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a b s t r a c t 

In this article, a mathematical model for the transmission of COVID-19 disease is formulated and anal- 

ysed. It is shown that the model exhibits a backward bifurcation at R 0 = 1 when recovered individuals 

do not develop a permanent immunity for the disease. In the absence of reinfection, it is proved that the 

model is without backward bifurcation and the disease free equilibrium is globally asymptotically stable 

for R 0 < 1 . By using available data, the model is validated and parameter values are estimated. The sen- 

sitivity of the value of R 0 to changes in any of the parameter values involved in its formula is analysed. 

Moreover, various mitigation strategies are investigated using the proposed model and it is observed that 

the asymptomatic infectious group of individuals may play the major role in the re-emergence of the 

disease in the future. Therefore, it is recommended that in the absence of vaccination, countries need to 

develop capacities to detect and isolate at least 30% of the asymptomatic infectious group of individuals 

while treating in isolation at least 50% of symptomatic patients to control the disease. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

A novel coronavirus, named a severe acute respiratory syn-

rome coronavirus 2 (SARS-CoV-2; previously known as 2019-

CoV), was identified as the infectious agent causing an outbreak

f viral pneumonia in Wuhan, China, in December 2019 [1] . The

orld Health Organization (WHO) medical team codenamed the

ew outbreak caused by SARS-CoV-2 as “coronavirus disease 2019

COVID-19)”. The infection is in the same category as the Severe

cute Respiratory Syndrome (SARS) which emerged in Southern

hina in 2002, spreading to up to 30 Countries, with a total of

098 cases and claiming 774 lives [2] . COVID-19 is also in the same

ategory as the Middle East Respiratory Syndrome (MERS) which

as first identified in Saudi Arabia in 2012, and ended up spread-

ng to 27 countries around the world, reaching a total of 2519 cases

onfirmed and claiming up to 866 lives [3] . 

Since January 2020, an increasing number of cases confirmed

o be infected with COVID-19 have been detected outside Wuhan,

nd currently the infection has spread all over the world. As of

ay 28, 2020, (09:09 GMT), COVID-19 had affected all continents
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ncluding island nations (213 countries and territories as well as

 international conveyances), with the total number of cumulative

nfections globally standing at 5,807,012 cases and 357,800 deaths

4] , and the numbers still increasing. 

The major portal of entry of the virus into the body is the tis-

ue lining the T-zones of the face (including the nose, eyes and

outh). The infection is characterised by loss of the sense of smell

a condition referred to as hyposmia/anosmia), taste and poor ap-

etite. Although, such conditions have been observed in COVID-19

atients, many carriers of the infection may not show any severe

ymptoms like fever and cough but have hyposmia, loss of taste

nd loss of appetite. 

Whereas knowledge of the virus dynamics and host response

re essential for formulating strategies for antiviral treatment,

accination, and epidemiological control of COVID-19, estimation

f changes in transmission over time can provide insights into

he epidemiological situation and help to identify whether pub-

ic health control measures are having a measurable effect [5,6] .

he analysis from mathematical models may assist decision mak-

rs to estimate the risk and forecast the potential spread of the

isease in the population. Understanding the transmission dynam-

cs of the infection is crucial in designing alternative intervention

trategies [7] . In general, by approaching infectious diseases from

 mathematical perspective, we can identify patterns and common

https://doi.org/10.1016/j.chaos.2020.109968
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systems in disease function, which would enable us to find some

of the underlying structures that govern outbreaks and epidemics. 

Mathematical models that analyse the spread of COVID-19 have

began to appear in few published papers and online resources [7–

13] . However, there are several challenges to the use of mathe-

matical models in providing nearly accurate predictions at an early

stage of the outbreak, particularly in real time as it is difficult to

determine many of the pathogen-based parameters through math-

ematical models. The estimation of such parameters will require

clinical observations and “shoe-leather” epidemiology [14] . It is

also possible for some of the parameters to be verified through ob-

servation only at a later stage in the course of the epidemic. To get

better predictions and to design and analyse various alternative in-

tervention strategies in the absence of such parameter values, one

needs to estimate them from existing epidemiological data. 

Like many respiratory viruses, the novel coronavirus SARS-CoV-

2 can be spread in tiny droplets released from the nose and mouth

of an infected individual. As soon as the virus enters the body (ei-

ther through the mouth, nose or membrane of the eyes), it finds

its way to the windpipe and then the lungs. This viral attack is

characterised by flu like symptoms, fever (body temperatures more

than 38 . 3 ◦C ) and dry cough at the initial stage of the infection.

Once the virus gets into the lungs, it causes fibrosis of the lungs

leading to shortness of breath (or difficulty to breathe) and severe

pneumonia followed by impaired functioning of the liver and acute

kidney injury [15] . The virus is then released from the infected in-

dividual when they cough, sneeze and when they touch their own

nose or mouth. Some particles that are released through coughing

or sneezing may land on clothing of other people in close prox-

imity, and surfaces around them while some of the smaller parti-

cles can remain in the air for some time. In addition, some scien-

tific evidence shows that the virus can also be shed for a longer

time in faecal matter [16] . The virus survives on surfaces, fabrics,

metals, plastics for variable times. Recent reports indicate that the

virus can survive from a shorter time (in the air) up to 2–3 days

long on plastic and stainless-steel surfaces [17] . This implies that

an uninfected individual can also acquire the virus through con-

tact with infected surfaces. That means, there is a possibility for

COVID-19 infection to spread from such contaminated surfaces and

objects to uninfected humans. Hence, including the proportion of

indirect transmission from the environment in the mathematical

model structure is important to address this situation. We note

that the impact of environmental contamination and its role in

the transmission of the disease is not well studied in mathemat-

ical models developed so far. 

Reinfection by the family of coronavirus is possible as it is

indicated in Isaacs et al. [18] , Wu et al. [19] . Even if it is not

yet well known how long it takes for a person who recovered

from COVID-19 to lose immunity, we can not overlook its impact

at this stage. Therefore, when formulating a mathematical model

for COVID-19 dynamics, it is reasonable to consider a kind of

Susceptible-Infected-Recovered-Susceptible (SIRS) type of epidemi-

ological model formulation. 

So far there is no known curing medicine nor vaccine to com-

bat the COVID-19 pandemic. The available prevention mechanisms

that are recommended by the WHO so far are also limited and

their effectiveness is not yet fully tested. The level of the popu-

lation’s understanding and application of these preventive mecha-

nisms varies from region to region and from country to country. In

some places, the protective measures are employed voluntarily by

individuals and in some other places, governments impose some

kind of rules on the population to use strict social distancing and

wearing face masks in public places. However, the adherence to

these rules is not uniform. 

In the past, it has been witnessed that during the outbreak of

infectious diseases, the human population has been taking pre-
autionary actions such that wearing masks, abstinence from risky

ontacts, avoiding public transport means and increasing the up-

ake of vaccination (when available) [20–22] . Behaviour change to-

ards using preventive mechanisms by the population to protect

hemselves from an infectious disease is assumed to be dependent

n the way the disease is transmitted and its fatality rate. Individu-

ls who have awareness about the disease and who decided to use

reventive mechanisms have less susceptibility than those without

wareness and demonstrating the usual risky behaviour. 

A number of mathematical models have been proposed to anal-

se the effects of human behaviour in the dynamics of infectious

iseases (see [22–30] , and the references therein). In this paper,

e follow the diffusion of innovation approach, which was pro-

osed by Kassa and Ouiniho [21] . In models of this approach, it is

ssumed that the perceived threat for the population is the level

f prevalence of the disease. However, for diseases with short time

ycles, the prevalence dependent awareness function may be unre-

listic. Therefore, in this work we assume that awareness is driven

y the magnitude of the incidence rate reported each day. That

eans, based on the diffusion of innovation method, one may con-

ider the perceived threat for the population to be the incidence of

he disease. 

At the beginning of the COVID-19 outbreak, a huge disparity has

een observed in the use of self-protective mechanisms and adher-

nce to the advice given by public health agencies. In particular,

he people in some parts of Asia have fully embraced the measures

hile many in other parts of the world were very much hesitant

o use them. For example, wearing a face mask everyday in public

ppearances is like a ritual in most of the countries in Southeast

sia, while the same is considered as a bad gesture in many of

he other parts of the world [31] (even if it is now becoming a

new normal” also everywhere in the globe). One key difference

etween these societies and the people in the West is that, the

ommunities in the Southeast Asia have experienced similar dis-

ase outbreaks before and the memories are still fresh and painful

31] . That means, recent history of a similar event plays a role in

ehavioural change of the population especially at the beginning of

he outbreak in addition to the perceived threat from the disease. 

Therefore, in this paper, we consider a mathematical model that

akes into account 

1. the transmission dynamics of COVID-19 similar to the SIRS

model, 

2. the contribution of the asymptomatic infectious individuals in

the transmission dynamics of the disease in the population, 

3. the effect of indirect transmission of the disease through the

environment, 

4. behavioural change of individuals in the society to apply self-

protective measures, and 

5. the intensity of historical events from recent similar outbreaks. 

By analysing the proposed basic mathematical model, the effect

f each of these factors is investigated in terms of their contribu-

ion to the control strategies of the disease. Moreover, the use of

solation or quarantining and strict social distancing measures are

lso considered as mitigation strategies, and a comparative study

s made for different scenarios. 

The layout of this paper is as follows: The model is described

nd formulated in the next section. Its qualitative analysis is pre-

ented in Section 3 . Estimation of the parameters and the sensitiv-

ty analysis of the reproduction number of the model with respect

o involved parameters are discussed in Section 4 . Numerical sim-

lations of the model with some assumed intervention scenarios

re also presented and analysed in this same section. Concluding

emarks of the study are given in Sections 5 . 
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Table 1 

Description of the model variables. 

Variables Description 

S Susceptible population. 

S e Susceptible individuals who are educated to prevent the disease. 

C Carrier individuals (infected & infectious but asymptomatic). 

I Infected individuals (symptomatic). 

R Recovered individuals. 

E Pathogen concentration on contaminated surfaces or objects in the environment. 

Fig. 1. Schematic diagram of the proposed model. 
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. Model formulation 

In this section, we present a mathematical model for the trans-

ission dynamics of COVID-19 which spreads in a population. The

usceptible individuals can be infected through either direct con-

act with infectious individuals or indirect contact with the novel

oronavirus infected environment. The population under consider-

tion is grouped into disjoint compartments. Individuals who are

usceptible to the disease and without formal awareness about the

revention mechanisms or who did not decide to use any protec-

ive mechanisms are grouped in the S class. Individuals who are

usceptible but are aware of and decide to apply any of the ex-

sting protective mechanisms after receiving public health infor-

ation on how to protect themselves from the novel coronavirus

nfection are placed in the S e class. COVID-19 infected individuals

ho are asymptomatic and symptomatic are grouped in classes C

nd I , respectively. Some studies consider the asymptomatic class

s the “exposed” class (see for instance [9] ). But since the individ-

als in this group are known to be infectious and some of them

lso recover from the disease without going through the I group

32] , we used a name “carrier” to avoid confusion. The R class con-

ains the recovered individuals from COVID-19. Finally, E denotes

he amount of the novel coronavirus pathogen that contaminates

he environment due to shedding by COVID-19 infectious individu-

ls. In the analysis of the model, we intentionally excluded the ac-

ual exposed class for mathematical simplicity. However, a 5 days

ncubation period is taken into consideration in the numerical sim-

lation part of this paper. 

By combining the direct and indirect ways of transmission, the

orce of infection will have the form 

= β1 
I + νC 

N 

+ β2 
E 

E + K 

, (1) 

here N = S + S e + C + I + R and K is the concentration of the novel

oronavirus in the environment which increases 50% chance of

riggering the disease transmission. 
The proposed flow diagram for the transmission dynamics of

OVID-19 is depicted in Fig. 1 while the description of each of the

tate variables is given in Table 1 . 

The dynamics of the pandemic is described by using the follow-

ng system of differential equations (see Table 2 for the description

f the involved parameters): 

 

′ = (1 − h ) π − (λ + σ e + μ) S + (1 − ω) ϕR, 

 

′ 
e = hπ + σ eS − ((1 − ρ) λ + μ) S e + ωϕR, 

 

′ = ηλS + φ(1 − ρ) λS e − (θ + α + μ) C, 

 

′ = (1 − η) λS + (1 − φ)(1 − ρ) λS e + θC − (γ + μ + δ) I, 

 

′ = αC + γ I − (ϕ + μ) R, 

 

′ = εC + ξ I − ψE, 

(2) 

here 

 (λ) = 

λn 

λn 
0 

+ λn 
, (3) 

ith λ0 is the value of the force of infection corresponding to

he threshold infectivity in which individuals start reacting swiftly

that means, the point at which the behaviour change function

hanges its concavity). We append the following nonnegative ini-

ial conditions to the system (2) : 

(0) = S 0 , S e (0) = S e 0 , C(0) = C 0 , I(0) = I 0 , R (0) = R 0 , 

and E(0) = E 0 . 

. Analysis of the model 

In this section, we study the quantitative and qualitative analy-

is of the model system Eq. (2) . 

.1. Well-posedness 

We begin by determining the biologically feasible set for the

odel (2) . The following theorem implies that the solutions of

2) are nonnegative and bounded from above, provided that the

nitial conditions are nonnegative. 

heorem 3.1. Equation (2) defines a dynamical system on �, where 

= 

{ 

(S, S e , C, I, R, E) ∈ R 

6 
+ : 0 ≤ S + S e + C + I + R 

= N ≤ π

μ
, 0 ≤ E ≤ (ε + ξ ) π

μψ 

} 

. (4) 

Proof: The proof of this Theorem is outlined in Appendix A . 
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Table 2 

Description of the model parameters. 

Parameters Description 

� Rate of recruitment to the susceptible individuals 

h Fraction of recruitment to the S e class because of past disease history 

σ Rate of dissemination of information about the disease in the population 

η Fraction of infected susceptible individuals who become carriers 

φ Fraction of ‘educated’ individuals who get infected and become carriers 

ρ Average effectiveness of existing self-preventive measures 

α Rate of recovery for carrier individuals 

θ Rate of transfer of carrier individuals to the sick class 

ε Shedding rate from the C class to the environment 

γ Rate of recovery for the sick class 

δ Death rate due to coronavirus 

ξ Shedding rate from the I class to the environment 

ψ Virus decay rate from the environment 

β1 Rate of disease transmission directly from humans 

β2 Rate of disease transmission from the environment 

K The pathogen concentration in the environment that yields 50% of chance 

for a susceptible individual to catch the viral infection from the environment 

ν Modification parameter (transmission of C relative to I ) 

ϕ Rate of loosing immunity after recovery 

μ Natural death rate 

ω Fraction of recovered individuals moving into the S e class after loosing immunity 
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3.2. Asymptomatic stability of the disease-free equilibrium 

To determine the equilibrium solutions, we set the right-hand-

side of Eq. (2) equal to zero and obtain 

(1 − h ) π − (λ + σ e + μ) S + (1 − ω) ϕR = 0 , 

hπ + σ eS − ((1 − ρ) λ + μ) Se + ωϕR = 0 , 

ηλS + φ(1 − ρ) λS e − (θ + α + μ) C = 0 , 

(1 − η) λS + (1 − φ)(1 − ρ) λS e + θC − (γ + μ + δ) I = 0 , 

αC + γ I − (ϕ + μ) R = 0 , 

εC + ξ I − ψE = 0 . 

(5)

Then, the disease-free equilibrium (DFE) is found to be 

E 0 = 

(
(1 − h ) π

μ
, 

hπ

μ
, 0 , 0 , 0 , 0 , 0 

)
. (6)

The basic reproduction number, which is very important for the

qualitative analysis of the model, is determined here below by us-

ing the method of the next generation matrix used in Diekmann

and Heesterbeek [33] , van den Driessche and Watmough [34] . For

the model under consideration, using the notation X = (C, I, E) , we

have the vector functions 

F(X ) = 

⎛ 

⎝ 

ηλS + φ(1 − ρ) λS e 

(1 − η) λS + (1 − φ)(1 − ρ) λS e 

0 

⎞ 

⎠ , 

and 

V(X ) = 

⎛ 

⎝ 

k 1 C 

−θC + k 2 I 

−(εC + ξ I) + ψE 

⎞ 

⎠ , 

with k 1 = θ + α + μ and k 2 = γ + μ + δ represent the rates at

which the disease compartments increase and decrease in size due

to the infection, respectively. Then the next generation matrix is 

B = J F (J V ) 
−1 , (7)

where 

J F (E 0 ) = 

⎛ 

⎜ ⎝ 

νβ1 p β1 p 
β2 π
μK 

p 

νβ1 q β1 q 
β2 π
μK 

q 

0 0 0 

⎞ 

⎟ ⎠ 

, 
nd 

 V (E 0 ) = 

⎛ 

⎝ 

k 1 0 0 

−θ k 2 0 

−ε −ξ ψ 

⎞ 

⎠ , 

ith p = η(1 − h ) + φ(1 − ρ) h and q = (1 − η)(1 − h ) + (1 −
)(1 − ρ) h . Here, it is not difficult to show that 

 

−1 
V (E 0 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

k 1 
0 0 

θ

k 1 k 2 

1 

k 2 
0 

1 

k 1 ψ 

(
ε + 

θξ

k 2 

)
ξ

k 2 ψ 

1 

ψ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The basic reproduction number denoted by R 0 is defined as the

verage number of secondary cases produced in a completely sus-

eptible population by a typical infected individual during its en-

ire period of being infectious [33,34] . Mathematically, R 0 is the

pectral radius of B in Eq. (7) and after further simplification, we

btain 

 0 = β1 

[
p 

k 1 

(
ν + 

θ

k 2 

)
+ 

q 

k 2 

] 
+ 

β2 π

μψK 

[ 
p 

k 1 

(
ε + 

θξ

k 2 

)
+ 

qξ

k 2 

]
. (8)

The next result is a direct application of Theorem 2 in van den

riessche and Watmough [34] . 

heorem 3.2. The DFE E 0 of the model (2) is locally asymptotically

table whenever R 0 < 1 and unstable if R 0 > 1 . 

The epidemiological implication of Theorem 3.2 is that the

ransmission of COVID-19 can be controlled by forcing the dynam-

cs through its parameter values so that R 0 < 1 if the initial to-

al numbers in each of the subpopulation involved in Eq. (2) are

n the basin of attraction of E 0 . To ensure that elimination of the

isease is independent of the initial size of the subpopulation,

he disease-free equilibrium must be globally asymptotically stable

hen R 0 < 1 . This is what we present here below. 

heorem 3.3. The model (2) undergoes a backward bifurcation at

 0 = 1 when the parameters satisfy the condition 

DH + GJ 

(p + qF ) L 
≥ 1 , (9)
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A = 

μψk 1 K 

[ 
β1 

(
pθ

k 1 k 2 
+ 

q 
k 2 

)
+ 

β2 π
μψK 

(
pθξ
k 1 k 2 

+ 

qξ
k 2 

)] 
p(μψβ1 K + ξβ2 π) 

, 

D = 

1 

μ

[ 
(1 − ω) ϕ(α + γ A ) 

k 3 

−(1 − h ) 
(
β1 (ν + A ) + 

β2 π

μψK 

(ε + ξA ) 
)] 

, 

F = 

p(μψβ1 K + ξβ2 π) 

q (νμψβ1 K + εβ2 π) + μψθK 

A 

G = 

1 

μ

[ 
ωϕ 

k 3 
(α + γ A ) − (1 − ρ) h 

(
β1 (ν + A ) + 

β2 π

μψK 

(ε + ξA ) 
)] 

 = 

μβ1 

π
(ν + A ) 

(
η − p + F (1 − η − q ) 

)
+ 

β2 (ε + ξA ) 

ψK 

(
η + F (1 − η) 

)
J = 

μβ1 

π
(ν + A )(1 − h ) 

[ (
− η + φ(1 − ρ) 

)
+ F 

(
− (1 − η) + (1 − φ)(1 − ρ) 

)] 
+ 

(1 − ρ) β2 (ε + ξA ) 

ψK 

(
φ + F (1 − φ) 

)
L = 

μβ1 

π

(
ν + A (1 + ν + A ) + 

α + γ A 

k 3 
(ν + A ) 

)

+ 

β2 π

μ

(
ε + ξA 

ψK 

)2 

. 

The proof of Theorem 3.3 is carried out using the center

anifold theory in Castilo-Chavez and Song [35] and is given in

ppendix B . 

In the above theorem ( Theorem 3.3 ), if the parameter describ-

ng the waning of immunity, ϕ, is zero, we can observe that both

 and G are negative. Hence, Eq. (9) fails to be true. In this case,

e give below a Theorem which asserts the global stability of the

FE of the model. 

heorem 3.4. The disease-free equilibrium of system (2) in the case

hen ϕ = 0 is globally asymptotically stable for R 0 < 1 . 

roof. To prove the theorem for the case ϕ = 0 , we use Kamgang-

allet Stability Theorem stated in Kamgang and Sallet [36] . Let X =
(X 1 , X 2 ) with X 1 = (S, S e , R ) ∈ R 

3 and X 2 = (C, I, E) ∈ R 

3 . Then the

ystem (2) can be written as 

˙ 
 1 = A 1 (X )(X 1 − X 

∗
1 ) + A 12 (X ) X 2 , (10)

˙ 
 2 = A 2 (X ) X 2 , (11)

here X ∗
1 

= 

(
(1 −h ) π

μ , hπ
μ , 0 

)
, 

 1 (X ) = 

( −μ 0 0 

0 −μ 0 

0 0 −μ

) 

, 

 12 (X ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−k 4 
νβ1 

N 

S −k 4 
β1 

N 

S −k 4 
β2 

E + K 

S 

k 5 
νβ1 

N 

k 5 
β1 

N 

k 5 
β2 

E + K 

α γ 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 
nd 

 2 (X ) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

νβ1 

N 

k 6 − k 1 
β1 

N 

k 6 k 6 
β2 

E + K 

νβ1 

N 

k 7 + θ
β1 

N 

k 7 − k 2 
β2 

E + K 

k 7 

ε ξ −ψ 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

ith k 4 = 1 + 

σλn −1 

λn + λn 
0 
, k 5 = 

σλn −1 

λn + λn 
0 

S − S e , k 6 = ηS + φS e and k 7 =
(1 − η) S + (1 − φ) S e . �

We show that the five sufficient conditions of Kamgang-Sallet

heorem (in Kamgang and Sallet [36] ) are satisfied as follows. 

1. The system (2) is a dynamical system on �. This is proved in

Theorem 3.1 . 

2. The equilibrium X ∗1 is GAS for the subsystem 

˙ X 1 =
A 1 (X 1 , 0)(X 1 − X ∗

1 
) . This is obvious from the structure of

the involved matrix. 

3. The matrix A 2 ( X ) is Metzler (i.e., all the off-diagonal elements

are nonnegative) and irreducible for any given X ∈ �. Again this

is straight forward from the formulation of matrix A 2 ( X ). 

4. There exists an upper-bound matrix Ā 2 for the set 

M = { A 2 (X ) : X ∈ �} . 
Indeed, 

Ā 2 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

νβ1 p − k 1 β1 p 
β2 

K 

p 

νβ1 q + θ β1 q − k 2 
β2 

K 

q 

ε ξ −ψ 

⎞ 

⎟ ⎟ ⎟ ⎠ 

with p = (1 − h ) η + hφ and q = (1 − h )(1 − η) + h (1 − φ) is an

upper-bound for M . 

5. For R 0 ≤ 1 in Eq. (8) 

α( ̄A 2 ) = max 
{

Re (λ) : λ eigenvalue of Ā 2 

}
≤ 0 . 

This can also be verified by checking the eigenvalues of Ā 2 un-

der the condition of R 0 < 1 . 

Hence, by the Kamgang-Sallet Stability Theorem [36] , the

isease-free equilibrium is globally asymptotically stable for R 0 <

 . �
The reality behind Theorem 3.4 is that, if immunity is perma-

ent ( ϕ = 0 ), coronavirus will be effectively controlled in the com-

unity by reducing R 0 effectively to a value less than unity. 

. Numerical simulations and discussion 

.1. Estimation of parameters from data and literature 

The novel coronavirus being a new strain of coronaviruses, in-

ormation about the dynamics of the infection is still evolving. Bi-

logical studies of parameter values describing the vital dynamics

f the infection are still ongoing as more laboratory tests become

vailable. Although some studies have been done on the early dy-

amics of the disease most especially on data from Wuhan, exten-

ive reading reveals that some of the disease dynamics parameters

re highly variable and some processes are not fully explored. In

his work, we use new cases data from Hubei Province of China

xtracted from WHO situation reports 1–57 [1] , i.e. for the period

anuary 21, 2020 to March 17, 2020. We ought to fit the proposed

odel to the extracted data and estimate the unknown parame-

ers. 

The total population of Hubei province was estimated as 59.2

illion. The life expectancy of Hubei province varies depending

n the area of dwelling (i.e urban or rural) as well as gender
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Fig. 2. Model fit to the data. The very low data values after day 32 account for the 

effects of the strict lockdown measure taken by the authorities while the proposed 

model does not account for such measures. 
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[37] . For urban dwellers, the average life expectancy is estimated

to be 75.68 years (with an average being 73.72 years for men and

77.79 years for women). The life expectancy of China of the year

2019 was estimated to be 76.79 years whereas that for the year

2020 is estimated as 76.96 years [38] . Owing to the negligible dif-

ference in the provincial and Countrywide value, we use the Coun-

try life expectancy for the year 2019 which gives an average mor-

tality rate of μ = 3 . 57 × 10 −5 per day. The recruitment rate is thus

given as π = μ × N 0 , where N 0 is taken to be the total population

size, 59.2 million. 

The average time period taken for symptoms to appear after ex-

posure is observed to vary considerably, with ranges between 2–

14 days [39] , 2–24 days [40] , and some outliers going to up to 27

days. The observed median incubation period was nearly 5 days

[41] . 

The time to recovery from the onset of symptoms varies de-

pending on the seriousness of the infection. Individuals presenting

mild illness were observed to recover in an average period of 2

weeks while those presenting serious/critical illness recovering in

about 3 to 6 weeks. For our parameter estimation and simulations,

we consider a nominal value of 0 . 0476 day 
−1 

(corresponding to 3

weeks) estimated from an interval (0.0238, 0.0714). We note that

a patient is considered recovered: (1) if two swab tests taken in

a time interval of at least 24 h both test negative, (2) if the time

taken after the end of respiratory symptoms and fever is at least

72 h. 

The waning of the immunity after recovery is estimated to

range between 4 months to 1 year, which gives an interval for

ϕ as (0 . 0 0274 , 0 . 0 0824) day 
−1 

. For our simulation, we consider

a nominal value of ϕ = 0 . 00274 day 
−1 

(approximately one year).

We propose that at the end of the epidemic, at least 20–65% of

the recovering population will learn from the experiences dur-

ing the infection and even when the acquired immunity wanes,

such individuals will become susceptible individuals with past his-

tory/knowledge of the disease. 

The rate of recovery for the symptomatic individuals ( γ ) in

Wuhan varied considerably but majority of individuals who recov-

ered from the virus were discharged from hospital after 2 1 2 weeks

[42] . However, the patients in Wenzhou-China stayed in hospital

for 27 days (0.037 per day) on average. In the model fitted on the

early trends data from Wuhan-China [43] , the recovery rate ob-

tained for symptomatic cases was 0.0897 per day (accounting for 10

days to recovery). The rate of recovery ( α) for carrier individuals is

expected to be higher [9] . 

According to the WHO situation report [44] , it is estimated

that up to 80% of COVID-19 cases are asymptomatic or show mild

symptoms, 15% show severe symptoms and up-to 5% end up with

critical infection and require oxygen or a ventilator. The proportion

of individuals who do not show symptoms or have mild symptoms

can be as high as 94% [45] . For our model fitting, we use a range

of (0.65,0.86) for both η and φ with selected initial values within

the prescribed interval. 

Although Hubei province was put on a lockdown on January 23,

2020, the first major decline in the number of new confirmed cases

was only observed on February 20, 2020 (Situation report 31 [1] ),

approximately 1 month after the lockdown was imposed. From

February 14, 2020, the method of identification of new cases was

revised to include both cases confirmed through laboratory tests

and clinical observations. As such, there was an observed spike in

the number of new cases on February 14, 2020 to 4823 compared

to 1508 cases (reported on February 13, 2020) and 2420 cases (re-

ported February 15, 2020). 

Applying the above described set of assumptions in the bounds

for some of the parameters, we optimized the model output to fit

the daily new cases data reported from the Hubei province, China.

The parameter values for which the model best fits to the inci-
ence data are given in Table 3 . Fig. 2 shows the plot of the re-

orted new-cases data together with the incidence of the disease

btained from the model. As we can observe from the graph, the

odel slightly overestimates the reported data except for the two

ighest points. In addition, since our model does not assume any

ontrol measure at this stage while the reported data after the

1st day may represent the effect of the strict lockdown measure

aken by the authorities, the parameters estimated give a good re-

ult. We note however that, in some recent work [46,47] , the use

f fractional-order calculus is recommended to get better data fit.

hen we calculate the value of R 0 from Eq. (8) using the esti-

ated parameters given in Table 3 , we obtain R 0 ≈ 2 . 91 , which is

ithin the range of values reported in China-CDC [48] , Wu et al.

49] . 

.2. Sensitivity analysis 

We examine the sensitivity of R 0 to variations in parameter

alues and establish the significance of the sensitivity indices. We

sed the Latin hypercube Sampling (LHS) scheme, which is an effi-

ient stratified Monte Carlo sampling that allows for simultaneous

ampling of the multi-dimensional parameter space [50] . For each

un, 10 0 0 simulations were done and Partial Rank Correlation Co-

fficients (PRCCs) [51] calculated between each of the selected in-

ut parameters and the disease threshold. The PRCCs indicate the

egree of effect each parameter has on the outcome, which in this

ase is the disease threshold. The sign of the PRCC identifies the

pecific qualitative relationship between the input parameter and

he output variable. The positive value of the PRCC of the variables

mplies that when the value of the input parameter increases, the

uture number of cases will also increase. On the other hand, pro-

esses underlying the parameters with negative PRCCs have a po-

ential to contain of the number of cases when enhanced. The re-

ults of sensitivity analysis are indicated in Fig. 3 a and the box plot

 Fig. 3 b) gives the five-number summary for the computed disease

hreshold value from the sampled parameter space. 

The processes described by parameters β1 , β2 , ε and ξ with the

reatest positive PRCCs have the greatest potential of worsening

andemic when increased. On the other hand, parameters ( h and

) with negative PRCCs have the greatest potential in helping con-

ain the infection when maximised. In this respect, we note that

ncreasing social/physical distancing directly reduces β1 as this

owers the likelihood of a susceptible individual getting in contact
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Fig. 3. Partial Rank Correlation Coefficients (PRCCs) for a selected range of model parameters in Table 3 . The processes underlying the parameters β1 , β2 , ε and ξ have 

the greatest potential of making the epidemic worse if increased, whereas processes described by ψ and h have the greatest potential of containing the epidemic when 

enhanced. 

Table 3 

Nominal values and ranges of parameters values. 

Parameter Description Range Nominal Value Source 

� Persons day 
−1 μ × N 0 Assumed 

β1 Contacts day 
−1 

(0.24, 0.275) 0.270 Fitted 

β2 Contacts day 
−1 

(0.001, 0.028) 0.001006082 Fitted 

h proportion (0.1, 0.65) 0.59996 Fitted 

ν Relative value (1.1, 3) 2.662830741 Fitted 

K No. of pathogens (100, 10 7 ) 2091775 Fitted 

σ Intensity day 
−1 

(0.2, 0.65) 0.649996150 Fitted 

φ Proportion (0.65, 0.867) 0.866999986 Fitted 

η Proportion (0.65, 0.86) 0.650286467 Fitted 

ρ Proportion (0.10, 0.15) 0.149999732 Fitted 

α day 
−1 

(0.04, 0.075) 0.074999946 Fitted 

θ day 
−1 

(0.1, 0.25) 0.249999979 Fitted 

ε Pathogens person −1 day 
−1 

(0.098, 0.33) 0.101989917 Fitted 

γ day 
−1 

(0.025, 0.05) 0.049999999 Fitted 

ξ Pathogens person −1 day 
−1 

(0.135, 0.673) 0.431477395 Fitted 

δ day 
−1 

(0.006, 0.11) 0.11 Fitted 

ψ day 
−1 

(0.14, 1) 0.75248 Fitted 

μ day 
−1 

3 . 57 × 10 −5 [37] 

ϕ day 
−1 

(0.00000273, 0.00824) 0.000002740 Fitted 

ω Proportion (0.2, 0.65) 0.633695 Fitted 
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Table 4 

Parameter PRCC significance (FDR Adjusted p -values). 

Variable PRCC p -value Significance? 

β1 0.108132611 1 . 566 × 10 −3 TRUE 

β2 0.706803546 0.0000000 TRUE 

h −0 . 081725771 2 . 022 × 10 −2 TRUE 

η 0.003556638 0.9110 FALSE 

ρ −0 . 037485329 0.3186 FALSE 

ψ −0 . 4787134264 0.00000 TRUE 

φ 0.004377062 0.9110 FALSE 

θ −0 . 060636753 0.09703 FALSE 

α −0 . 021180254 0.607 FALSE 

γ −0 . 045896543 0.223 FALSE 

ε 0.159616950 1 . 289132 × 10 −06 TRUE 

ξ 0.359785405 0.000000 TRUE 

s  

i  

R

ith a potentially infected individual. In addition, practising good

ygiene (such as regularly washing hands, using sanitisers to disin-

ect the infected environment and avoiding touching the T-zones of

he face) is associated with lowering the likelihood of contracting

he virus from infected surfaces. Anything contrary to the above

ncreases the likelihood of getting the infection through the two

forementioned routes. We further note that practising good hy-

iene also involves the infected individuals reducing the shedding

f the virus into the environment. It is evident from the results in

ig. 3 and Table 4 that reducing the rate at which the virus is shed

nto the environment is significant in reducing the severity of the

roblem. 

From the five number summary of the results in Fig. 3 b, the

ower quartile of the computed values of R 0 is about 2, the me-

ian around 2.9 and the upper quartile of about 4. The obtained

alue of R 0 is within the range of 3.11 (95%CI, 2.39–4.13) obtained

n the early studies in Read et al. [52] . We note that for a selected

ombination of underlying processes much higher values of R 0 can

e obtained, which is an indication of possible worsening of the
ituation. In a similar way, we observe that for particular underly-

ng processes (a selected combination of parameters) the value of

 can be reduced to values below one. 
0 
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Table 5 

Pairwise PRCC Comparisons (FDR Adjusted p -values). 

β1 β2 h ψ ε ξ

β1 0 2 . 347 × 10 −5 0 0.2443 2 . 642 × 10 −9 

β2 0 0 0 0 

h 0 8 . 647 × 10 −8 0 

ψ 0 0 

ε 1 . 942 × 10 −6 

ξ

Table 6 

Are the parameters different after FDR adjustment?. 

β1 β2 h ψ ε ξ

β1 TRUE TRUE TRUE FALSE TRUE 

β2 TRUE TRUE TRUE TRUE 

h TRUE TRUE TRUE 

ψ TRUE TRUE 

ε TRUE 

ξ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

r  

r  

v  

t  

c  

a  

g  

t  

u  

c  

s  

t  

t  

w  

t

 

o  

β  

m  

h  

a  

m  

e  

v  

i

4

 

a  

g  

i  

c  

q  

i  

o  

s  

i  

s  

s  

t

Q

Q

 

w

λ

w  

d  
As indicated in Blower and Dowlatabadi [51] , we note that al-

though some parameters in the model may have very small mag-

nitudes of PRCCs (non-monotonically related to the disease thresh-

old output), they may still produce sizeable changes in the disease

burden. To identify the most important parameters in containing or

aggravating the epidemic, we computed p -values for the simulated

parameters using Fisher’s Transformation [51] . We note that the

computed PRCCs are bounded between the interval [ −1 , 1] . For this

matter, some sampling distribution of variables that are highly cor-

related is skewed. The Fisher’s Transformation ρ(r) = 0 . 5 log 
(

1+ r 
1 −r 

)
is used to transform the skew distribution to a normal distribution

and then compute p -values for each of the parameters based on

the PRCCs [51] . The PRCCs for the parameters together with their

corresponding p -values are indicated in Table 4 . 

We carry out pairwise comparison of the significant parame-

ters (whose p -values are less than 0.05, see Table 4 ) to ascertain

whether the processes described by the compared parameters are

different. We com puted the p -values for the different pairs of sig-

nificant parameters while accounting for the false discovery rate

(FDR) adjustment and the results are given in Table 5 . 

The major question posed at this point is: Are the different

pairs of significant parameters different after FDR adjustment?

Based on the FDR adjusted p -values in Table 5 , the compared pair

of parameters are rendered to be different if their p -value is less

than 0.05 and not different otherwise. We summarise our results

in Table 6 , where “TRUE” indicates that the compared parameters

are significantly different and “FALSE” indicating otherwise. 

We observe that the more sensitive parameters are also signifi-

cantly different (see Table 6 ) except for the β1 − ε pair which may

not necessarily be related. 

We examine effect of variation of the sensitive parameters on

the reproduction number ( R 0 ). The results of the variation of pa-

rameters with more negative PRCCs are indicated in the bar graphs

in Fig. 4 . 

From Fig. 4 , it is evident that the decay of the virus from the

environment ( Fig. 4 b) which can be accelerated by disinfecting sur-

faces reduces the value of R 0 and consequently the disease burden.

In addition, we observe that an increased proportion of individ-

uals with knowledge of similar infections from the past that are

practising self-protection and preventive measures (see Fig. 4 a) is

important in slowing down the infection at the initial stage. Such

proportions of individuals would normally have knowledge about

prevention and control mechanisms of the infection just at the on-

set of the disease. 
We observe in Fig. 5 that the increase in person-to-person con-

act, β1 ( Fig. 5 a), poor personal hygiene, β2 ( Fig. 5 b), and the

ate of shedding of the virus into the environment by both car-

iers ( Fig. 5 c) and symptomatic individuals ( Fig. 5 d) increase the

alue of R 0 and therefore the disease burden. It is evident that

he most effective way of containing the infection is by minimizing

ontact, which is why in most cases imposing a lockdown becomes

n effective way of slowing the spread of the infection. In addition,

ood hygiene practices by all individuals are two-fold: (1) avoiding

ouching surfaces, always washing hands with soap and water, or

sing alcohol based hand sanitizer, which reduced the likelihood of

ontracting the pathogen from the environment; (2) those who are

ick with symptoms like cough and flu, ought to use masks, when

hey cough or sneeze, must do so in a sanitary tissue which must

hen be properly disposed off. We also note that hygienic practices

ithout social/physical distancing may not significantly slow down

he infection. 

In summary, we observe that it is possible to reduce the value

f R 0 to a value less than unity by reducing only the value of

1 below 0.1 (see Fig. 5 a). This observation is in direct agree-

ent with mitigation approaches that are aimed at minimising

uman-to-human contact (such as social distancing and imposing

 lockdown). Therefore, the paremeter β1 is more influential in the

odel and can also play a significant role in eradication of the dis-

ase. The other parameters (see Figs. 4 and 5 b–d) may reduce the

alue of R 0 significantly when applied in combination but not as

ndependent mitigation processes. 

.3. Numerical simulations and analysis of mitigation strategies 

There are various intervention mechanisms for COVID-19 that

re being implemented in different parts of the world. The strate-

ies differ from country to country depending on the scientific

nformation available to decision makers. To investigate the out-

omes of the mitigation strategies, we include the isolated and/or

uarantined classes to the model system (2) . We assume that the

ndividuals in the asymptomatic class ( C ) are detected at a rate

f κ and placed in isolation Q 1 class, while the individuals in the

ymptomatic class ( I ) are identified at a rate of � and quarantined

n Q 2 class. Moreover, the system is formulated as a mixed-delay

ystem of differential equations, where the time delay d is as-

umed to account for the incubation period of the disease. Then

he system becomes 

S ′ = (1 − h ) π − [ λ(t − d) + σ e (t − d)] S(t − d) − μS 

+ (1 − ω) ϕR, 

S ′ e = hπ + σ e (t − d) S − (1 − ρ) λ(t − d) S e (t − d) − μS e + ωϕR, 

C ′ = ηλ(t − d) S(t − d) + φ(1 − ρ) λ(t − d) S e (t − d) − (κ + θ

+ α + μ) C, 

 

′ 
1 = κC − (n 1 + μ) Q 1 , 

I ′ = (1 − η) λ(t − d) S(t − d) + (1 − φ)(1 − ρ) λ(t − d) S e (t − d) 

+ θC − (� + γ + μ + δ) I, 

 

′ 
2 = �I − (n 2 + μ + δ) Q 2 , 

R 

′ = αC + γ I + n 1 Q 1 + n 2 Q 2 − (ϕ + μ) R, 

E ′ = εC + ξ I − (ψ + v ) E, 

(12)

here the force of infection λ is now modified to 

= (1 − u ) β1 
I + νC 

N 

+ (1 − v ) β2 
E 

E + K 

, 

ith u representing the average percentage of contacts reduced

ue to the social distancing measures and v representing the total
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Fig. 4. Bar plots showing the effect of the most sensitive parameters to R 0 : (a) Fraction of recruitment to the Se class because of past disease events; (b) Virus decay rate 

from the environment. The values of the parameter values used are given in Table 3 . 
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verage rate (or percentage) of disinfecting the environment. In the

odified model system (12) , the parameters n 1 and n 2 represent

he reciprocal of the time the individuals stay in Q 1 and Q 2 classes,

espectively. Here, we assumed that n 1 = n 2 = 1 / 21 . Note that, the

alue ψ + v in the last equation of (12) represents the effective de-

ay rate of the pathogen from the environment and should not be

reater than 1. 

For the simulation purpose of this study, we considered five

ifferent cases or scenarios of how to apply the interventions.

he strategies described in each of the cases below are in addi-

ion to the awareness creation for voluntary self-protective mecha-

isms which are widely communicated through various media out-

ets. Here, we assume that the average effectiveness of the self-

rotective measures is 15% (as estimated from the data and re-

orted in Table 3 ), and the individuals who decided to use any one

f them are strict in following the appropriate rules. Here below,

e consider each of the scenarios for mitigation strategies case by

ase. 

ase 1: In this case, we assume that about 40% of the symptomatic

infectious individuals and only 1% of the asymptomatic

infectious individuals are detected and quarantined. This

scenario is based on the assumption that among the peo-

ple in the I class only about 40% show “above mild” symp-

toms and hence visit health care facilities, while the re-

maining individuals in this class (nearly 60% of them) re-

main at home or at large in the society. Then, through

contact tracing mechanisms corresponding the hospital-

ized individuals, some people will be traced and tested,

thereby about 1% of the total asymptomatic individuals

can be detected. 

A similar scenario is being applied currently in some sub-

Saharan African countries. 

The time profile in Fig. 6 shows the situation described in

Case 1. From this graph we can observe that the infection

stabilizes around its endemic equilibrium, which is nearly

at 50 0 0 cases. (This number depends on the initial con-

ditions and the demographic variables of the population

under study.) This shows that the disease persists in the

population. 

ase 2: In this case, we assume that strict and longer time (6

weeks) of social distancing rules are enforced by the gov-

ernment nearly 4 weeks after the first positive case of

COVID-19 is reported in the community. 
We assume for simulation purpose that the implementa-

tion of the intervention strategy is divided into the follow-

ing 4 time phases. 

Phase 1: The first phase in this case, is 24 days long (mea-

sured starting from the time the first positive

case of COVID-19 is reported). During this phase,

because of lack of information and the nature

of the infection, we assume (as in Case 1) that

only 40% of symptomatic infectious individuals

and 1% of the asymptomatic infectious individ-

uals are detected and quarantined. 

phase 2: The second phase is assumed to last for 6 weeks

(42 days). During this period, it is also presumed

that; 
• 80% of the symptomatic class and 30% of the

asymptomatic class are detected and quaran-

tined, 
• a mandatory strict social distancing rule is

imposed, which is assumed to have a 70% re-

duction of effective contacts of individuals in

the society, 
• environmental disinfection is widely carried 

out, which is assumed to result in a 50% re-

duction in the rate of infection from the en-

vironment, and to contribute about the same

percent impact in increasing the rate of decay

of the pathogen from the environment. 

Phase 3: The third phase is assumed to be 4 weeks (28

days) long, and is characterised by the partial

lifting of the ‘lockdown’ imposed in Phase 2. Dur-

ing this period, it is assumed further that; 
• 70% of the symptomatic class and 25% of the

asymptomatic class are detected and quaran-

tined, 
• a relaxed social distancing rule is exercised,

which is assumed to have a 25% reduction of

effective contacts of individuals in the society,
• environmental disinfection is partially carried 

out, which is assumed to have an impact of

reducing the rate of infection from the en-

vironment by 30% and increasing the rate of

decay of the pathogen from the environment

by the same 30%. 

Phase 4: The last and fourth phase is the time when the

social distancing rule is fully lifted. Due to the
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Fig. 5. Bar plot showing the effect of the most sensitive parameters to R 0 : (a) Rate of disease transmission directly from human to human; (b) Rate of disease transmission 

from the environment; (c) Shedding rate from the carriers class to the environment ( ε); (d) Shedding rate from the infected class to the environment ( ξ ). The values of the 

parameter values used are given in Table 3 . 

Fig. 6. Dynamics of the disease with no additional intervention is applied. 
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lesson learnt from the previous phases, we as-

sume that the following interventions will con-

tinue during this period as well; 
• 70% of the I class and 10% of the C class are

detected and quarantined, 
• environmental disinfection is partially carried

out, which is assumed to have an impact of

reducing the rate of infection from the en-

vironment by 20% and increasing the rate of

decay of the pathogen from the environment

by the same 20%. 

The time profile of the disease dynamics after implement-

ing the above described interventions strategy is plotted in

Fig. 7 . The figure shows that the count of the infected indi-

viduals decreases down to nearly zero in Phases 2 and 3,

but the disease resurges back into the society soon after.

However, the peak of the second wave looks to be much

smaller than the first one. That means, the intervention

mechanisms described in the above 4 phases of this case

are not enough to contain the disease, and unless some

additional intervention mechanisms are developed the dis-

ease persists in the society. 

ase 3: In this case, we assume that early action with shorter time

social distancing rule is applied. In this scenario, it is as-

sumed that the interventions described in Case 2 started

half way through the time that Phase 2 was implemented

in Case 2. That means, the implementation of the interven-

tions described in the four phases of Case 2 is assumed to
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Fig. 7. Dynamics of the disease (portraying the scenario in Case 2) with the start 

of early intervention measures but for half of the time as compared to that of Case 

2. 

Fig. 8. Dynamics of the disease with 30% of the C class and at least 70% of the I 

class are detected and quarantined in Phase 4 (after the interventions described in 

Case 2 are carried out). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Dynamics of the disease with 30% of the population in the C class and at 

least 50% of the I class are detected and quarantined just after Phase 1 period. 
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be followed, but the length of the time in Phases 1 and 2

is reduced as described below. 

1. Phase 1 lasts only 12 days, 

2. Phase 2 lasts only 3 weeks, and 

3. Phase 3 lasts 4 weeks (the same as in Case 2). 

Otherwise, all the details of the interventions in Case 2 are

kept the same. The time profile for this set of interventions

is given in Fig. 8 . 

The general behaviour of the graph in Fig. 8 is the same

as that of Fig. 7 . However, this strategy has an advantage

in significantly reducing the height of the first peak. The

height of the subsequent peaks are found to be the same

unless some additional measures are taken after Phase 3. 

Unfortunately, the strategies in both of the above two sce-

narios (Case 2 and Case 3) do not help to fully contain the

disease once it spreads in the population. As it can be seen

from Figs. 7 and 8 , another wave of outbreaks of the dis-

ease emerge at a later stage. Here, we can see that the

asymptomatic infectious individuals play the greater role

in becoming the major source for the second wave. There-
fore, if there is a possibility to track and detect people

with asymptomatic infection, and if they can be effectively

quarantined for the required period of time, then there is

a possibility for the disease to be contained. As it can be

observed from Fig. 9 , if we can increase the rate of de-

tecting and quarantining the asymptomatic individuals to

a proportion of about 30%, it is possible to significantly re-

duce the infection to a level where it cannot be a public

threat. Otherwise, any lower proportion of this effort will

imply the resurgence of a second wave of the infection in

the community. 

Therefore, to contain COVID-19 in every given community,

public health authorities need to work more on the detec-

tion and quarantining of the asymptomatic infectious indi-

viduals. 

ase 4: In this case, we assume that there is no lockdown imposed

but only a large number of testing is applied to detect and

quarantine a larger proportion of infected cases. 

If it is possible to intensify the effort of tracing the asymp-

tomatic infectious individuals and be able to quarantine at

least 35% of them continuously and effectively, our simu-

lation shows that there is a possibility for the disease to

be contained without imposing the strict lockdown rule

on the total population. The plot in Fig. 10 shows the time

profile of the count of the infected groups while about 50%

of the individuals from I class are effectively quarantined

(for example inside appropriate health facilities). 

We can observe that this intervention strategy can also

produce the required result in containing the outbreak as

some countries (like South Korea) are currently following

this pattern. 

ase 5: In this case, we assume that the length of the lockdown

period is nearly twice to the scenario in Case 2. However,

the effort in detecting the asymptomatic infectious indi-

viduals is kept at the minimum level. This scenario is more

applicable in highly resource constrained countries as the

current cost of testing is high. In this case, it is assumed

that the length of the duration of each phase (except for

Phase 2) is the same as that given in Case 2. More still, it

is supposed that; 

1. the conditions in Phase 1 remain the same, 

2. Phase 2 lasts 11 weeks with 50% of the symptomatic

individuals and 5% of the asymptomatic individuals de-

tected and quarantined. Moreover, strict social distanc-
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Fig. 10. Dynamics of the disease with at most 10% of the population in the C class 

and at least 50% of the I class are detected and quarantined just after Phase 1 pe- 

riod, with strict social distancing rule imposed for 11 weeks. 

Fig. 11. Dynamics of the disease with a mandatory 6-weeks lockdown and a 4- 

weeks of partial social distancing is imposed as described in Case 2. 
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ing rules are still in place with an effect of reducing

70% of human contacts and 50% of environmental vari-

ables, 

3. Phase 3 lasts 4 weeks (the same as in Case 2), but with

50% of individuals in the I class and 10% of individuals

in the C class detected and quarantined, while partial

social distancing rules are in place with an effect of re-

ducing 25% of human contacts and 25% of environmen-

tal variables, 

4. Phase 4 continues with detecting and quarantining 50%

of members in the I class and 10% of members in the

C class, while the other mandatory intervention are

lifted. 

The time profile of the infection following the scenario in

Case 5 is plotted in Fig. 11 . 

The simulation for this scenario shows that even if we in-

crease the length of lockdown period to 11 weeks (like it

was practised in the Hubei province, China) the disease

may re-emerge after some period of time. However, the

heights of the peaks in the subsequent waves of the dis-

ease are much lower than the first peaks. Therefore, once
again, unless the authorities apply some kind of strict con-

tact tracing mechanism and conduct enough testing to de-

tect and isolate up to 30% of the asymptomatic infectious

individuals, the disease persists in the community with

multiple subsequent waves. 

n general, from the simulations, we can observe that in all of the

bove scenarios a transition from one phase to the other interven-

ion phase is characterised by a surge in new cases. However, the

umber will eventually go down if the intervention in the imme-

iate next phase is effective, or else the disease re-emerges in the

opulation. 

. Conclusions 

We presented a mathematical model for the dynamics of

OVID-19 whose first cases were reported in December 2019 in

uhan-China. The model incorporates a behaviour change func-

ion to account for the proportion of individuals who decided to

se any of the self-protective measures and adhered to them. In

ddition, it also considers a proportion of individuals with a his-

ory/knowledge of similar infections from the past and practice

ecessary protective measures right from the onset of the epi-

emic. The model also accounts for asymptomatic carriers of the

nfection as well as the concentration of the pathogen within the

nvironment. The basic properties of the model including well-

osedness, the disease free equilibrium and its stability, model ba-

ic reproduction number as well as the existence of backward bi-

urcation were examined. To estimate the parameter values, the

odel was fitted to the data on daily new cases reported in WHO

ituation reports 1–57 [1] , which accounts for the period from Jan-

ary 21, 2020 to March 17, 2020. From the nominal values from the

ata fitting, we obtained a reproduction number, R 0 ≈ 2 . 9 (2.1–4)

hich compares well with the values of R 0 obtained in other re-

earches, for instance, (2.24–3.58) [53] and 3.11 (95%CI, 2.39–4.13)

52] . From our sensitivity analysis simulations, we observed that

or some given parameter combinations, the value of R 0 can be

educed to below 1, and similarly for values much higher than 4. 

We observed that if the recovering individuals do so with per-

anent immunity ( ϕ = 0 ), then reducing the reproduction number

o a value below unity is enough to contain the infection. On the

ther hand, if recovering individuals do so with temporary immu-

ity ( ϕ 	 = 0), the proposed model exhibits backward bifurcation,

hich implies that reducing the value of R 0 below 1 is not enough

o contain the infection. 

By applying the Latin Hypercube sampling scheme, we observed

hat if the disease is to be easily contained, measures such as;

hysical/social distancing (which reduces the rate of disease trans-

ission directly from human to human), improved personal hy-

iene (which reduces the rate of disease transmission from the en-

ironment to humans), and minimal shedding of the pathogen into

he environment by both asymptomatic and symptomatic individ-

als, have the greatest potential of slowing the epidemic when en-

anced. We further observed that increased decay of the pathogen

rom the environment (achieved by disinfecting surfaces) alone is

ess significant in reducing/curbing the number of cases. 

We further observed that having high numbers of people with

nowledge from previous similar infections, that are practising

he prescribed self-protective measures can delay/slow down the

therwise potentially explosive outbreak. Consequently, the daily

umber of cases is kept at low manageable levels. In addition, in-

reasing the average effectiveness of the self-protective measures

nd adherence to such measures is vital in realising low peaks of

he number of cases. Furthermore, due to the absence of vaccina-

ion or any approved medication, developing capacity to detect car-

ier groups is very important. From our results, it is recommended
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hat countries should develop capacities to identify and quarantine

t least 30% of carriers as well as at least 50% of symptomatic cases

f the infection is to be controlled. Our model predicts a possible

esurgence of the number of cases, if the asymptomatic cases are

till many by the time disease spread curbs/lockdown measures

re lifted. In addition, we observe from simulations that although

isease spread curbs (such as a lockdown measure) may be im-

osed, their real impact on the number of new cases may only be

ealised after approximately 21 days, and the reduction (when it

ppears) could be sharp in the case of a strict lockdown measure

ith high impact in reducing effective contact between individuals

n the population. 

When providing the mitigation strategies, we did not account

or the delay between the actual incidence and the point when

ases have been confirmed since the actual parameters describ-

ng such a delay are not known. In health systems where testing

f suspected cases is done after individuals show symptoms or on

emand, it is likely to have a big gap between the actual incidence

nd confirmation of new cases. The impact of the delay between

ctual incidence and confirmation of case can be explored in future

ork. In addition, we assumed that all individuals who recover,

o so with the same level of immunity. However, this may not

ecessarily be the case since immunity of individuals is affected

y a number of factors, including age, cortisol levels and nutri-

ion among others. The impact of differentiated levels of immunity

n the disease dynamics and potential resurgence of the epidemic

an be explored in the future when relevant data becomes avail-

ble. Our model did not include the possibility of vaccination or

reatment. We, however acknowledge their importance in control-

ing the infection. Therefore, optimal control of the infection in the

resence of these mitigation strategies can be explored in future

orks when relevant data becomes available. Since the disease has

een observed to affect age groups differently, it is plausible to

onsider age-structured models to better understand the effect of

he disease in the respective age groups. 
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ppendix A. Proof of Theorem 3.1 

The proof of Theorem 3.1 is outlined here below based on the

ollowing two steps. 

First, we show that all solutions of Eq. (2) are nonnegative as

equired in Busenberg and Cooke [54] , Stuart and Humphries [55] .
o show that the state variables S and S e of the model are positive

or all t ≥ 0, we use proof by contradiction. We suppose that a

rajectory crosses one of the positive cones at times t 1 or t 2 such

hat: 

• t 1 : S(t 1 ) = 0 , S ′ (t 1 ) < 0 , S e (t) > 0 , C(t) > 0 , I(t) > 0 , R (t) > 0 ,

and E ( t ) > 0 for t ∈ (0, t 1 ), or 
• t 2 : S e (t 2 ) = 0 , S ′ e (t 2 ) < 0 , S(t) > 0 , C(t) > 0 , I(t) > 0 , R (t) > 0 ,

and E ( t ) > 0 for t ∈ (0, t 2 ), 

Using the first equation of Eq. (2) , the first assumption leads

o 

 

′ (t 1 ) = (1 − h ) π + (1 − ω) ϕR (t 1 ) > 0 , 

hich contradicts the first assumption that S ′ ( t 1 ) < 0. Thus, S ( t )

emains positive for all t ≥ 0. Here, t 1 is chosen so that our point

o be on the positive axis of S ( t ) so that R ( t 1 ) is positive. 

Using the second equation of Eq. (2) , 

 

′ 
e (t 2 ) = hπ + σ eS+ ωϕR > 0 , 

hich also contradicts the assumption S ′ e (t 2 ) < 0 . Hence, S e ( t ) re-

ains positive for all t ≥ 0. Based on the third equation of

q. (2) , 

 

′ = ηλS + φ(1 − ρ) λS e − (θ + α + μ) C ≥ −(θ + α + μ) C, (13) 

ecause S ( t ) and S e ( t ) are nonnegative for t ≥ 0. Solving

q. (13) yields 

(t) ≥ C(0) exp 

(
− (θ + α + μ) t 

)
≥ 0 , (14) 

ikewise, from the fourth equation of (2) , we obtain 

 

′ = (1 − η) λS + (1 − φ)(1 − ρ) λS e + θC − (γ + μ + δ) I 

≥ −(γ + μ + δ) I. (15) 

olving (15) leads to 

(t) ≥ I(0) exp 

(
− (γ + μ + δ) 

)
≥ 0 . (16) 

imilarly, using the last two equations of Eq. (2) , we have 

 

′ = αC + γ I − (ϕ + μ) R ≥ −(ϕ + μ) R, (17) 

nd 

 

′ = εC + ξ I − ψ E ≥ −ψ E, (18) 

ecause S ( t ), S e ( t ), C ( t ), and I ( t ) are nonnegative for t ≥ 0. Solving

qs. (17) and (18) gives 

 (t) ≥ R (0) exp 

(
− (ϕ + μ) t 

)
≥ 0 , (19) 

nd 

(t) ≥ E(0) exp 

(
− ψt 

)
≥ 0 , (20) 

espectively. 

Thus, any solution of Eq. (2) is nonnegative for t ≥ 0 and any

nitial condition in �. 

Finally, the total number of the population N ( t ) at time t is gov-

rned by 

 

′ (t) = π − μN(t) − δI ≤ π − μN(t) (21) 

hus, for the initial data 0 ≤ N(0) ≤ π
μ , by Gronwall inequality, we

btain 

 ≤ N(t) ≤ π

μ
. (22) 

oreover, for the environmental variable E , we have 

 

′ = εC + ξ I − ψE ≤ (ε + ξ ) 
π − ψE, (23) 

μ
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he Gronwall inequality, for 0 ≤ E(0) ≤ (ε+ ξ ) π
μψ 

, leads into 

(24) 

n and Heesterbeek [33] for the existence of unique bounded solution, 

ence, Eq. (2) defines a dynamical system on �. 

stilo-Chavez and Song [35] . To check the existence of backward bifur- 

 theorem [35] . For this purpose, we introduce the following change of 

(25) 

 = 

λn 

λn 
0 

+ λn 
. 

 6 ) 
T , the model Eq. (2) can be written in the form X ′ (t) = F = 

(26) 

 (8) we get 

(27) 

 R 0 > 1 . 

 −β2 (1 − h ) π

μK 

− (1 − ρ) hβ2 π

μK 

pβ2 π

μK 

qβ2 π

μK 

0 

−ψ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (28) 

1 − ρ) h . 

rbolic equilibrium point such that the linear system has a simple eigen- 

al parts. Hence, the centre manifold theory [35] can be used to analyse 

tation in Castilo-Chavez and Song [35] , the following computations are 

(29) 
because C ( t ) and I ( t ) are less than 

π
μ for all t ≥ 0. Applying again t

0 ≤ E(t) ≤ (ε + ξ ) π

μψ 

. 

Combining the above two steps and Theorem 2.1.5 in Diekman

we infer that any solution of Eq. (2) is nonnegative and bounded. H

Appendix B. Proof of Theorem 3.3 

Proof. The theorem is the direct application of Theorem 4.1 in Ca

cation of the model Eq. (2) at R 0 = 1 , we use the center manifold

variables. 

x 1 = S, x 2 = S e , x 3 = C, x 4 = I, x 5 = R, x 6 = E 

so that 

N = x 1 + x 2 + x 3 + x 4 + x 5 , λ = 

β1 (x 4 + νx 3 ) 

N 

+ 

β2 x 6 
x 6 + K 

, and e (λ)

Moreover, by using the vector notation X = (x 1 , x 2 , x 3 , x 4 , x 5 , x

( f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ) 
T as follows: 

x ′ 1 = (1 − h ) π − (λ + σ e + μ) x 1 (t) + (1 − ω) ϕx 6 , 

x ′ 2 = hπ + σ ex 1 − ((1 − ρ) λ + μ) x 2 + ωϕx 5 , 

x ′ 3 = ηλx 1 + φ(1 − ρ) λx 2 − k 1 x 3 , 

x ′ 4 = (1 − η) λx 1 + (1 − φ)(1 − ρ) λx 2 + θx 3 − k 2 x 4 , 

x ′ 5 = αx 3 + γ x 4 − k 3 x 5 , 

x ′ 6 = εx 3 + ξx 4 − ψx 6 , 

where, 

k 1 = θ + α + μ, k 2 = γ + μ + δ, and k 3 = ϕ + μ. 

When R 0 = 1 and β1 is considered as a bifurcation parameter, from

1 = β1 T 1 + T 2 or β1 = β∗
1 = 

1 − T 2 
T 1 

, 

where 

T 1 = 

p 

k 1 

(
ν + 

θ

k 2 

)
+ 

q 

k 2 
and T 2 = 

β2 π

μψK 

[ 
p 

k 1 

(
ε + 

θξ

k 2 

)
+ 

qξ

k 2 

] 
. 

Further more, β1 < β∗
1 if and only if R 0 < 1 and β1 > β∗

1 whenever

The Jacobian of the system (26) at the associated DF E (E 0 ) is 

J(E 0 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−μ 0 −νβ∗
1 (1 − h ) −β∗

1 (1 − h ) (1 − ω) ϕ

0 −μ −(1 − ρ) hνβ∗
1 −(1 − ρ) hβ∗

1 ωϕ 

0 0 pνβ∗
1 − k 1 pβ∗

1 0 

0 0 qνβ∗
1 + θ qβ∗

1 − k 2 0 

0 0 α γ −k 3 

0 0 ε ξ 0 

where p = η(1 − h ) + φ(1 − ρ) h, and q = (1 − η)(1 − h ) + (1 − φ)(

The transformed system Eq. (26) , with β1 = β∗
1 , has a non-hype

value with zero real part and all other eigenvalues have negative re

the dynamics of the model Eq. (26) near β1 = β∗
1 

. By using the no

carried out. 

The right-eigenvector 

w = (w 1 , w 2 , w 3 , w 4 , w 5 , w 6 ) 
T 

associated with the zero eigenvalue of J(E 0 ) such that 

J(E 0 ) .w = 0 
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a

w

w

w

D  ) 
)] 

, (30) 

 

S

v (31) 

o

v

a

v

v

w

F

T he condition v .w = 1 . 

a

 j 

∂ 2 f 6 
∂x i ∂x j 

(E 0 , β∗
1 ) 

] 

 F (1 − η) 
)] 

 (1 − φ)(1 − ρ) 
)] 

 ξA ) 2 

 

2 K 

2 
β2 π

] } 

v 3 w 

2 
3 (32) 

choice of the parametric values that satisfy the condition in Eq. (9) . 

b

 6 

 β1 

(E 0 , β∗
1 ) 

] 

(33) 

C

ative as well. Hence, by Theorem 4.1 in Castilo-Chavez and Song [35] , 

t

t β1 = β∗
1 is given by 

 1 = Dw 3 , w 2 = Gw 3 , w 3 = w 3 > 0 , 

 4 = Aw 3 , w 5 = 

1 

k 3 

(
α + γ A 

)
w 3 , w 6 = 

1 

ψ 

(
ε + ξA 

)
w 3 , 

here 

A = 

μψk 1 K 

[ 
β∗

1 

(
pθ

k 1 k 2 
+ 

q 
k 2 

)
+ 

β2 π
μψK 

(
pθξ
k 1 k 2 

+ 

qξ
k 2 

)] 
p(μψβ∗

1 
K + ξβ2 π) 

> 0 , 

 = 

1 

μ

[ 
(1 − ω) ϕ(α + γ A ) 

k 3 
− (1 − h ) 

(
β∗

1 (ν + A ) + 

β2 π

μψK 

(ε + ξA

G = 

1 

μ

[ 
ωϕ 

k 3 
(α + γ A ) − (1 − ρ) h 

(
β∗

1 (ν + A ) + 

β2 π

μψK 

(ε + ξA ) 
)] 

.

imilarly, the left-eigenvector 

 = (v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) , 

f J ( x ∗) such that 

 .J(E 0 ) = 0 

ssociated with the zero eigenvalue is given by, 

 1 = o, v 2 = 0 , v 3 = v 3 > 0 , 

 4 = F v 3 , v 5 = 0 , v 6 = 

β2 π

μψK 

(
p + qF 

)
v 3 , 

here 

 = 

p(μψβ∗
1 K + ξβ2 π) 

q (νμψβ∗
1 

K + εβ2 π) + μψθK 

A > 0 . 

he right-eigenvector w and the left-eigenvector v need to satisfy t

The bifurcation coefficient a at the DFE (E 0 ) is given by 

 = 

6 ∑ 

k,i, j=1 

v k w i w j 

∂ 2 f k 
∂x i ∂x j 

(E 0 , β∗
1 ) , 

= 

6 ∑ 

i, j=1 

[ 
v 3 w i w j 

∂ 2 f 3 
∂x i ∂x j 

(E 0 , β∗
1 ) + v 4 w i w j 

∂ 2 f 4 
∂x i ∂x j 

(E 0 , β∗
1 ) + v 6 w i w

= 2 

{ 

D 

[ 
μβ1 

π
(ν + A ) 

(
η − p + F (1 − η − q ) 

)
+ 

β2 (ε + ξA ) 

ψK 

(
η +

+ G 

[ 
μβ1 

π
(ν + A )(1 − h ) 

[ (
− η + φ(1 − ρ) 

)
+ F 

(
− (1 − η) +

+ 

(1 − ρ) β2 (ε + ξA ) 

ψK 

(
φ + F (1 − φ) 

)] 
− (p + qF ) 

[ 
μβ1 

π

(
ν + A (1 + ν + A ) + 

α + γ A 

k 3 
(ν + A ) 

)
+ 

(ε +
μψ

Thus, the bifurcation coefficient a , can be positive for the right 

The second bifurcation coefficient b is given by 

 = 

6 ∑ 

k, j=1 

v k w j 

∂ 2 f k 
∂ x j ∂ β1 

(E 0 , β∗
1 ) , 

= 

6 ∑ 

j=1 

[ 
v 3 w j 

∂ 2 f 3 
∂ x j ∂ β1 

(E 0 , β∗
1 ) + v 4 w j 

∂ 2 f 4 
∂ x j ∂ β1 

(E 0 , β∗
1 ) + v 6 w j 

∂ 2 f

∂ x j ∂

= (ν + A ) 
(

p + qF 

)
v 3 w 3 

learly, b > 0 because A and F are positive. 

When ϕ = 0 , D and G in (30) are negative and a in (32) is neg

he model will not exhibit a backward bifurcation at R 0 = 1 . �
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