid complete confounding. If feasible, 

inclusion of multiple biological replicates can help minimize the effects of confounding.

Normalization and cell modeling to reduce technical noise—Because of between-

cell differences in total RNA content, cell lysis, capture efficiency, PCR efficiency and 

sequence depth, data should be normalized prior to analysis. Normalization techniques from 

bulk RNA-seq analysis can be used to account for these effects, such as library size 

normalization, upper quartile normalization or normalization to a reference ‘cell’ comprised 

of averaged gene values101. However, the low amount of starting material and significant 

amplification required in scRNA-seq experiments lead to sparse and potentially biased 

datasets that can pose challenges for these normalization methods98. Thus, normalization 

strategies have been designed specifically for scRNA-seq analyses. One approach, scran102, 

pools groups of cells together within the broader population to perform normalization, and 

then deconvolves the pooled scaling factors to estimate cell-specific scaling factors. 

SCNorm103 uses quantile regression to account for the effect of sequencing depth on 

transcript expression, and then uses this information to estimate gene-specific scaling 

factors. Because of the 3′ end bias in scRNA-seq technologies, adjusting for transcript 

length is problematic and should be avoided.

Once the data have been normalized, the next step is to identify highly-variable genes 

(HVGs). This is critical for two reasons: i) HVGs, by their nature, are the most likely genes 

that will distinguish different cell types from one another within the population, and ii) 
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reduction in the number of genes tested generally increases the power of downstream 

analyses104. However, identifying true HVGs in scRNA-seq datasets can be confounded by 

significant technical noise. For instance, the stochastic nature of transcript ‘capture’ or 

sampling in scRNA-seq becomes increasingly evident as the mean expression level of a gene 

decreases, leading to disproportionate (technical) variance for genes with low to moderate 

expression levels. As a result, variance in a gene’s expression is highly dependent on 

expression level (Fig. 7B). Therefore, to determine whether a given gene is a true HVG, its 

variance is often compared to the observed variance of other genes at a similar level of 

expression (Fig. 7B, pink dots)104,105. Alternatively, the PAGODA package models a gene’s 

expression across cells as a mixture of two probabilistic processes: i) successful 

amplification and ii) drop-out106. This model is then applied to each individual cell to 

determine the probability that a given gene is expressed at a given level (including the 

probability of a zero value representing a drop-out event). The significance of a gene’s 

variance is then evaluated against the expected variance at similar expression levels107. 

Additional methods for modeling technical108 and unwanted biological95,108 variation such 

as cell cycle state are also available.

Detection of Cell Types—A major goal of scRNA-seq analysis is the identification and 

characterization of distinct cell sub-types within a heterogenous cell population. Once HVGs 

are identified, these genes are used for unsupervised dimensionality reduction and clustering 

to identify distinct cell types. Dimensionality reduction methods used in scRNA-seq 

analyses include principal component analysis (PCA, Fig. 7C)104,109, independent 

component analysis (ICA)110, t-distributed stochastic neighbor embedding (t-SNE, Fig. 

7D)104,111, and gene co-expression analysis112. A cellular distance matrix computed either 

in gene expression or in dimension-reduced space can then be used to perform unsupervised 

clustering, which is a general machine learning problem that groups similar cells together in 

clusters while also distinguishing distinct clusters from one another. Common approaches 

used in scRNA-seq packages include hierarchical clustering107, K-nearest neighbor graph-

based clustering104,113, and k-means clustering109,114,115. The results of these clustering 

methods can be visualized directly via dendogram or heatmap, or can be subjected to further 

non-linear dimensionality reduction and visualization, such as with t-SNE (Figs. 5B and 

7D)104. Alternatively, other approaches perform clustering directly on a cellular distance 

matrix without prior dimensionality reduction113–116.

Differential Expression Analyses—A common goal in RNA-seq experiments is to 

determine differential expression between two samples that have been subjected to different 

experimental perturbations. In bulk RNA-seq experiments of complex tissues, differential 

expression analyses can be confounded by differences in cell composition between samples. 

For example, in a mouse model of atherosclerosis, aortic samples taken from different mice 

may contain significantly different amounts of disease. Thus, gene expression changes 

between samples may result more from differential disease burden than the experimental 

perturbation. This can be partially corrected by increasing the number of biological 

replicates in each experimental condition, but still remains a significant confounding factor 

in bulk RNA-seq experiments.
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A key advantage of scRNA-seq, especially in complex tissues, is the ability to restrict 

differential expression analyses to specific cell types within the broader population. This 

allows identification of the specific cell type(s) affected by the experimental perturbation. 

And, because signals are not averaged across multiple cell types, this type of analysis is i) 
potentially more sensitive for detecting cell type-specific gene expression changes and ii) 
much more resistant to confounding by differences in tissue composition. Evaluation of 

differential expression is a key component in most available single cell analysis packages.

Lineage inference using pseudotemporal ordering—An important goal in 

understanding many developmental and disease processes is to determine how cells adapt or 

differentiate over time at a transcriptional level. This requires the ability to link cells in 

different stages of differentiation together to infer lineage relationships. Traditionally, this 

has also required the assessment of cells at multiple time points, which can be laborious and 

expensive to carry out, especially at a single cell level. To address these challenges, several 

groups have developed algorithms to infer lineage relationships between single cells using a 

large number of cells at a single time point78,117–119. These methods are based upon the 

concept that, at the time the cell population is captured, there are likely to be cells in various 

stages along a lineage path towards differentiation and/or cell adaptation. Two of these 

approaches, Monocle117 and Waterfall118, create an inferred lineage path through 

dimension-reduced space using a minimum spanning tree approach. Another approach uses 

a diffusion map for dimensionality reduction and then computes a distance measure 

(diffusion pseudotime) between each pair of cells on the map to allow inference of lineage 

relationships120. Bacher, et. al. also nicely review these techniques in greater depth121. For 

the frequent scenarios in which traditional fluorescence-based lineage tracing systems are 

not available, these techniques have significant potential to reveal important novel 

relationships between cell types.

SUMMARY

In this review, we have summarized the major applications of RNAseq, currently the most 

robust and generally useful method of transcriptional profiling. RNA sequencing has 

emerged as one of the essential methodologies in contemporary biological and medical 

sciences. The relative simplicity of experimental RNA extraction and facilitated library 

preparation have made possible scaling up to hundreds or even thousands of samples. The 

future of RNAseq development includes migration towards single cell experiments, which 

parallels an analog to digital transition in deconstructing the average signal in gene 

expression of a cell population. On the other hand, compared to bulk RNA sequencing, 

single cell sequencing comes with several challenges including the expense of commercial 

library preparation kits and sequencing, as well as an elevated computational burden for 

analysis. However, this trend may be only temporary and it is reasonable to expect a 

decrease in per-cell library costs and more efficient computing with newer methods. In 

addition, with increasing read length, RNAseq is expected to fully sequence complete 

transcripts in the future and to decipher isoform content without the need of reconstruction 

using shorter read lengths. Once the sequencing depth increases substantially and reaches 

saturation levels, it should be expected to migrate isoform analysis to the single cell level, 
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without the need of imputation of missing values. By detailing the transcriptome in each cell 

at the deepest level, it would be possible to fully unravel the complexity of cell populations 

and tissues, resolving even the most subtle of cell state changes. In a relatively short period 

of scientific and technological improvement, RNAseq profiling has provided a blueprint of 

cellular identity. Further improvement of this technology will make it possible to catalogue 

the complete transcript collection for each individual cell in a tissue or organism.

The future of next generation sequencing technologies will inherently bring the 

improvement in read length and accuracy and decrease in cost of long read technologies 

such as PacBio and Oxford Nanopore Technologies, which will ultimately eliminate the 

need for assembling genomes and transcriptomes using short reads or hybrid technologies. 

For the moment, short read technologies remain more accessible to wider scientific 

community due to their lower cost, which will in the near future generate many novel 

advances in algorithmic approaches in genome/transcriptome reconstruction. If 

cardiovascular research closely follows these advances, this field will inevitably benefit in 

terms of defining various molecular mechanisms responsible for the genetic modulation of 

disease.
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Figure 1. Evolution of RNA sequencing applications
A) Current applications for bulk and single cell RNAseq methods. B) Ongoing adaptations 

and expansions of RNAseq methodology.
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Figure 2. RNA sequencing at a cell population level
A) Starting from heterogeneous cell population, mRNA is extracted using poly-A selection 

with biotin-labeled Poly-T probes for poly-A tail detection. Subsequently, mRNA is 

fragmented and fragments are primed with random hexamers to generate first strand cDNA 

fragments. Similarly using random primers second cDNA strand is generated, therefore 

producing double stranded DNA inserts. Next steps include end repair, adding the 

phosphoryl group to the 5′ end of fragments and blunt adding A nucleotide to the 3′end of 

fragments (A-tailing). In the next step adapters are added using their 3′ T overhang and 

ligated to both sides of the DNA insert. B) Next, two primers complementary to adapters add 

P5, Rd2 SP, and IndSP sequences to the fragment ends. To achieve multiplexing, such 

prepared DNA libraries are labeled with a unique identifier, or index, in the next step of 

library preparation together with adding P7 flow cell primer. Multiple samples are 

subsequently pooled into a single lane of a flow cell and jointly sequenced in one run. This 

allows time- and cost- effective sequencing of multiple RNA libraries from multiple samples 

(useful for large eQTL cohorts). RPKM- reads per kilobase per million mapped reads. Rd1 

SP - Read one sequencing primer. Rd2 SP – Read two sequencing primer for paired-end 

sequencing applications. Ind - Index. P5, P7 - flow cell attachment sequence. IndSP –Index 

sequencing primer.
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Figure 3. RNAseq downstream applications
A) RNAseq application in genomic mechanistic studies. Discovery of mechanisms for how 

SNPs promote mRNA level changes (noncoding SNPs in promoters, enhancers and 

insulators and coding SNPs in coding enhancers). B) Allele-specific (AS) analysis involves 

discovery of differences in transcribed mRNA between parental alleles. Allele specific QTL 

discovery is possible in the context of SNPs that are not in the linkage disequilibrium with 

the AS SNP, while SNPs in LD with the AS SNP will have linked genotypes therefore 

making it impossible to assess the influence on AS trait. C) RNA isoform analysis with long 

reads may resolve mechanisms of distant exon pair co-association and mutual exclusion. D) 

The number of transcripts detected depends on the sequencing depth before reaching a stable 

plateau. E) Downstream experiments on model animals. F) eQTL discovery involves 

calculations of cis- and trans- eQTLs. In this example, variation regulates expression of gene 

G1 which encodes a transcription factor that regulates expression of gene G2. G) 

Comparison of various differential expression tools (see main text). FPR, false positive rate; 

TPR, true positive rate; logFC, log fold change; n, number of replicates.
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Figure 4. RNAseq in complex diseases – coronary artery disease
A) Schematic overview of coronary artery smooth muscle cells and progression to disease 

state in vivo, as well as modeling disease progression in vitro and RNAseq profiling. B) Fine 

mapping disease-associated risk SNPs from the GWAS catalog using various RNAseq 

applications. C) CAD GWAS candidate gene TCF21 overexpression in HCASMC leads to 

the perturbation of the transcriptome profile that recapitulates disease phenotype in vitro, as 

shown using gene ontologies. On the right, detection of immediate response genes after the 

treatment with PDGF that recapitulates similar disease cellular phenotype in vitro. D) 

Construction of the gene network using WGCNA modules or edge weighted force layout 

clustering that clustered genes from ~4000 public RNAseq datasets into smooth muscle- 

(TCF21, PDGFD, SMAD3, etc.) and lipid- (APOA1, APOB, etc.) related clusters. E) An 

excerpt of the network constructed using cis- and trans- eQTL connections defined with 

causal inference test in the STARNET data set. Multi tissue eQTL analysis enables the 

construction of the network of genes as shown with the example of TCF21 and PDGFD 

genes that are interconnected with the LIPA gene in the disease core network only when 

incorporating eQTLs from the liver with those from the diseased atherosclerotic aorta.
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Figure 5. Cell atlas of the developing heart
A) Embryonic day (e10.5) heart showing anatomical locations from which cells were 

isolated. B) t-SNE plot of cardiomyocytes from the e10.5 heart. Cardiomyocytes from 

different locations can be clearly distinguished by their transcriptional signatures.
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Figure 6. Drop-seq microfluidics and chemistry
A) Schematic of cell and bead partitioning into aqueous droplets, adapted from Mocosko, et. 

al.10. To avoid cell/bead doublets, cell and bead concentrations are adjusted so that only a 

small minority of droplets contain both a bead and a cell. B) Each bead-based oligo-dT 

primer contains the same cell barcode but different unique molecular identifier (UMI) 

barcodes. A template switching oligo (TSO) introduces a PCR handle, allowing cDNA 

amplification. Only the 3′ end of each cDNA molecule is incorporated during library 

construction. Barcodes and transcript sequences are associated via paired-end sequencing.
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Figure 7. General workflow for scRNA-seq analysis
A) Starting with a cell-gene readcount matrix, data are normalized and low-quality cells are 

excluded. B) Highly-variable genes (HVGs, pink dots) are identified after accounting for the 

relationship between expression level and variance (squared coefficient of variation, CV2). 

Figure obtained with permission from Brennecke, et. al105. C) HVGs are used in a 

dimensionality reduction method such as principal component analysis (PCA), and cells are 

evaluated based upon their principal component (PC) dimensions. D) Cells are assigned to 

clusters in PC space or in gene expression space. E) Downstream analyses include the 

identification of cell-specific markers (left), cell type-specific transcriptional changes in 

response to experimental manipulations (middle), and the inference of possible lineage 

relationships (right).
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