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Abstract

Learning to optimize has emerged as a powerful framework for various optimization and machine 

learning tasks. Current such “meta-optimizers” often learn in the space of continuous optimization 

algorithms that are point-based and uncertainty-unaware. To overcome the limitations, we propose 

a meta-optimizer that learns in the algorithmic space of both point-based and population-based 

optimization algorithms. The meta-optimizer targets at a meta-loss function consisting of both 

cumulative regret and entropy. Specifically, we learn and interpret the update formula through 

a population of LSTMs embedded with sample- and feature-level attentions. Meanwhile, we 

estimate the posterior directly over the global optimum and use an uncertainty measure to 

help guide the learning process. Empirical results over non-convex test functions and the protein-

docking application demonstrate that this new meta-optimizer outperforms existing competitors. 

The codes are publicly available at: https://github.com/Shen-Lab/LOIS.

1 Introduction

Optimization provides a mathematical foundation for solving quantitative problems in 

many fields, along with numerical challenges. The no free lunch theorem indicates the 

non-existence of a universally best optimization algorithm for all objectives. To manually 

design an effective optimization algorithm for a given problem, many efforts have been 

spent on tuning and validating pipelines, architectures, and hyperparameters. For instance, in 

deep learning, there is a gallery of gradient-based algorithms specific to high-dimensional, 

non-convex objective functions, such as Stochastic Gradient Descent [1], RmsDrop [2], 

and Adam [3]. Another example is in ab initio protein docking whose energy functions as 

objectives have extremely rugged landscapes and are expensive to evaluate. Gradient-free 

algorithms are thus popular there, including Markov chain Monte Carlo (MCMC) [4] and 

Particle Swarm Optimization (PSO) [5].

To overcome the laborious manual design, an emerging approach of meta-learning (learning 

to learn) takes advantage of the knowledge learned from related tasks. In meta-learning, 

the goal is to learn a meta-learner that could solve a set of problems, where each sample 
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in the training or test set is a particular problem. As in classical machine learning, the 

fundamental assumption of meta-learning is the generalizability from solving the training 

problems to solving the test ones. For optimization problems, a key to meta-learning is 

how to efficiently utilize the information in the objective function and explore the space of 

optimization algorithms.

In this study, we introduce a novel framework in meta-learning, where we train a meta-

optimizer that learns in the space of both point-based and population-based optimization 

algorithms for continuous optimization. To that end, we design a novel architecture where 

a population of RNNs (specifically, LSTMs) jointly learn iterative update formula for a 

population of samples (or a swarm of particles). To balance exploration and exploitation in 

search, we directly estimate the posterior over the optimum and include in the meta-loss 

function the differential entropy of the posterior. Furthermore, we embed feature- and 

sample-level attentions in our meta-optimizer to interpret the learned optimization strategies. 

Our numerical experiments, including global optimization for nonconvex test functions and 

an application of protein docking, endorse the superiority of the proposed meta-optimizer.

2 Related work

Meta-learning originated from the field of psychology [6, 7]. [8, 9, 10] optimized a learning 

rule in a parameterized learning rule space. [11] used RNN to automatically design a neural 

network architecture. More recently, learning to learn has also been applied to sparse coding 

[12, 13, 14, 15], plug-and-play optimization [16], and so on.

In the field of learning to optimize, [17] proposed the first framework where gradients and 

function values were used as the features for RNN. A coordinate-wise structure of RNN 

relieved the burden from the enormous number of parameters, so that the same update 

formula was used independently for each coordinate. [18] used the history of gradients 

and objective values as states and step vectors as actions in reinforcement learning. [19] 

also used RNN to train a meta-learner to optimize black-box functions, including Gaussian 

process bandits, simple control objectives, and hyper-parameter tuning tasks. Lately, [20] 

introduced a hierarchical RNN architecture, augmented with additional architectural features 

that mirror the known structure of optimization tasks.

The target applications of previous methods are mainly focused on training deep neural 

networks, except [19] focusing on optimizing black-box functions. There are three 

limitations of these methods. First, they learn in a limited algorithmic space, namely 

point-based optimization algorithms that use gradients or not (including SGD and Adam). 

So far there is no method in learning to learn that reflects population-based algorithms (such 

as evolutionary and swarm algorithms) proven powerful in many optimization tasks. Second, 

their learning is guided by a limited meta loss, often the cumulative regret in sampling 

history that primarily drives exploitation. One exception is the expected improvement (EI) 

used by [19] under Gaussian processes. Last but not the least, these methods do not interpret 

the process of learning update formula, despite the previous usage of attention mechanisms 

in [20].
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To overcome aforementioned limitations of current learning-to-optimize methods, we 

present a new meta-optimizer with the following contributions:

• (Where to learn): We learn in an extended space of both point-based and 

population-based optimization algorithms;

• (How to learn): We incorporate the posterior into meta-loss to guide the search in 

the algorithmic space and balance the exploitation-exploration trade-off.

• (What more to learn): We design a novel architecture where a population of 

LSTMs jointly learn iterative update formula for a population of samples and 

embedded sample- and feature-level attentions to explain the formula.

3 Method

3.1 Notations and background

We use the following convention for notations throughout the paper. Scalars, vectors 

(column vectors unless stated otherwise), and matrices are denoted in lowercase, bold 

lowercase, and bold uppercase, respectively. Superscrip ′ indicates vector transpose.

Our goal is to solve the following optimization problem:

x∗ = arg min
x ∈ ℝn

f x .

Iterative optimization algorithms, either point-based or population-based, have the same 

generic update formula:

xt + 1 = xt + δxt,

where xt and δxt are the sample (or a single sample called “particle” in swarm algorithms) 

and the update (a.k.a. step vector) at iteration t, respectively. The update is often a function 

g(·) of historic sample values, objective values, and gradients. For instance, in point-based 

gradient descent,

δxt = g xτ, f xτ , ∇f xτ τ = 1
t = − α∇f xt ,

where α is the learning rate. In particle swarm optimization (PSO), assuming that there are k 
samples (particles), then for particle j, the update is determined by the entire population:

δxjt = g xjτ, f xjτ , ∇f xjτ j = 1
k

τ = 1
t

= wδxjt − 1 + r1 xjt − xjt ∗ + r2 xjt − xt ∗ ,

where xjt ∗  and xt* are the best position (with the smallest objective value) of particle j 

and among all particles, respectively, during the first t iterations; and w, r1, r2 are the 
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hyper-parameters often randomly sampled from a fixed distribution (e.g. standard Gaussian 

distribution) during each iteration.

In most of the modern optimization algorithms, the update formula g(·) is analytically 

determined and fixed during the whole process. Unfortunately, similar to what the No Free 
Lunch Theorem suggests in machine learning, there is no single best algorithm for all kinds 

of optimization tasks. Every state-of-art algorithm has its own best-performing problem set 

or domain. Therefore, it makes sense to learn the optimal update formula g(·) from the data 

in the specific problem domain, which is called “learning to optimize”. For instance, in [17], 

the function g(·) is parameterized by a recurrent neural network (RNN) with input ∇f(xt) and 

the hidden state from the last iteration: g(·) = RNN(∇f(xt), ht−1). In [19], the inputs of RNN 

are xt, f(xt) and the hidden state from the last iteration: g(·) = RNN(xt, f(xt), ht−1).

3.2 Population-based learning to optimize with posterior estimation

We describe the details of our population-based meta-optimizer in this section. Compared 

to previous meta-optimizers, we employ k samples whose update formulae are learned 

from the population history and are individually customized, using attention mechanisms. 

Specifically, our update rule for particle i could be written as:

gi( ⋅ ) = RNNi αiinter αjintra Sjτ τ = 1
t

j = 1
k

, hit − 1

where Sj
t = sj1

t , sj2
t , sj3

t , sj4
t  is a n × 4 feature matrix for particle j at iteration t, αjintra ⋅

is the intra-particle attention function for particle j, and αiintra ⋅  is the i-th output of the 

inter-particle attention function. hi
t − 1 is the hidden state of the ith LSTM at iteration t − 1.

For typical population-based algorithms, the same update formula is adopted by all particles. 

We follow the convention to set g1(·) = g2(·) = … = gk(·), which suggests RNNi = RNN and 

αjintra ⋅ = αintra ⋅ .

We will first introduce the feature matrix Sj
τ and then describe the intra- and inter- attention 

modules.

3.2.1 Features from different types of algorithms—Considering the expressiveness 

and the searchability of the algorithmic space, we consider the update formulae of both 

point- and population-based algorithms and choose the following four features for particle i 
at iteration t:

• gradient: ∇f xit

• momentum: mit = ∑τ = 1
t 1 − β βt − 1∇f xiτ

• velocity: vit = xit − xit ∗
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•
attraction: 

∑j exp −αdij2 xit − xjt

∑jexp −αdij2
, for all j that f xjt < f xit . α is a hyperparameter 

and dij = ‖xit − xjt‖2.

These four features include two from point-based algorithms using gradients and the other 

two from population-based algorithms. Specifically, the first two are used in gradient descent 

and Adam. The third feature, velocity, comes from PSO, where xit ∗  is the best position (with 

the lowest objective value) of particle i in the first t iterations. The last feature, attraction, is 

from the Firefly algorithm [21]. The attraction toward particle i is the weighted average of 

xit − xjt over all j such that f xjt < f xit ; and the weight of particle j is the Gaussian similarity 

between particle i and j. For the particle of the smallest f xit , we simply set this feature 

vector to be zero. In this paper, we use β = 0.9 and α = 1.

It is noteworthy that each feature vector is of dimension n × 1, where n is the dimension 

of the search space. Besides, the update formula in each base-algorithm is linear w.r.t. its 

corresponding feature. To learn a better update formula, we will incorporate those features 

into our model of deep neural networks, which is described next.

3.2.2 Overall model architecture—Fig. 1a depicts the overall architecture of our 

proposed model. We use a population of LSTMs and design two attention modules here: 

feature-level (“intra-particle”) and sample-level (“inter-particle”) attentions. For particle i at 

iteration t, the intra-particle attention module is to reweight each feature based on the context 

vector hi
t − 1, which is the hidden state from the i-th LSTM in the last iteration. The reweight 

features of all particles are fed into an inter-particle attention module, together with a k × 

k distance similarity matrix. The inter-attention module is to learn the information from the 

rest k − 1 particles and affect the update of particle i. The outputs of inter-particle attention 

module will be sent into k identical LSTMs for individual updates.

3.2.3 Attention mechanisms—For the intra-particle attention module, we use the idea 

from [22, 23, 24]. As shown in Fig. 1b, given that the jth input feature of the ith particle at 

iteration t is sijt , we have:

bijt = vaTtanh W asijt + Uahijt , pijt =
exp bijt

∑r = 1
4 exp birt

,

where va ∈ ℝn, W a ∈ ℝn × n and Ua ∈ ℝn × n are the weight matrices, hi
t − 1 ∈ ℝn is the hidden 

state from the ith LSTM in iteration t − 1, bij
t  is the output of the fully-connected (FC) layer 

and pijt  is the output after the softmax layer. We then use pijt  to reweight our input features:

cit = ∑
r = 1

4
pirt sirt ,
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where cit ∈ ℝn is the output of the intra-particle attention module for the ith particle at 

iteration t.

For inter-particle attention, we model δxit for each particle i under the impacts of the rest k − 

1 particles. Specific considerations are as follows.

• The closer two particles are, the more they impact each other’s 

update. Therefore, we construct a kernelized pairwise similarity matrix 

Qt ∈ ℝk × k (column-normalized) as the weight matrix. Its element is 

qijt =

exp −
xit − xjt

2

2l

∑r = 1
k exp −

xrt − xjt
2

2l

.

• The similar two particles are in their intra-particle attention outputs (cit, 

local suggestions for updates), the more they impact each other’s update. 

Therefore, we introduce another weight matrix Mt ∈ ℝk × k whose element is 

mij =
exp cit ′cjt

∑r = 1
k exp crt ′cjt

 (normalized after column-wise softmax).

As shown in Fig. 1b, the output of the inter-particle module for the jth particle will be:

ejt = γ ∑
r = 1

k
mrjt qrjt crt + cjt,

where γ is a hyperparameter which controls the ratio of contribution of rest k-1 particles to 

the jth particle. In this paper, γ is set to be 1 without further optimization.

3.2.4 Loss function, posterior estimation, and model training—Cumulative 

regret is a common meta loss function: L ϕ = ∑t = 1
T ∑j = 1

k f xjt . However, this loss 

function has two main drawbacks. First, the loss function does not reflect any exploration. 

If the search algorithm used for training the optimizer does not employ exploration, it can 

be easily trapped in the vicinity of a local minimum. Second, for population-based methods, 

this loss function tends to drag all the particles to quickly converge to the same point.

To balance the exploration-exploitation tradeoff, we bring the work from [25] — it built 

a Bayesian posterior distribution over the global optimum x* as p x* | ∪t = 1
T Dt , where Dt 

denotes the samples at iteration t:Dt = xjt, f xjt j = 1
k

. We claim that, in order to reduce 

the uncertainty about the whereabouts of the global minimum, the best next sample can be 

chosen to minimize the entropy of the posterior, ℎ p x* | ∪t = 1
T Dt . Therefore, we propose a 

loss function for function f(·) as:
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lf ϕ ∑
t = 1

T
∑

j = 1

k
f xjt + λℎ p x* ∪

t = 1
T

Dt ,

where λ controls the balance between exploration and exploitation and ϕ is a vector of 

model parameters.

Following [25], the posterior over the global optimum is modeled as a Boltzmann 

distribution:

p x* ∪
t = 1

T
Dt ∝ exp −ρf x ,

Where f x  is a function estimator and ρ is the annealing constant. In the original work of 

[25], both f x  and ρ are updated over iteration t for active sampling. In our work, they are 

fixed since the complete training sample paths are available at once.

Specifically, for a function estimator based on samples in ∪t = 1
T Dt, we use a Kriging 

regressor [26] which is known to be the best unbiased linear estimator (BLUE):

f x = f0 x + κ x ′ K + ϵ2I −1 y − f0 ,

where f0(x) is the prior for E[f(x)] (we use f0(x) = 0 in this study); κ(x) is the kernel vector 

with the ith element being the kernel, a measure of similarity, between x and xi; K is the 

kernel matrix with the (i, j)-th element being the kernel between xi and xj; y and f0 are 

the vector consisting of y1, …, ynt and f0 x1 , …, f0 xnt , respectively; and ϵ reflects the noise 

in the observation and is often estimated to be the average training error (set at 2.1 in this 

study).

For ρ, we follow the annealing schedule in [25] with one-step update:

ρ = ρ0 ⋅ exp ℎ0
−1 ∪

t = 1
T

Dt
1
n ,

where ρ0 is the initial parameter of ρ (ρ0 = 1 without further optimization here); h0 is the 

initial entropy of the posterior with ρ = ρ0; and n is the dimensionality of the search space.

In total, our meta loss for m functions fq(·) (q = 1, … , m) (analogous to m training 

examples) with L2 regularization is

L ϕ = 1
m ∑

q = 1

m
lfq ϕ + C ϕ 2

2 .

Cao et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To train our model we use the optimizer Adam which requires gradients. The first-order 

gradients are calculated numerically through TensorFlow following [17]. We use coordinate-

wise LSTM to reduce the number of parameters. In our implementation the length of LSTM 

is set to be 20. For all experiments, the optimizer is trained for 10,000 epochs with 100 

iterations in each epoch.

4 Experiments

We test our meta-optimizer through convex quadratic functions, non-convex test functions 

and an optimization-based application with extremely noisy and rugged landscapes: protein 

docking.

4.1 Learn to optimize convex quadratic functions

In this case, we are trying to minimize a convex quadratic function:

f x = ‖Aqx − bq‖2
2,

where Aq ∈ ℝn × n and bq ∈ ℝn × 1 are parameters, whose elements are sampled from i.i.d. 

normal distributions for the training set. We compare our algorithm with SGD, Adam, 

PSO and DeepMind’s LSTM (DM_LSTM) [17]. Since different algorithms have different 

population sizes, for fair comparison we fix the total number of objective function 

evaluations (sample updates) to be 1,000 for all methods. The population size k of our meta-

optimizer and PSO is set to be 4, 10 and 10 in the 2D, 10D and 20D cases, respectively. 

During the testing stage, we sample another 128 pairs of Aq and bq and evaluate the current 

best function value at each step averaged over 128 functions. We repeat the procedure 100 

times in order to obtain statistically significant results.

As seen in Fig. 2, our meta-optimizer performs better than DM_LSTM in the 2D, 10D, 

and 20D cases. Both meta-optimizers perform significantly better than the three baseline 

algorithms (except that PSO had similar convergence in 2D).

We also compare our meta-optimizer’s performances with and without the guiding posterior 

in meta loss. As shown in the supplemental Fig. S1, including the posterior improves 

optimization performances especially in higher dimensions. Meanwhile, posterior estimation 

in higher dimensions presents more challenges. The impact of posteriors will be further 

assessed in ablation study.

4.2 Learn to optimize non-convex Rastrigin functions

We then test the performance on a non-convex test function called Rastrigin function:

f x = ∑
i = 1

n
xi2 − ∑

i = 1

n
αcos 2πxi + αn,

where α = 10. We consider a broad family of similar functions fq(x) as the training set:
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fq x = ‖Aqx − bq‖2
2 − αcqcos 2πx + αn, (1)

where Aq ∈ ℝn × n, bq ∈ ℝn × 1 and cq ∈ ℝn × 1 are parameters whose elements are sampled 

from i.i.d. normal distributions. It is obvious that Rastrigin is a special case in this family 

with A = I, b = {0, 0, …, 0}′, c = {1, 1, …, 1}′.

During the testing stage, 100 i.i.d. trajectories are generated in order to reach statistically 

significant conclusions. The population size k of our meta-optimizer and PSO is set to be 

4, 10 and 10 for 2D, 10D and 20D, respectively. The results are shown in Fig. 3. In the 2D 

case, our meta-optimizer and PSO perform fairly the same while DM_LSTM performs much 

worse. In the 10D and 20D cases, our meta-optimizer outperforms all other algorithms. 

It is interesting that PSO is the second best among all algorithms, which indicates that 

population-based algorithms have unique advantages here.

4.3 Transferability: Learning to optimize non-convex functions from convex optimization

We also examine the transferability from convex to non-convex optimization. The 

hyperparameter α in Rastrigin family controls the level of ruggedness for training functions: 

α = 0 corresponds to a convex quadratic function and α = 10 does the rugged Rastrigin 

function. Therefore, we choose three different values of α (0, 5 and 10) to build training 

sets and test the resulting three trained models on the 10D Rastrigin function. From the 

results in the supplemental Fig. S2, our meta-optimizer’s performances improve when it 

is trained with increasing α. The meta-optimizer trained with α = 0 had limited progress 

over iterations, which indicates the difficulty to learn from convex functions to optimize 

non-convex rugged functions. The one trained with α = 5 has seen significant improvement.

4.4 Interpretation of learned update formula

In an effort to rationalize the learned update formula, we choose the 2D Rastrigin test 

function to illustrate the interpretation analysis. We plot sample paths of our algorithm, PSO 

and Gradient Descent (GD) in Fig 4a. Our algorithm finally reaches the funnel (or valley) 

containing the global optimum (x = 0), while PSO finally reaches a suboptimal funnel. At 

the beginning, samples of our meta-optimizer are more diverse due to the entropy control in 

the loss function. In contrast, GD is stuck in a local minimum which is close to its starting 

point after 80 samples.

To further show which factor contributes the most to each update, we plot the feature weight 

distribution over the first 20 iterations. Since for particle i at iteration t, the output of its 

intra-attention module is a weighted sum of its 4 features: cit = ∑r = 1
4 pirt sirt , we hereby sum 

pirt  for the r-th feature over all particles i. The final weight distribution (normalized) over 4 

features reflecting the contribution of each feature at iteration t is shown in Fig. 4b. In the 

first 6 iterations, the population-based features contribute to the update most. Point-based 

features start to play an important role later.

Finally, we examine in the inter-particle attention module the level of particles working 

collaboratively or independently. In order to show this, we plot the percentage of the 
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diagonal part of γQt ⊙ Mt + I:
tr γQt ⊙ Mt + I

∑γQt ⊙ Mt + I
 (⊙ denotes element-wise product), as shown 

in Fig. 4c. It can be seen that, at the beginning, particles are working more collaboratively. 

With more iterations, particles become more independent. However, we note that the trace 

(reflecting self impacts) contributes 67%−69% over iterations and the off-diagonals (impacts 

from other particles) do above 30%, which demonstrates the importance of collaboration, a 

unique advantage of population-based algorithms.

4.5 Ablation study

How and why our algorithm outperforms DM_LSTM is both interesting and important 

to unveil the underlying mechanism of the algorithm. In order to deeply understand each 

part of our algorithms, we performed an ablation study to progressively show each part’s 

contribution. Starting from the DM_LSTM baseline (B0), we incrementally crafted four 

algorithms: running DM_LSTM for k times under different initializations and choosing the 

best solution (B1); using k independent particles, each with the two point-based features, the 

intra-particle attention module, and the hidden state (B2); adding the two population-based 

features and the inter-particle attention module to B2 so as to convert k independent particles 

into a swarm (B3); and eventually, adding an entropy term in meta loss to B3, resulting in our 

Proposed model.

We tested the five algorithms (B0–B3 and the Proposed) on 10D and 20D Rastrigin functions 

with the same settings as in Section 4.2. We compare the function minimum values returned 

by these algorithms in the table below (reported are means ± standard deviations over 100 

runs, each using 1,000 function evaluations).

Dimension B0 B1 B2 B3 Proposed

10 55.4±13.5 48.4±10.5 40.1±9.4 20.4±6.6 12.3±5.4

20 140.4±10.2 137.4±12.7 108.4±13.4 48.5±7.1 43.0±9.2

Our key observations are as follows. i) B1 v.s. B0: their performance gap is marginal, which 

proves that our performance gain is not simply due to having k independent runs; ii) B2 v.s. 

B1 and B3v.s. B2: Whereas including intra-particle attention in B2 already notably improves 

the performance compared to B1, including population-based features and inter-particle 

attention in B3 results in the largest performance boost. This confirms that our algorithm 

majorly benefits from the attention mechanisms; iii) Proposed v.s. B3: adding entropy from 

the posterior gains further, thanks to its balancing exploration and exploitation during search.

4.6 Application to protein docking

We bring our meta-optimizer into a challenging real-world application. In computational 

biology, the structural knowledge about how proteins interact each other is critical but 

remains relatively scarce [27]. Protein docking helps close such a gap by computationally 

predicting the 3D structures of protein-protein complexes given individual proteins’ 3D 
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structures or 1D sequences [28]. Ab initio protein docking represents a major challenge of 

optimizing a noisy and costly function in a high-dimensional conformational space [25].

Mathematically, the problem of ab initio protein docking can be formulated as optimizing 

an extremely rugged energy function: f(x) = ΔG(x), the Gibbs binding free energy for 

conformation x. We calculate the energy function in a CHARMM 19 force field as in [5] 

and shift it so that f(x) = 0 at the origin of the search space. And we parameterize the search 

space as ℝ12 as in [25]. The resulting f(x) is fully differentiable in the search space. For 

computational concern and batch training, we only consider 100 interface atoms. We choose 

a training set of 25 protein-protein complexes from the protein docking benchmark set 4.0 

[29] (see Supp. Table S1 for the list), each of which has 5 starting points (top-5 models 

from ZDOCK [30]). In total, our training set includes 125 instances. During testing, we 

choose 3 complexes (with 1 starting model each) of different levels of docking difficulty. For 

comparison, we also use the training set from Eq. 1 (n = 12). All methods including PSO 

and both versions of our meta-optimizer have k = 10 particles and 40 iterations in the testing 

stage.

As seen in Fig. 5, both meta-optimizers achieve lower-energy predictions than PSO and the 

performance gains increase as the docking difficulty level increases. The meta-optimizer 

trained on other protein-docking cases performs similarly as that trained on the Rastrigin 

family in the easy case and outperforms the latter in the difficult case.

5 Conclusion

Designing a well-behaved optimization algorithm for a specific problem is a laborious task. 

In this paper, we extend point-based meta-optimizer into population-based meta-optimizer, 
where update formulae for a sample population are jointly learned in the space of both 

point- and population-based algorithms. In order to balance exploitation and exploration, 

we introduce the entropy of the posterior over the global optimum into the meta loss, 

together with the cumulative regret, to guide the search of the meta-optimizer. We further 

embed intra- and inter- particle attention modules to interpret each update. We apply our 

meta-optimizer to quadratic functions, Rastrigin functions and a real-world challenge – 

protein docking. The empirical results demonstrate that our meta-optimizer outperforms 

competing algorithms. Ablation study shows that the performance improvement is directly 

attributable to our algorithmic innovations, namely population-based features, intra- and 

inter-particle attentions, and posterior-guided meta loss.
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Figure 1: 
(a) The architecture of our meta-optimizer for one step. We have k particles here. For each 

particle, we have gradient, momentum, velocity and attraction as features. Features for each 

particle will be sent into an intra-particle (feature-level) attention module, together with 

the hidden state of the previous LSTM. The outputs of k intra-particle attention modules, 

together with a kernelized pairwise similarity matrix Qt (yellow box in the figure), will 

be the input of an inter-particle (sample-level) attention module. The role of inter-particle 

attention module is to capture the cooperativeness of all particles in order to reweight 

features and send them into k LSTMs. The LSTM’s outputs, δx, will be used for generating 

new samples. (b) The architectures of intra- and inter-particle attention modules.
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Figure 2: 
The performance of different algorithms for quadratic functions in (a) 2D, (b) 10D, and (c) 

20D. The mean and the standard deviation over 100 runs are evaluated every 50 function 

evaluations.
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Figure 3: 
The performance of different algorithms for a Rastrigin function in (a) 2D, (b) 10D, and (c) 

20D. The mean and the standard deviation over 100 runs are evaluated every 50 function 

evaluations.
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Figure 4: 
(a) Paths of the first 80 samples of our meta-optimizer, PSO and GD for 2D Rastrigin 

functions. Darker shades indicate newer samples. (b) The feature attention distribution over 

the first 20 iterations for our meta-optimizer. (c) The percentage of the trace of γQt ⊙ Mt + I 
(reflecting self-impact on updates) over iteration t.
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Figure 5: 
The performance of PSO, our meta-optimizer trained on Rastrigin function family and that 

trained on real energy functions for three different levels of docking cases: (a) rigid (easy), 

(b) medium, and (c) flexible (difficult).
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