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Abstract

Purpose of review: Artificial intelligence (Al) technology holds both great promise to
transform mental healthcare and potential pitfalls. This article provides an overview of Al and
current applications in healthcare, a review of recent original research on Al specific to mental
health, and a discussion of how Al can supplement clinical practice while considering its current
limitations, areas needing additional research, and ethical implications regarding Al technology.

Recent findings: We reviewed 28 studies of Al and mental health that used electronic health
records (EHRs), mood rating scales, brain imaging data, novel monitoring systems (e.g.,
smartphone, video), and social media platforms to predict, classify, or subgroup mental health
illnesses including depression, schizophrenia or other psychiatric illnesses, and suicide ideation
and attempts. Collectively, these studies revealed high accuracies and provided excellent examples
of Al’s potential in mental healthcare, but most should be considered early proof-of-concept works
demonstrating the potential of using machine learning (ML) algorithms to address mental health
questions, and which types of algorithms yield the best performance.

Summary: As Al techniques continue to be refined and improved, it will be possible to help
mental health practitioners re-define mental illnesses more objectively than currently done in the
DSM-5, identify these illnesses at an earlier or prodromal stage when interventions may be more
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effective, and personalize treatments based on an individual’s unique characteristics. However,
caution is necessary in order to avoid over-interpreting preliminary results, and more work is
required to bridge the gap between Al in mental health research and clinical care.
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Introduction and Background of Artificial Intelligence (Al) in Healthcare

We are at a critical point in the fourth industrial age (following the mechanical, electrical,
and internet) known as the “digital revolution” characterized by a fusion of technology types
[1,2]. A leading example is a form of technology originally recognized in 1956—artificial
intelligence (Al) [3]. While several prominent sectors of society are ready to embrace the
potential of Al, caution remains prevalent in medicine, including psychiatry, evidenced by
recent headlines in the news media like, “A.l. Can Be a Boon to Medicine That Could Easily
Go Rogue” [4]. Regardless of apparent concerns, Al applications in medicine are steadily
increasing. As mental health practitioners, we need to familiarize ourselves with Al,
understand its current and future uses, and be prepared to knowledgeably work with Al as it
enters the clinical mainstream [5]. This article provides an overview of Al in healthcare
(introduction), a review of original, recent literature on Al and mental healthcare (methods/
results), and a discussion of how Al can supplement mental health clinical practice while
considering its current limitations, identification of areas in need of additional research, and
ethical implications (discussion/future directions).

Al in our daily lives

The term Al was originally coined by a computer scientist, John McCarthy, who defined it
as “the science and engineering of making intelligent machines” [6]. Alan Turing,
considered to be another “father of Al,” authored a 1950 article, “Computing Machinery and
Intelligence” that discussed conditions for considering a machine to be intelligent [7]. As
intelligence is traditionally thought of as a human trait, the modifier “artificial” conveys that
this form of intelligence describes a computer. Al is already omnipresent in modern western
life (e.g., to access information, facilitate social interactions (social media), and operate
security systems). While Al is beginning to be leveraged in clinical settings (e.g., medical
imaging, genetic testing) [8] we are still far from routine adoption of Al in healthcare, as the
stakes (and potential risks) are much greater than those of the Al that facilitates our modern-
day conveniences [9].

Al in healthcare

Al is currently being used to facilitate early disease detection, enable better understanding of
disease progression, optimize medication/treatment dosages, and uncover novel treatments
[8,10-15]. A major strength of Al is rapid pattern analysis of large datasets. Areas of
medicine most successful in leveraging pattern recognition include ophthalmology, cancer
detection, and radiology, where Al algorithms can perform as well or better than
experienced clinicians in evaluating images for abnormalities or subtleties undetectable to
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the human eye (e.g., gender from the retina) [16-19]. While it is unlikely that intelligent
machines would ever completely replace clinicians, intelligent systems are increasingly
being used to support clinical decision-making [8,14,20]. While human learning is limited
by capacity to learn, access to knowledge sources, and lived experience, Al-powered
machines can rapidly synthesize information from an unlimited amount of medical
information sources. To optimize the potential of Al, very large datasets are ideal (e.g.,
electronic health records; EHRs) that can be analyzed computationally, revealing trends and
associations regarding human behaviors and patterns [21] that are often hard for humans to
extract.

Al in mental healthcare

While Al technology is becoming more prevalent in medicine for physical health
applications, the discipline of mental health has been slower to adopt Al [8,22]. Mental
health practitioners are more hands-on and patient-centered in their clinical practice than
most non-psychiatric practitioners, relying more on “softer” skills, including forming
relationships with patients and directly observing patient behaviors and emotions [23].
Mental health clinical data is often in the form of subjective and qualitative patient
statements and written notes. However, mental health practice still has much to benefit from
Al technology [24-28]. Al has great potential to re-define our diagnosis and understanding
of mental illnesses [29]. An individual’s unique bio-psycho-social profile is best suited to
fully explain his/her holistic mental health [30]; however, we have a relatively narrow
understanding of the interactions across these biological, psychological, and social systems.
There is considerable heterogeneity in the pathophysiology of mental illness and
identification of biomarkers may allow for more objective, improved definitions of these
illnesses. Leveraging Al techniques offers the ability to develop better prediagnosis
screening tools and formulate risk models to determine an individual’s predisposition for, or
risk of developing, mental illness [27]. To implement personalized mental healthcare as a
long-term goal, we need to harness computational approaches best suited to big data.

Machine learning for big data analysis

Machine learning (ML) is an Al approach that involves various methods of enabling an
algorithm to learn [27,29,31-35]. The most common styles of “learning” used for healthcare
purposes include supervised, unsupervised, and deep learning (DL) [13,36-38]. There are
other ML methods like semi-supervised learning (blend of supervised and unsupervised)
[39,40] and reinforcement learning where the algorithm acts as an agent in an interactive
environment that learns by trial and error using rewards from its own actions and
experiences [41].

Supervised Machine Learning (SML): Here data are pre-labeled (e.g., diagnosis of
major depressive disorder (MDD) vs. no depression) and the algorithm learns to associate
input features derived from a variety of data streams (e.g., sociodemographic, biological and
clinical measures, etc.) to best predict the labels [36,42]. Labels can be either categorical
(MDD or not) or continuous (along a spectrum of severity). The machine experiences SML
because the labels act as a “teacher” (i.e., telling the algorithm how to label the data) for the
algorithm the “learner” (i.e., learns to associate features with a specific label). After learning

Curr Psychiatry Rep. Author manuscript; available in PMC 2020 November 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Graham et al.

Page 4

from a large amount of labeled #ra/ning data, the algorithm is tested on unlabeled fest data to
determine if it can correctly classify the target variable - e.g., MDD. If the model
performance (accuracy or other metric) drops with the test data, the model is considered
overfit (recognizing spurious patterns) and cannot be generalized to external, independent
samples. There are algorithms that lend themselves well to SML; some are borrowed
directly from traditional statistics like logistic and linear regression, while others are unique
to SML like support vector machines (SVM) [43].

Unsupervised Machine Learning (UML): Here algorithms are not provided with
labels; thus, the algorithm recognizes similarities between input features and discovers the
underlying structure of the data, but is not able to associate features with a known label [37].
UML uses clustering techniques (e.g., k-means, hierarchical, principal component analysis)
to sort and separate data into groups or patterns or identify the most salient features of a
dataset [44]. The data output must be interpreted by subject-matter experts to determine its
usefulness. The lack of labels makes UML more challenging, but able to reveal the
underlying structure in a dataset with less a prioribias. For example, neuroimaging
biomarkers provide large feature datasets that may hold information regarding unknown
subtypes of psychiatric illnesses like schizophrenia. UML may help to identify clusters of
biomarkers that characterize these subtypes, thus informing prognosis and best treatment
practices.

Deep Learning (DL): DL algorithms learn directly from raw data without human
guidance, providing the benefit of discovering latent relationships [45]. DL handles
complex, raw data by employing artificial neural networks (ANNSs; computer programs that
resemble the way a human brain thinks) that process data through multiple “hidden” layers
[13,38,46]. Given this resemblance to human thinking, DL has been described as less robotic
than traditional ML. To be considered “deep,” a ANN must have more than one hidden layer
[38]. These layers are made up of nodes that combine data input with a set of coefficients
(weights) that amplify or dampen that input in terms of its effect on the output. DL is ideal
for discovering intricate structures in high-dimensional data like those contained in clinician
notes in EHRs [45], or clinical and non-clinical data provided by patients [47,48]. An
important caution in DL is that the hidden layers within ANNSs can render the output harder
to interpret (black-box phenomenon where it is unclear how an algorithm arrived at an
output) [49].

Natural Language Processing (NLP): NLP is a subfield of Al that involves using the
aforementioned algorithmic methods; however, it specifically refers to how computers
process and analyze human language in the form of unstructured text, and involves language
translation, semantic understanding, and information extraction [50]. Mental health practice
will rely heavily on NLP, prior to being able to perform other Al techniques, due to
considerable raw input data in the form of text (e.g., clinical notes; other written language)
and conversation (e.g., counseling sessions) [48,51]. The ability of a computer algorithm to
automatically understand meanings of underlying words, despite the generativity of human
language, is a huge advancement in technology and essential for mental healthcare
applications [52].
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Analytic approaches of traditional statistical programming versus ML

ML methods identify patterns of information in data that are useful to predict outcomes at
the individual patient level, and do not distinguish samples and populations. The descriptive
aspect of statistics is similar to ML, but the inferential aspect, which is the core of statistics,
is different, as it uses only samples to make inference about the population from which the
sample is drawn [27,29,31-35]. Modern ML approaches offer benefits over traditional
statistical approaches because they can detect complex (non-linear), high-dimensional
interactions that may inform predictions [53-56]. However, the lines between traditional
statistics and ML can be blurry due to the overlapping use of analytic approaches [57]. Table
1 summarizes key comparisons between the primary goals of the two approaches. These are
only generalizations, as there can be overlap, and should be interpreted as such.

Methods: Study Selection and Performance Measures

Study selection:

To focus this review on recently published literature, we included only studies published
2015-2019, corresponding to the upsurge in Al publications pertaining to mental health
(Figure 1). This is not a systematic review and does not include an exhaustive list of all
published studies meeting these broad criteria. We used PubMed and Google Scholar to
locate studies that conducted original clinical research in an area relevant to Al and mental
health. We did not include studies that described a potential application of Al or
development of an algorithm or system that had not yet been tested in a real-world
application. We also did not include studies of neurocognitive disorders (e.g., dementia, mild
cognitive impairment), despite their relationship to mental health, because there are a
considerable number of Al and neurocognition studies that warrant their own review. This
review includes a total of 28 original research studies of Al and mental health.

Description of studies and performance metrics used

We organized Table 2 (details of the 28 studies) based on the nature of the predictive
variables used as input for the Al algorithms. The columns summarize the primary study
goal, location and population, sample size, mean age, predictors that served as input data,
type of Al algorithm and validation, best performing results, and a brief conclusion for each
study. Across studies, the most commonly reported performance metrics were:

1) Receiver Operating Characteristic (ROC) curve. The area under the ROC curve (called
AUC), plotted as the true positive rate (TPR) on the y-axis and false positive rate (FPR) on
the x-axis [58-61]. The higher the AUC, the better the algorithm is at classifying (e.g.,
disease vs. no disease); thus, an AUC=1 indicates perfect ability to distinguish between
classes, an AUC=0.5 means no ability to distinguish between classes (complete overlap),
and an AUC=0 indicates the worst result — all incorrect assignments.

2) Percent (%) accuracy. Percent accuracy is the proportion of correct predictions,
determined by dividing the number of correct predictions (true positives + true negatives;
TPs+TNs) by all observations (TPs+TNs + false positives and false negatives (FPs+FNSs))

Curr Psychiatry Rep. Author manuscript; available in PMC 2020 November 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Graham et al.

Page 6

[60]. This metric is inadequate, however, when there is uneven class distribution (i.e.,
significant disparity between the sample sizes for each label).

3) Sensitivity and specificity. Sensitivity is synonymous with the TPR and “recall” (R) and
measures the proportion of TPs that are correctly identified (TPs/(TPs+FNs)) [62].
Specificity is synonymous with TNR and measures the proportion of TNs that are correctly
identified (TNs/(TNs+FPs)). Sensitivity and specificity are often inversely proportional; as
sensitivity increases, specificity decreases and vice versa.

4. Precision (also called positive predictive value; PPV) and F1 scores. Precision is the
proportion of positive identifications (e.g., presence of MDD) that are correctly classified by
the algorithm (TPs/(TPs + FPs)) [58,63]. For example, precision=0.5 means that the
algorithm correctly predicted MDD 50% of the time. An F1 score is a measure of an
algorithm’s accuracy that conveys the balance between precision and recall, calculated as
2*((precision*recall)/(precision+recall)) [64]. The best value of an F1 score is 1 and the
worst is 0. F1 scores can be more useful than accuracy in studies with uneven class
distributions.

Results: Summary of Mental Health Literature

Summary of Al studies of mental health

We categorized Table 2 by the nature of the predictor variables used as input data, including:
A. electronic health records (EHRS) (6/28) [65-70], B. mood rating scales (3/28) [71-73], C.
brain imaging data (7/28) [74-80], D. novel monitoring systems (e.g., Smartphone, video)
(4/28) [81-84], and E. social media platforms (e.g., Twitter) (8/28) [85-91]. Depression (or
mood) was the most common mental illness investigated (18/28)
[65,70-74,78-80,82-84,86-91]. We also found examples of Al applied to schizophrenia and
other psychiatric illnesses (6/28) [68,75-77,80,81], suicidal ideation/attempts (4/28)
[66,67,69,85]; and general mental health (1/28) [92]. Participants included in these studies
were either healthy controls or were diagnosed with a specified mental illness. Sample sizes
ranged from small (n=28) [84] to large (n=819,951) [66]. There was no age reported for
14/28 studies likely due to the nature of the data (e.g., social media platform or other
anonymous database). For the remainder, ages ranged from 14+ years [66] to a mean age of
79.6 (SD 4.4) years [73].

SML was the most common Al technique (23/28), and a proportion of studies (8/28) also
used NLP prior to applying ML. Cross-validation techniques were most common (19/28),
but several studies also tested the algorithm on a held-out subsample not used for training
(4/28), or in an external validation sample (6/28). There was considerable heterogeneity in
the nature of the results reported across studies. Accuracies ranged from the low 60s (62%
from smartphone data [84] and 63% from social media posts [86]) to high 90s (98% from
clinical measures of physical function, body mass index, cholesterol, etc. [65] and 97% from
sociodemographic variables and physical comorbidities [70]) for prediction of depression.
ML methods were also able to predict treatment responses to commonly prescribed
antidepressants like citalopram (65% accuracy) [71], or identify features like education that
were related to placebo versus medication responses [73].
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NLP techniques identified symptoms of severe mental illness from EHR data
(precision=90%; recall=85%) [68]. Brain MRI features identified neuroanatomical subtypes
of schizophrenia with 63-71% accuracy [76], and fMRI features classified schizophrenia
(vs. controls) with 87% accuracy [75]. An Al platform resulted in more successful
medication adherence for patients with schizophrenia (90%) than modified directly observed
therapy (72%) [81]. Health insurance records (AUC=0.69) [66], survey and text message
data (sensitivity=0.76; specificity=0.62) [85], and EHRs (suicidal ideation; sensitivity=88%;
precision=92% and suicide attempts; sensitivity=98%; precision=83%) [67] all enabled
prediction of suicidal ideation and attempts.

Limitations of Al and mental health studies

These studies have limitations pertaining to clinical validation and readiness for
implementation in clinical decision-making and patient care. As recognized for any Al
application, the size and quality of the data limit algorithm performance [13]. For small
sample sizes, overfitting of the ML algorithms is highly likely [28]. Testing the ML models
only within the same sample and not out-of-sample limits the generalizability of the results.
The predictive ability of these studies is restricted to the features (e.g., clinical data,
demographics, biomarkers, etc.) used as input for the ML models. As no one study is
exhaustive in this manner, the clinical efficacy of the particular features used to derive these
models must be considered. It is also possible that the outputs of these algorithms are only
valid under certain situations or for a certain group of people. These studies were not always
explicitly clear regarding the significance or practical meaning of resulting performance
metrics. For example, performance accuracy should be compared to clinical diagnostic
accuracy (as opposed to simply relating these values to chance) in order to interpret clinical
value [61].

The use of binary classifiers is more common in ML than regression models (i.e., continuous
scores) due to being easier to train; however, a consequence of this approach is overlooking
the severity of a condition [32]. Future studies should seek to model severity of mental
illnesses along a continuum. While these studies focused on features that are considered risk
factors for mental illnesses, subsequent research should also consider investigating
protective factors like wisdom that can improve an individual’s mental health [93,94].
Finally, a challenge in studies seeking to model rare events (e.g., suicide) or illness is that of
highly imbalanced datasets (i.e., the event rarely occurs or a relatively small portion of the
population develops the illness). In these instances, classifiers tend to predict outcomes as
the majority class (e.g., miss rare events like suicide ideation) [95]. Techniques employed in
these studies to overcome this challenge included (i) under-sampling (reducing number of
samples in the majority) [69], (ii) over-sampling (matching the ratio of major and minor
groups by duplicating samples for the minor group) [66], (iii) and ensemble learning
methods (combining several models to reduce variance and improve predictions) [75,84];
however, few studies (4/28) reported using these techniques.
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Discussion: Future Research Directions and Recommendations

The World Health Organization defines health as, “a state of complete physical, mental, and
social well-being and not merely the absence of disease or infirmity” [96]. If we leverage
today’s available technologies, we can obtain continuous, long-term monitoring of the
unique bio-psycho-social profiles of individuals [26] that impact their mental health. The
resulting amount of complex, multimodal data is too much for a human to process in a
meaningful way, but Al is well suited to this task. As Al techniques continue to be refined
and improved, it may be possible to define mental illnesses more objectively than the current
DSM-5 classification schema [97], identify mental illnesses at an earlier or prodromal stage
when interventions may be more effective, and tailor prescribed treatments based on the
unique characteristics of an individual.

Areas needing additional research for Al and mental health

In order to discover new relationships between mental illnesses and latent variables, very
large, high quality datasets are needed. Obtaining such deeply phenotyped large datasets
poses a challenge for mental health research and should be a collaborative priority (e.g.,
robust platforms for data sharing among institutes). DL methods will be increasingly
necessary (over SML methods) to handle these complex data, and the next challenge will be
in ensuring that these models are clinically interpretable rather than a “black box”
[13,49,98]. Transfer learning, where an algorithm created for one purpose is adapted for a
different purpose, will help to strengthen ML models and improve their performance [99].
Transfer learning is already being applied to fields that rely heavily on image analysis like
pathology, radiology, and dermatology, including commercial efforts to integrate these
algorithms in clinical settings [100,101]. Flexible algorithms will likely be a greater
challenge for mental health due to the heterogeneity in salient input data. Additionally, Al
models should have a life-long learning framework to prevent “catastrophic forgetting”
[102]. Collaborative efforts between data scientists and clinicians to develop robust
algorithms will likely yield the best results.

Al algorithms will be developed from emerging data sources, and these data may not be
fully representative of constructs of interest or populations. For example, social media data
(e.g., “depressive” posts) may not be representative of the construct of interest (depression).
Posts containing words indicative of depression could suggest a transient state of depressive
mood rather than a diagnosis of depression. Social media posters also may exaggerate
symptoms in online posts or their comments could simply be contextual. Thus, the data
could be misconstrued due to the limited contextual information [103]. The clinical
usefulness of these platforms of rich information requires more careful consideration, and
studies using social media need to be held to higher methodological standards. Finally, the
use of Al to derive insights from data may help to facilitate diagnosis, prognosis, and
treatment; however, it is important to consider the practicality of these insights and whether
they can be translated and implemented in the clinic [61].
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How Al can benefit current healthcare for individuals with mental illnesses

Physician time is progressively limited as mental healthcare needs grow and clinicians are
burdened with increased documentation requirements and inefficient technology. These
problems are particularly cumbersome for mental health practitioners who must rely on their
uniquely human skills in order to foster therapeutic rapport with their patients and design
personalized treatments. Use of Al technology offers many benefits in addition to improving
detection and diagnosis of mental illnesses. Al algorithms can be harnessed to
comprehensively draw meaning from large and varied data sources, enable better
understanding of the population-level prevalence of mental illnesses, uncover biological
mechanisms or risk/protective factors, offer technology to monitor treatment progress and/or
medication adherence, deliver remote therapeutic sessions or provide intelligent self-
assessments to determine severity of mental illness, and perhaps most importantly, enable
mental health practitioners to focus on the human aspects of medicine that can only be
achieved through the clinician-patient relationship [5,20].

Ethical considerations for Al in mental healthcare practice

To deploy Al responsibly, it is critical that algorithms used to predict or diagnose mental
health illnesses be accurate and not lead to increased risk to patients. Moreover, those
involved in making decisions about the selection, testing, implementation, and evaluation of
Al technologies must be aware of ethical challenges, including biased data (e.g., subjective
and expressive nature of clinical text data; linking of mental illnesses to certain ethnicities,
etc.) [104]. Accepted ethical principles used to guide biomedical research, including
autonomy, beneficence, and justice must be prioritized and in some cases augmented [105].
It is critical that data and technology literacy gaps be addressed for both patients and
clinicians. Moreover, to our knowledge there are no established standards to guide the use of
Al and other emerging technologies in healthcare settings [106]. Computational scientists
may train Al using datasets that lack sufficient data to make meaningful assessments or
predictions [107]. Clinicians may not know how to manage the depth of granular data nor be
confident with a decision produced by Al [108]. Institutional Review Boards have limited
knowledge of emerging technologies, which makes risk assessment inconsistent [106]. For
example, there are efforts to link smartphone keystrokes and voice patterns to mood
disorders, and yet the public may not be aware such linkages are possible [109]. Public
communication about these algorithms must be useful, contextual, and confer that tools
supplement, but do not replace, medical practice. Clearly, there is a need to integrate ethics
into the development of Al via research and education and resources will need to be
appropriated for this purpose.

Concluding remarks

Al is increasingly a part of digital medicine and will contribute to mental health research and
practice. A diverse community of experts vested in mental health research and care,
including scientists, clinicians, regulators and patients must communicate and collaborate to
realize the full potential of Al [110]. As elegantly suggested by De Choudhury et al., a
critical element is combining human intelligence with Al to: 1- ensure construct validity, 2-
appreciate unobserved factors not accounted for in data, 3- assess the impact of data biases,
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and 4- proactively identify and mitigate potential Al mistakes [111]. The future of Al in

mental healthcare is promising. As researchers and practitioners vested in improving mental
healthcare, we must take an active role in informing the introduction of Al into clinical care
by lending our clinical expertise and collaborating with data and computational scientists, as
well as other experts, to help transform mental health practice and improve care for patients.
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Key comparisons between machine learning and traditional statistics in healthcare research

Machine Learning

Traditional Statistics

Year conceptualized

Primary goal

Knowledge of potential
relationships between
variables

Hypotheses

Analysis approach

Data size

Number of features

Rigor
Interpretability

Methods for assessing
performance

1959

Make the best prediction and/or recognize patterns
within data (either samples of or an entire study
population of interest)

Not required

More often hypothesis-generating

Often learns from data and models can be difficult to
interpret due to extensive use of latent variables (DL &
UML black-box phenomenon)

Very large and can be the size of an entire population of
interest

Large and unspecified
Minimal model assumptions

Limited to data at hand (either example or population)
and results

Often empirically using cross-validation, ROC AUC, %
accuracy, sensitivity, and specificity

17t century

Describe data (samples only) and estimate parameters
of an analytic model specified for a population of
interest (aka statistical inference)

Not required for description of data, but required for
statistical inference

More often hypothesis-driven

Explicitly specified analytic models for statistical
inference and easy to interpret

Small to moderate and samples of a population of
interest only for statistical inference

Small and explicitly specified for statistical inference
Strict model assumptions for statistical inference

Inference of relationships for the entire population of
interest

Statistical and practical significance (e.g., p values,
effect sizes)

AUC=area under the curve; DL=deep learning; ROC=Receiver Operating Characteristic; UML=unsupervised machine learning

Curr Psychiatry Rep. Author manuscript; available in PMC 2020 November 07.
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