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Abstract. Fuzzy inference systems (FIS) gained popularity and found
application in several fields of science over the last years, because they
are more transparent and interpretable than other common (black-box)
machine learning approaches. However, transparency is not automati-
cally achieved when FIS are estimated from data, thus researchers are
actively investigating methods to design interpretable FIS. Following this
line of research, we propose a new approach for FIS simplification which
leverages graph theory to identify and remove similar fuzzy sets from
rule bases. We test our methodology on two data sets to show how this
approach can be used to simplify the rule base without sacrificing accu-
racy.

Keywords: Fuzzy logic · Takagi–Sugeno fuzzy model · Data-driven
modeling · Open-source software · Python · Graph theory

1 Introduction

Fuzzy Inference Systems (FIS) are based on the fuzzy set theory introduced
by Zadeh [37]. FIS are universal approximators that can implement non-linear
mappings between inputs and output, designed to model linguistic concepts.
Owing to these characteristics, FIS have been successfully applied in a variety of
fields, including systems biology, automatic control, data classification, decision
analysis, expert systems, and computer vision [7,14,21,25,27,30]. One of the
main advantages provided by FIS over black-box methods, such as (deep) neural
networks, is that fuzzy models are (to a certain degree) transparent, and hence
open to interpretation and analysis.

The first FIS relied on the ability of fuzzy logic to model natural language and
were developed using expert knowledge [23]. The knowledge of human experts
was extracted and transformed into rules and membership functions. These FIS
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1237, pp. 387–401, 2020.
https://doi.org/10.1007/978-3-030-50146-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50146-4_29&domain=pdf
http://orcid.org/0000-0002-4815-0310
http://orcid.org/0000-0002-3383-367X
http://orcid.org/0000-0002-7692-7203
http://orcid.org/0000-0002-4500-9098
https://doi.org/10.1007/978-3-030-50146-4_29


388 C. Fuchs et al.

are easy to interpret, but unfortunately, they cannot be easily used to model large
and complex systems, since human knowledge is often incomplete and episodic.

In 1985, Takagi and Sugeno [33] proposed a method to construct self-learning
FIS from data. The fuzzy rules underlying this kind of FIS are automatically
generated from data, but follow the same if–else structure as the rules based on
expert knowledge, thus making it possible to model large and complex systems.
However, there is generally a loss of semantics when the FIS is constructed in
this way, since the number of induced rules can be large, and the rules might
become complex because of the number of considered variables. Therefore, many
researchers are investigating the problem of designing interpretable fuzzy mod-
els [1,2,12].

When FIS are identified from data, it is common to obtain a system with a
large number of highly overlapping fuzzy sets, that hardly allow for any interpre-
tation. This hinders the user from labeling the fuzzy sets with linguistic terms
and thus giving semantic interpretation to the model. This problem arises espe-
cially when Takagi and Sugeno (TS) [33] fuzzy models are determined based on
input–output product space fuzzy clustering. Fuzzy rule base simplification has
been proposed to reduce the complexity of such models in order to make them
more amenable to interpretation [29].

In this paper we propose a new approach based on graph theory to sim-
plify the fuzzy rule base by reducing the number of fuzzy sets in the model
when a high overlap is detected between membership functions. Specifically, we
combine Jaccard similarity and graph theory to determine which fuzzy sets can
be simplified in the model. We name our approach Graph-Based Simplification
(GRABS).

GRABS was implemented using the Python programming language [26],
and it is part of pyFUME, a novel Python package developed to define FIS
from data [9]. pyFUME provides a set of classes and methods to estimate the
antecedent sets and the consequent parameters of TS fuzzy models. This infor-
mation is then used to create an executable fuzzy model using the Simpful
library [31], a Python library designed to handle fuzzy sets, fuzzy rules and per-
form fuzzy inference. pyFUME’s source code and documentation can be down-
loaded from GITHUB at the following address: https://github.com/CaroFuchs/
pyFUME.

In this study we investigate the pyFUME’s GRABS functionality, testing
the methodology on both synthetic and real data sets. Our results show that
pyFUME produces interpretable models, written in a human-readable form,
characterized by a tunable level of complexity in terms of separation of fuzzy
sets.

The paper is structured as follows. We provide a theoretical background
about FIS simplification in Sect. 2. The GRABS method is described in Sect. 3.
Section 4 describes how to use GRABS in pyFUME. Some results of GRABS
with pyFUME are shown in Sect. 5. We conclude the paper in Sect. 6.

https://github.com/CaroFuchs/pyFUME
https://github.com/CaroFuchs/pyFUME
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2 Rule Base Simplification

When dealing with the interpretability of a fuzzy model, two main aspects have
to be considered [1,2]: the readability and comprehensibility. The former depends
on the complexity of the FIS structure, while the latter is tied to the semantics
associated to it.

Rule base simplification is an approach to simplify the structure of a fuzzy
system. Following the classification proposed in [15], methods for fuzzy rule base
simplification can be divided into five categories:

1. Feature reduction. This category includes methods that rely on feature
reduction by means of feature transformation [20] (also referred to as feature
extraction) or feature selection [13]. Feature transformation consists of creat-
ing additional features from the given ones, or selecting a new set of features
to replace the old one. Since feature transformation changes the underlying
meaning of the features, this approach can make feature interpretation harder,
ultimately resulting in a loss of semantics. Feature selection is not affected
by this shortcoming, since it selects a subset of the most influential features,
and discards features affected by noise or that do not contribute significantly
to the accuracy of the FIS.

2. Similarity-based simplification. Methods belonging to this class perform
a merging of similar rules and/or eliminate redundancy in the FIS. Similarity
merging methods perform a merging of fuzzy sets representing comparable
and analogous concepts, by exploiting some similarity measure (see e.g., [6,
17,29]). When the model shows high redundancy, this merging might result
in some rules being equivalent and thus amenable to being merged, thereby
reducing the number of rules as well. Compatible cluster merging algorithms
try to combine similar clusters into a single one, in order to reduce the FIS rule
base (e.g., [18]). Finally, methods for consistency checking [34] and inactivity
checking [17] are employed to decrease the number of rules. In particular,
consistency checking reduces the rule base by eliminating conflicting rules,
while inactivity checking removes rules with a low firing strength, according
to a predetermined threshold.

3. Orthogonal transformation. These methods reduce fuzzy rule bases by
means of matrix computations. They achieve such reduction in two ways:
either by taking into account the firing strength matrix and employing some
metrics to estimate the impact of a rule on the FIS performance [36]; or by
considering matrix decompositions (e.g., singular value decomposition) and
removing the rules that correspond to the less important, smaller components
and updating the membership functions accordingly [35].

4. Interpolative reasoning. Traditional fuzzy reasoning methods require the
universe of discourse of input variables to be entirely covered by the fuzzy
rule base. These methods do not perform well when input data fall in a non-
covered region of the universe of discourse, as this does not trigger the firing
of any rule and no consequences are drawn from the rule base. The first fuzzy
interpolative reasoning method was proposed in [19] to overcome the above
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mentioned limitation. This method consists in generating the conclusions of
FIS with sparse rule bases by means of approximation. In the context of FIS
simplification, fuzzy interpolation can be employed to reduce fuzzy rule bases.
This is achieved by eliminating the rules that can be approximated through
interpolation of neighboring rules.

5. Hierarchical reasoning. Methods adopting a hierarchical reasoning app-
roach reorganize the fuzzy rule base structure in order to obtain a hierar-
chical fuzzy system [28]. Hierarchical fuzzy systems consist of several low-
dimensional FISs, connected together according to some defined hierarchy.
This approach was applied for example in [32], where the authors propose
a hierarchical fuzzy system for the automatic control of an unmanned heli-
copter.

The GRABS approach proposed in this paper aims at simplifying the fuzzy
rule base by eliminating redundant information from the overlapping fuzzy sets.
Thus, our approach falls in the category of similarity-based rule base simplifica-
tion. Methods belonging to this category need to assess the similarity between
the fuzzy sets in the antecedents with a given measure, in order to remove similar
sets. In [29], the authors suggest to adopt the Jaccard similarity index [16] to
quantify such similarity between two fuzzy sets. Given two fuzzy sets A and B,
the Jaccard index S is computed as follows:

S(A,B) =
|A ∩ B|
|A ∪ B| , (1)

where | · | denotes the cardinality of a fuzzy set, and the ∩ and ∪ operators
represent the intersection and the union of fuzzy sets, respectively. The Jaccard
similarity index takes values between 0 and 1, with 1 representing total similarity
(i.e, perfectly overlapping fuzzy sets) and 0 disjoint fuzzy sets.

3 Graph-Based Rule Base Simplification

A graph is an abstract mathematical structure used to model pairwise relations
between objects. A undirected graph is defined by a pair G = (V,E), where V
is a set of vertices (or nodes) connected by a set of edges E.

We represent the similarities between fuzzy sets of a same variable by using
a graph. Specifically, each vertex v ∈ V represents a fuzzy set. See for example
Fig. 1a, where four fuzzy sets are defined on the universe of discourse. If the
Jaccard similarity of two fuzzy sets exceeds a certain, user-specified, threshold
σ, their two nodes are connected by an edge. This process is schematized in
Fig. 1b, where the fuzzy sets 1 and 2 show high similarity and therefore are
connected by an edge. Please observe that the graph now contains multiple
connected components (three in this example).

Assume now that the fuzzy set 3 is also similar to the fuzzy sets 1 and 2. Then,
by adding the corresponding additional edges (3, 1) and (3, 2), the graph changes
as schematized in Fig. 1c. In particular, the largest component of the graph is
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FS 1 FS 2

FS 3 FS 4

(a) No fuzzy
sets show high
similarity.

FS 1 FS 2

FS 3 FS 4

(b) Fuzzy set 1
and 2 show high
similarity.

FS 1 FS 2

FS 3 FS 4

(c) Fuzzy set
1, 2 and 3 all
show high simi-
larity to one an-
other.

FS 1 FS 2

FS 3 FS 4

(d) Fuzzy set 1
and 2 and fuzzy
set 1 and 3 show
high similarity,
but fuzzy set 2
and 3 are dis-
similar.

FS 1 FS 2

FS 3 FS 4

(e) Fuzzy set 1
and 2, 2 and
3, and 3 and 4
show high sim-
ilarity, but the
other sets are
dissimilar.

Fig. 1. Graphs representing variables that each have four fuzzy sets.

complete, meaning that clusters 1, 2 and 3 are all similar to one another with
respect to the specified threshold σ. Please note that the transitive closure is in
general not valid in this context. For example, Fig. 1d shows a case where fuzzy
set 1 is similar to both fuzzy set 2 and 3, but fuzzy set 2 and 3 are not similar to
each other, according to Jaccard similarity. In this respect, the GRABS method
deviates from the compatible cluster merging in [18], where transitive closure
is imposed before merging, or from the similarity-based rule base simplification
method in [29], where merging takes place iteratively, by combining only the
most similar pair of fuzzy sets at each step.

According to our merging algorithm, the fuzzy sets of Fig. 1a should all be
retained, since they are all dissimilar. However, in Fig. 1b both fuzzy set 1 and
and 2 give the same information. Therefore, one of them can be dropped with-
out losing (much) information and accuracy of the model. The same applies to
Fig. 1c: only one of the three similar fuzzy sets can be retained to preserve all the
information and the accuracy of the model. In Fig. 1d, dropping fuzzy set 1, 2 or
3 would lead to a loss of information, since fuzzy set 2 and 3 are dissimilar. There-
fore, all three fuzzy sets should be retained. We also considered the possibility of
multiple partially overlapping fuzzy sets (see Fig. 1e): in this circumstance, we do
not allow the full removal of inner nodes characterized by a higher degree (i.e.,
FS1 and FS2), since that could lead to a fuzzy partitioning that does not span
the full universe of discourse. These concepts represents the foundations of our
graph-based rule base simplification algorithm. The aforementioned heuristic–
that represents a trade-off between simplicity, computational costs, and accuracy
in the simplification–seems to be effective for practical scenarios.

The pseudo-code of our GRABS methodology is shown in Listing 1.1. The
algorithm begins by creating two empty dictionaries that will store the informa-
tion about pairs of similar fuzzy sets (line 1) and the information about fuzzy sets
replacements (line 2). Then, for each variable, we calculate the pair-wise Jaccard
similarities of the associated fuzzy sets (lines 3–13). If the Jaccard similarity of
a pair of fuzzy sets is above the user-defined threshold σ then that pair is added
to the dictionary (lines 7–10). After the Jaccard similarities are assessed, the
algorithm proceeds to build and analyze the graphs. Specifically, the algorithm
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Listing 1.1. Pseudocode of pyFUME’s GRABS algorithm.

1 s i m i l a r p a i r s ← {}
2 replacement ← {}
3 foreach va r i ab l e in va r i a b l e s :
4 s i m i l a r p a i r s [ v a r i a b l e ] ← [ ]
5 for f s 1 ← 1 to num fuzzysets :
6 for f s 2 ← f s 1+1 to num fuzzysets :
7 s i m i l a r i t y ← J a c c a r d s im i l a r i t y ( f s1 , f s 2 )
8 i f s i m i l a r i t y > σ then :
9 s i m i l a r p a i r s [ v a r i a b l e ] ← ( f s1 , f s 2 )

10 end i f
11 end for
12 end for
13 end foreach
14 foreach var i ab l e , s i m i l a r c l u s t e r s in s i m i l a r p a i r s :
15 G ← c r ea t e g raph ( s i m i l a r p a i r s )
16 SC ← G. get components ( )
17 for component in SC:
18 i f component . i s c omp l e t e ( ) then :
19 r e t a in ed ← component . p i ck one node ( )
20 component . remove node ( r e t a in ed )
21 foreach node in component
22 replacement [ ( va r i ab l e , node ) ] ← r e t a in ed
23 end foreach
24 end i f
25 end for
26 end foreach

iterates on variables (lines 14–26). For each variable, a graph is created by using
the fuzzy sets stored in the similar pairs dictionary (line 15). Then, all the
components of the the graph are extracted (line 16) and, for each sub-component,
the algorithm performs a completeness check (line 18). If the sub-component is
complete, then all fuzzy sets are similar and can be simplified: one node is picked
to be retained (line 19) and removed from the component (line 20). The remain-
ing nodes (i.e., similar fuzzy sets) can be removed from the model. We store the
information about the removed fuzzy sets in the replacement dictionary. To
simplify the lookup in pyFUME, the keys of the dictionary are pairs (variable,
removed fuzzy set) and the values are the retained fuzzy sets (line 22).

4 GRABS in pyFUME

pyFUME was designed to have an easy to use interface both for practitioners
and researchers. Currently, pyFUME supports the following features.

1. Loading the input data.
2. Division of the input data into a training and test data set.
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3. Clustering of the data in the input-output space by means of Fuzzy C-Means
(FCM) clustering [4] or an approach based on Fuzzy Self-Tuning Particle
Swarm Optimization (FST-PSO [8,24]).

4. Estimating the antecedent sets of the fuzzy model, using the method described
in [10]. Currently, Gaussian (default option), double Gaussian and sigmoidal
membership functions are supported

5. Estimating the consequent parameters of the first-order TS fuzzy model,
implementing the functionalities described in [3].

6. The generation, using the estimated antecedents and consequents, of an exe-
cutable fuzzy model based on Simpful, possibly exporting the source code as
a separate, executable file.

7. Testing of the estimated fuzzy model, by measuring the Root Mean Squared
Error (RMSE), Mean Squared Error (MSE) or Mean Absolute Error (MAE).

To use pyFUME to estimate a fuzzy model from data, the user simply has
to call the pyfume() function and specify the path to the data and the number
of clusters as input. Optionally, the user can diverge from default settings (for
example to use a clustering approach based on FST-PSO [24] or normalizing the
data) by choosing additional key-value pairs. More information on pyFUME’s
functionalities can be found in [9].

If a user wants to use GRABS in pyFUME to simplify the produced rule
bases, an optional input argument similarity threshold must be specified.
Thanks to this parameter, the user can set any arbitrary threshold for fuzzy sets
similarity, implicitly controlling the error tolerance. This allows our method to
be applied, in principle, to any system. By default, this threshold is set to 1.0,
which means that one of the fuzzy sets is only dropped if the Jaccard similarity
(which is assessed by using (1)) is 1.0, i.e., the fuzzy sets are identical. Since
membership functions estimated from data will hardly ever be identical, this
means that by default the functionality is switched off. The user can activate the
functionality by setting similarity threshold to a lower number. For example,
when similarity threshold = 0.9, pairs of fuzzy sets that have a Jaccard
similarity higher than 0.9 will be dropped.

Internally, pyFUME represents the relation between the fuzzy sets as graphs
such as the ones shown in Fig. 1. After identifying all complete components, one
vertex for each of them is randomly selected to be retained, while the others are
dropped.

In practice, this means that from all overlapping fuzzy sets in the FIS, one
set is randomly selected and retained in the model. The other overlapping sets
are discarded and remapped to the fuzzy set that was retained. This means that
multiple rules in a FIS can have the same fuzzy set for a certain variable in their
antecedent.
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Fig. 2. Plots for the synthetic data set. On the diagonal, the distributions of the vari-
ables per cluster are visualized. Each off-diagonal plot is a scatter plot of a column of
the data against another column of data.

5 Results

We use two data sets to show the effects of different threshold levels on the
estimated fuzzy models. The first data set is synthetic and follows the same dis-
tributions as the data set described in [11], the second data set was downloaded
from the UCI repository [22].

5.1 Example Case: Synthetic Data Set

For the first tests, we created a data set which contains 500 points and two
variables (x1 and x2). In the data set there are two clusters, each containing 250
data points. For both clusters, variable x1 follows a normal distribution N(μ, σ2)
with μ = 5 and σ = 1.2. For cluster 1, variable x2 follows the distribution
N(3, 0.52) and for cluster 2 the values for variable x2 are drawn from N(7, 0.52).
The values for the output variable were calculated as 0.4 ∗ x1 + 1.2 ∗ x2 + ε for
the first cluster and −0.2 ∗x1 +0.9 ∗x2 + ε for the second one. ε is random noise
drawn from N(0, 0.12). In Fig. 2 a matrix of scatter plots of the input and output
variables, and (on the diagonal) frequency histograms of the data is shown.

Using pyFUME, we train first-order Takagi-Sugeno fuzzy models with two
rules (and therefore two clusters) for this data set. Therefore, each input variable
has two fuzzy sets. pyFUME’s similarity threshold is varied from 0.0 to 1.0 in
steps of 0.05, and for each level 100 models are built using 75% of the data as
training data. All models are then evaluated in terms of Root Mean Square Error
(RMSE) with the remaining 25% of the data.
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Fig. 3. The average and 95% confidence intervals of the RMSE for fuzzy models for
the synthetic data set, build in pyFUME using different similarity thresholds (100 runs
each).

In Fig. 3 the average RMSE and the 95% confidence interval for each thresh-
old level are plotted. It can be observed that using very low values for the
threshold results in worse performing models. When a similarity threshold of
<0.45 is chosen, the two fuzzy sets for each of the variables are deemed similar,
and therefore, one of them is dropped. Because of this, only one fuzzy set per
variable remains, making both rules identical. As a result, the model does not
separate the clusters anymore and behaves like a multiple regression model. This
leads to a loss in accuracy.

Using any threshold level � 0.45 but <1.0 results in the merging of the two
fuzzy sets for variable x1, since these fuzzy sets have a Jaccard similarity index
of 0.97. Dropping one of these fuzzy sets does not result in loss of information,
since variable x1 follows the same distribution in both cluster 1 and 2. Because
of this, the RMSE does not decrease when one of the two fuzzy sets is dropped.
This can be observed in Fig. 3.

In Fig. 4 the membership function of the fuzzy model that still contains all
fuzzy sets is depicted. For variable x1 indeed a large overlap can be observed
for the fuzzy sets. Figure 5 shows the new membership functions for the fuzzy
model when the similarity threshold is set to 0.75. Note that for variable x1 only
one set is left. In pyFUME the rules are now simplified to (bold highlights the
change):

– RULE1 = IF (x1 IS cluster1) AND (x2 IS cluster1) THEN (OUTPUT IS fun1)

– RULE2 = IF (x1 IS cluster1) AND (x2 IS cluster2) THEN (OUTPUT IS fun2)
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Fig. 4. The membership functions of a fuzzy model based on the synthetic data set.
The similarity threshold was set to 1.0 and therefore, no fuzzy sets were dropped.

Fig. 5. The membership functions of a fuzzy model based on the synthetic data set.
The similarity threshold was set to 0.75 and therefore, one of the fuzzy sets of the
variable x1 was dropped.

5.2 Example Case: NASA Data Set

The NASA data set [5] (downloaded from and described in the UCI reposi-
tory [22]) consists of 1503 cases of different size NACA 0012 airfoils, which are
airfoil shapes for aircraft wings developed by the National Advisory Commit-
tee for Aeronautics (NACA). Measurement were taken at various wind tunnel
speeds and angles of attack. The span of the airfoil and the position of the
observer were kept the same during data gathering in all of the experiments.
During the experiments the frequency, angle of attack, chord length, free-stream
velocity, and suction side displacement thickness of the NACA 0012 airfoils were
recorded. These input variables should be mapped to the output variable, which
is the scaled sound pressure level in decibels.

Again, the fuzzy models are build in pyFUME, and a 25% hold-out set is
used for testing. To determine the similarity threshold value, different thresholds
are tested. The results of this are plotted in Fig. 6 When exploring the effect of
these different similarity thresholds on the accuracy of the fuzzy model, it can
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be observed that dropping fuzzy sets that show a similarity of more than 0.55 to
another set does not result in significantly higher error rates. At this threshold,
ten fuzzy sets are dropped.

Fig. 6. The average and 95% confidence intervals of the RMSE for fuzzy models for
the NASA data set, build in pyFUME using different similarity thresholds (100 runs
each).

Figure 7 visualizes the membership functions of the NASA model before fuzzy
sets were dropped. In this figure it can be observed that, except for the first
variable, all variables have fuzzy sets that show high similarity. These fuzzy sets
are dropped when the similarity threshold is set to 0.55, as can be seen in Fig. 8.
This figure also shows that the variable ‘chord length’ and (to a lesser extent)
‘freestream velocity’ have membership functions that are similar to the universal
set. This might indicate that these variables can be removed from the model,
but that goes beyond the scope of this study. Then, the rule base is as follows
(bold highlights the changes):

– RULE1 = IF (frequency IS cluster1) AND (angle of attack IS cluster1) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster1) THEN (OUTPUT IS fun1)

– RULE2 = IF (frequency IS cluster2) AND (angle of attack IS cluster2) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster2) THEN (OUTPUT IS fun2)

– RULE3 = IF (frequency IS cluster3) AND (angle of attack IS cluster2) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster2) THEN (OUTPUT IS fun3)

– RULE4 = IF (frequency IS cluster4) AND (angle of attack IS cluster2) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster2) THEN (OUTPUT IS fun4)
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Fig. 7. The membership functions of a fuzzy model based on the NASA data set. The
similarity threshold was set to 1.0 and therefore, no fuzzy sets were dropped.

Fig. 8. The membership functions of a fuzzy model based on the NASA data set. The
similarity threshold was set to 0.55 and therefore, ten fuzzy sets were dropped.

6 Conclusions

In this paper we introduced a novel graph theory based approach to simplify
fuzzy rule bases called GRABS. By combining the Jaccard similarity and graph
theory, we determine which fuzzy sets can be simplified in the model. The exam-
ples in this paper show that simplifying the model using this approach does not
result in significant information and accuracy loss. Future studies will show how
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these result generalise to other data sets, and how this method compare to other
simplification methods. The GRABS approach is implemented in the pyFUME
package, whose source code and documentation is available at: https://github.
com/CaroFuchs/pyFUME.

In [11] it is shown that when only one fuzzy set remains for a variable, the
corresponding antecedent clause can be removed from all the rules in the fuzzy
rule base. This improves the readability of the rule base even further. In future
releases of pyFUME, we wish to implement the automatic detection and removal
of these antecedent clauses. Moreover, we plan to implement a semi-automatic
procedure to assign meaningful labels to fuzzy sets (e.g., low, medium, high),
after performing simplification, in order to further improve the interpretation of
the model. Finally, we will investigate the possibility of exploiting graph mea-
sures (e.g., degree centrality) as an alternative to detect fuzzy sets to be removed.
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