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Do GRE scores help predict getting a physics Ph.D.? 
A comment on a paper by Miller et al.
M. B. Weissman*

A recent paper in Science Advances by Miller et al. concludes that Graduate Record Examinations (GREs) do not 
help predict whether physics graduate students will get Ph.D.’s. Here, I argue that the presented analyses reflect 
collider-like stratification bias, variance inflation by collinearity and range restriction, omission of parts of a need-
ed correlation matrix, a peculiar choice of null hypothesis on subsamples, blurring the distinction between failure 
to reject a null and accepting a null, and an unusual procedure that inflates the confidence intervals in a figure. 
Release of results of a model that leaves out stratification by the rank of the graduate program would fix many of 
the problems.

INTRODUCTION
A recent paper by Miller et al. (1) argues, primarily with regard to 
GRE scores, that “Typical Ph.D. admissions criteria limit access to 
underrepresented groups but fail to predict doctoral completion.” 
They interpret their findings as indicating that lower-than-average 
scores on admissions examinations do not imply a lower-than-average 
probability of earning a physics Ph.D. and that GREs are “metrics 
that do not predict Ph.D. completion.” These conclusions, however, 
rely on standard significance criteria (2), which show [see Table 2 of 
(1)] only one predictor for doctoral completion that can be used by 
admissions committees to select students and is “highly significant” 
(P < 0.01) in the overall sample studied: the Graduate Record Exam-
ination quantitative test (GRE-Q). This technical comment describes 
problems in the analysis. It is not intended to take a position on the 
complicated nontechnical issue of desirable admissions criteria.

Before evaluating the statistical validity of the analysis, we first 
clarify the question it aims to answer. That question appears to be 
how much predictive power for physics Ph.D. completion would be 
lost by de-emphasizing or dropping the GRE components of phys-
ics admissions criteria to diversify student cohorts.

Directly evaluating how well students admitted by different cri-
teria would have done requires either a randomized trial in which 
similar programs would be randomly assigned to do GRE-aware or 
GRE-blind admissions (not feasible at the time of the study) or a com-
parison of nonrandomly assigned programs using modern causal 
inference methods (3) to attempt to reduce systematic errors. There 
seem to have not been enough GRE-blind programs to allow such an 
observational study (1) . Instead, the strategy used was to create an 
implicit model of what causes program completion, from which one 
can estimate what the effect would have been for dropping GREs. 
Such an analysis would be reasonable if implemented properly.

The authors model Ph.D. completion, a convenient but crude 
dichotomous proxy for broader goals such as scientific productivity, 
by a standard logistic regression, with the logit given by a multivar-
iate linear regression on several predictors. The multivariate form is 
justified as a way to give a better “basis for policy decisions” by avoid-
ing “confounding” (1). Since confounding is a purely causal concept, 
this explanation indicates that the results are intended to tell us 

what the causal effects of policy choices would be. The model coef-
ficients for the predictors, combined with the ranges of the predictors, 
may be interpreted as indicating how much incremental predictive 
power would be lost by dropping each predictor, i.e., what effect that 
policy change would have on completion rate. The predictors include 
percentile ranks of GRE scores (quantitative GRE-Q, verbal GRE-V, 
and physics GRE-P), undergraduate GPA, gender, ethnicity/race, 
U.S. versus non-U.S. citizenship, year of matriculation, and the rank 
stratum of the graduate program in which the student ultimately 
enrolled (1), which is one predictor that an admissions committee 
cannot use as an attribute to distinguish between applicants. Setting 
aside for now the rank stratum, some such procedure, with the usual 
caveats, would provide a conventional start to estimating which ef-
fects could be excluded from admissions decisions without causing 
major reductions in degree completion rates.

Several features of the analysis, however, contribute to overesti-
mation of the statistical uncertainty in estimates of the incremental 
predictive value of GREs, i.e., to the “variance inflation” problem (4). 
Inclusion of the rank stratum can also create systematic underesti-
mation of the predictive power. The inclusion of these features ob-
scures the statistical reliability of the conclusion that those tests help 
to predict graduation.

RESULTS
Variance inflation from collinearity
The main issue being addressed by the paper is not how well one can 
distinguish the separate predictive coefficients of GRE-Q and GRE-P, 
but rather, since they show similar disparities among demographic 
groups (1, 5), what weight if any should be placed on such tests alto-
gether (1). (GRE-V turns out to have essentially no incremental pre-
dictive value.) The model presented includes both GRE-P and GRE-Q 
as separate variables, dividing up their net predictive power into two 
smaller pieces and inflating the SEs in the estimates of their predic-
tive coefficients via collinearity (4, 6).

A subsequent addendum by Miller et al. (7) provides the correlation 
coefficients (in the population studied) both between the GRE-Q 
and GRE-P percentiles (0.55) and between their estimated predic-
tive coefficients (−0.42). We can recover the net GRE effect size and 
its nominal statistical significance by combining the two percen-
tiles, giving them equal weight by dividing each by its range in the 
sample. From Figure 2 of (1) , we see that the GRE-P range in the U.S. 
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is about 1.5 times as large as the GRE-Q range. Adding the Q coefficient to 
1.5 times the GRE-P coefficient [from Table 2 of (1)], we find that the 
predictive coefficient of the equal-weight sum is the same to within 
a 1% range in the “All Students” total sample and in each of the three 
subsamples described: U.S., U.S. female, and U.S. male. Calculating the 
SEs of the net coefficients from the reported coefficient SEs (1) with their 
reported correlations (7), we find the net GRE predictive effect 
is 4.5 SE in All Students, far more than the conventional 1.96 SE 
significance cutoff value for such problems. In the subsamples (U.S., 
U.S. male, and U.S. female), it is 3.4 SE, 3.0 SE, and 1.5 SE, respective-
ly. Although the U.S. female result does not reach the conventional 
threshold for significance, due to the small sample, the point esti-
mate is virtually identical to those in the larger groups. Even simply 
dropping GRE-P, this effect of increasing the coefficient and reduc-
ing the SE for GRE-Q would give significance well above the stan-
dard threshold except for that smallest subsample.

The net logit change between the 10th and 90th percentiles on 
that combined score would be reduced from the sum of the separate 
effects of the two scores [~0.46 and ~0.36 in the United States for Q 
and P, respectively, estimated from Figure 2 of (1)] by a factor (1.55/2)1/2 
since their correlation is 0.55, giving a net logit effect of ~0.72. (Here, 
I assume that the percentile range scales approximately with the SD 
and that slightly changing GRE weightings does not induce a large 
change in the coefficients of other variables.) This effect somewhat 
exceeds the corresponding GPA effect (~0.6) in the U.S. subsample 
and no doubt greatly exceeds the GPA effect for All Students, for 
which the GPA predictive coefficient falls off sharply (1). (Inclusion 
of different weights for GRE-P and GRE-Q, i.e., inclusion of their 
equal-weight difference as a predictor, adds very little to the predic-
tive power.) Thus, even before getting to the interesting and im-
portant modeling questions, we see that according to the data of the 
paper (1) and addendum (7), overall GREs do better than GPA for 
predicting graduation within the context of the linear logit model.

Stratification: Variance inflation and collider-like bias
The model chosen includes the rank of the graduate program in 
which the student enrolled, via two adjustable terms for three rank 
strata (1). Admissions committees cannot use the result of future 
enrollment to decide among competing applicants. This fact raises 
a question whether such a variable belongs in a model estimating 
the predictive value of other metrics.

An immediate issue with stratification is that it creates another 
variance inflation by restricting the range of the predictors. This 
problem of restricted range in predictive modeling is well known, 
especially in the context of educational and employment decisions 
[e.g., (8, 9)], and even in the specific context of physics GREs (10). 
Correlation between outcomes and predictors is suppressed in nar-
row strata. In one experimental comparison, correlation between 
scores on a two-component Swedish driving test fell by more than a 
factor of 2 when restricted to those who passed the first test (9). In a 
1993 study (8), the GRE validity in predicting performance of psy-
chology students in classes on statistics, assessments, and research 
methods was found to be high (0.55 to 0.70) in a program with 
little range restriction, in contrast to much lower validity in a range-​
restricted subset or to typical low validity for predicting grades in 
more range-restricted programs. The authors’ conclusion was “These 
results support the conventional argument that uncorrected GRE 
validity estimates based on range-restricted samples are strongly 
biased toward zero” (8).

It is not unreasonable that the Miller et al. analysis contains a 
restricted range, since a school or employer typically does not have 
performance data on those who either were not offered a position in 
their institution or did not choose to take it. However, this particu-
lar range restriction comes mainly from the choice to stratify stu-
dents by program rank (1). Miller et  al. (1) state that one of the 
strengths of their study is that it includes a wide range for the pre-
dictive variables because it includes schools of very different ranks, 
but they do not use that range to narrow the statistical uncertainties 
in the parameter estimates.

A critical question is whether loss of precision is justified by the 
need to avoid systematic errors. Miller et  al. say they “…include 
covariates to render more precise estimates”, but including covariates 
can either remove or add systematic bias depending on which co-
variates are included and on what one wishes to estimate (3, 11, 12). 
In causal inference studies stratifying on a “collider,” a downstream 
variable affected both by the suspected cause and by unmeasured 
other causes adds a systematic error called collider stratification selec-
tion bias to the causal estimand (3, 11, 12). For example, inadvertent 
collider conditioning produces a paradoxical effect that maternal 
smoking appears to protect low–birth weight newborns from mor-
tality, because within the low birth weight stratum, smoking is nega-
tively correlated with even more ominous predictors (13).

Miller et al. (1) find that even after taking into account GPA, GREs, 
etc., students in the higher-ranked programs have a higher likeli-
hood of completion. The use of their stratified model to evaluate the 
incremental predictive power of GREs implicitly assumes that this 
boost is caused entirely by factors that would not change if students 
with lower scores were admitted to those programs. There are two 
main possible causes of this boost mentioned in the original paper.

One possibility mentioned (1) would be that a typical student has 
a systematically easier time graduating from higher-rank programs 
than from lower-rank programs, so the boost would persist even if 
admissions procedures changed and students who would currently 
enroll in lower-rank programs were switched to high-rank pro-
grams. If this were the main explanation, then rank would be a sim-
ple confounder and should be removed by stratification or other 
methods to improve the estimate of the incremental predictive 
power of the GREs. No evidence is given to support this possibility, 
and the actual sign of effect is not obvious.

The other possibility is that the high-ranked programs are get-
ting students with a higher propensity to graduate than predicted by 
the in-model GREs and GPA because they use a variety of other pre-
dictors as well, as documented in (14), which shares a co-author with 
Miller et al. (1). These predictors include prior research experience, 
letters of recommendation, etc. (14). Unless those predictors are ir-
relevant to degree completion, they will have some positive predic-
tive value, which will be reflected in the coefficient of the rank variable, 
with which they will be positively correlated (1). If the out-of-model 
predictors are positively correlated with an in-model predictor, they 
will increase the coefficient that the model assigns to that predictor 
beyond what would actually be lost by dropping the predictor, but 
if they are negatively correlated, they will decrease the coefficient. 
As a result, the model estimate will depend on stratification because 
the correlation between the in-model and out-of-model predictors 
changes as a function of stratification (11).

Students with low GREs and GPAs who nonetheless are ac-
cepted into high-rank schools are likely to have especially good prior 
research experience, letters of recommendation, etc., creating a 
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negative correlation within each stratum between those stratum-​
correlated out-of-model predictors and the predictors used in the 
model (10). A similar effect occurs in a different context: Although 
performances on long jumps and 110-m races are likely to be posi-
tively correlated in the general population, in the stratum of olympic 
decathletes, they have a strongly negative correlation (15).

The reported data include indications that the odds boost for 
students in high-ranked programs is likely to be due to the out-of-
model predictors used in admissions rather than to any direct student-​
independent effects (of unknown sign) of differently ranked programs. 
If some randomly chosen students were boosted in enrolled pro-
gram rank, their graduation probability would increase from the 
hypothetical direct effect but not change for the out-of-model selec-
tion effect. In the selection case, but not the direct effect case, the 
stratified model would then assign this random group a negative 
logit equal to the positive logit assigned to the rank boost. In a causal 
diagram, the random group assignment would collide with effects 
of out-of-model selection traits on program rank, and the random 
group assignment would pick up a logit via collider bias despite 
having no causal effect on graduation. Something approximately 
similar to that randomized trial would happen if the boosted stu-
dents were picked nonrandomly, but based on traits with little di-
rect relevance to graduation probability. Given the almost universal 
attempt to boost representation of underrepresented minorities, we 
may see such statistical artifacts in the large negative logits the model 
assigns to them [seen in Table 2 of (1)], which are statistically signif-
icant in the overall sample and close in magnitude to the positive 
logit assigned to the difference between the first and third rank tier. 
That pattern is more consistent with collider bias in the model than 
with the more selective programs being easier to complete, although 
without further information on other possible factors, one cannot 
precisely sort out such systematic effects. I predict that these negative 
demographic logits will shrink substantially in a less-stratified (and, 
as I will argue, probably more accurate) model omitting program 
rank and could easily fall to zero or turn positive if a fully unstrati-
fied model or one including all important predictors were possible.

Since the out-of-model predictors are themselves likely to be 
positively correlated with in-model predictors, they would be con-
founders in a model completely lacking range restriction, causing 
some positive overestimate of the incremental predictive power of 
the in-model predictors. For the real data, however, the unavoidable 
limitation to students who have been accepted means that the pop-
ulation under study is systematically restricted compared with the 
one of interest—all the applicants plus some others who might ap-
ply if GREs were dropped (10). That unavoidable range restriction 
effect is not small. For example, if both in and out contributions are 
independent normally distributed and given equal weight, mere se-
lection of applicants with an overall above-average score gives a 
correlation coefficient of −1/( − 1) = −0.47. Even if the in and out 
predictors are positively correlated (coefficient rOI) in the entire 
applicant population, their correlation in the enrolled upper half is 
(( − 1)rOI − 1)/( − 1 − rOI). Even without rank strata, the model 
would underestimate the in-model coefficients if rOI < 1/( − 1) = 0.47, 
which is larger than one would ordinarily expect the correlation to 
be between disparate predictors such as test scores and research ex-
perience. Since the coefficients of the tiers do not show especially 
large variance inflation (7), they cannot be very strongly correlated 
with the other predictors. (It would be easier to reason accurately 
about this possibility if the covariances between program tier and 

other variables were available.) Thus, to the extent that the positive 
logits for high-ranked programs are caused by their selection of stu-
dents, even a model omitting rank strata would be likely to under-
estimate the incremental predictive power of including GREs, or at 
any rate not overestimate it by very much.

The more finely rank is stratified, the more negative these cor-
relations become (10). In the ideal limit of narrow rank stratification 
and admissions criteria successfully aimed to maximize a particular 
goal, all power for predicting that goal using any variables other 
than rank becomes zero regardless of how predictive they are in the 
unstratified population, since no variation is left within each stratum. 
That remains true regardless of how much range remains for any 
individual predictor, how complete the overall range of the data is, 
and how large the sample size is. That program rank should be a 
relatively good predictor in the stratified model, thus, tells us little 
other than that physics admissions committees are making use of 
the out-of-model predictors that they say they use (14) in a way that 
correlates with program rank.

Null hypotheses for subsamples, anomalous confidence 
intervals, and dynamic range compression
The Miller et al. paper reasonably avoids making a strong prior as-
sumption that each predictor will work equally well in each subsample. 
As we have seen, however, the point estimate for the net GRE pre-
dictive coefficient based on their data is virtually identical in each 
subsample, providing no evidence that net GRE weighting should 
differ among them. The paper replaces the conventional null hy-
pothesis of equal effects in different subsamples with null hypotheses 
of no effect in each subsample. This choice may produce anomalous 
interpretations. For example, although the point estimate given in 
Table 2 of (1) for the coefficient of the logit for GRE-Q in All Students 
(0.013 per percentile rank) is statistically significant, and the point 
estimate among U.S. females (0.017) is larger, the latter fact is de-
scribed as “we see no differences in Ph.D. completion probability…” 
in females (1). Here, the paper interprets this result as being insuffi-
ciently precise to confidently reject a null hypothesis. Such an inter-
pretation can be problematic. For instance, in typical medical trials, 
when a treatment appears to work better in a subsample than in the 
overall group, but with larger uncertainty due to the small sample, 
it would be highly unconventional to conclude that the treatment 
does not work in the smaller group, even though that possibility 
cannot be statistically ruled out.

Figure 2 (1) illustrates the predictive slopes of the U.S. sub-
sample for GPA and the GREs applied separately to the 10th, 50th, and 
90th percentile scores for U.S. females and males. It shows very large 
“95% confidence intervals associated with Ph.D. completion proba-
bility,” (p) leaving the visual impression that predictive effects are small 
compared with uncertainty. Converting to logits, these intervals are 
roughly ±1.1 for each estimate at the low, middle, and high parts of 
the distributions for both U.S. males and females. The near equality 
at the middle and edges of the distribution indicates that these in-
tervals cannot primarily reflect the uncertainty of interest, i.e., un-
certainty in the slopes of the logit dependence on the model variables, 
because that would not show up much in the middle points. For 
large N in the middle of the parameter range, the 95% confidence 
intervals for the logit should be ±1.96*/(Np(1 − p))1/2. For the full 
U.S. sample with N = 2315 and p = ~0.7, that would be ±0.09, not 
±1.1. The confidence intervals shown appear to be based on the num-
ber of students (~23) within each integer percentile group rather 
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than the actual group size from which the probability estimates are 
calculated, which would inflate them by approximately one order of 
magnitude.

Rather than directly use the GRE scores themselves in the linear 
model, the paper uses percentile rankings (1), a convenient way to 
stitch together scores from before and after the GRE scale changed. 
It is not required, however, since score conversion tables are avail-
able. The percentile method has the effect of greatly compressing 
the dynamic range in the higher scores in the tail of the distribution 
and magnifying small differences in the middle of the distribution, 
where most accepted applicants are found. It is possible that this 
highly nonlinear map from test scores to the predictors used in the 
linear model reduces the predictive power.

The bottom line
Based even on the incomplete data presented, the statistical uncer-
tainty in estimating how much predictive strength would be lost by 
dropping or de-emphasizing GREs is not particularly important 
(1). We have seen that in the U.S. subsample, a simple equal-weight 
sum of the two relevant GREs provides a logit difference of ~0.72, 
i.e., an odds ratio of ~2.1, even before making any upward correc-
tion for a systematic stratification bias or for possible improvement 
from using test scores rather than percentiles.

Extending those results to the non-U.S. 40% of the sample re-
quires guesswork, because the range data and correlation coeffi-
cients for that subsample have not been provided. In the published 
results, there is no indication that GREs would be a weaker predic-
tor in that group than in the U.S. (1). In contrast, the predictive co-
efficient for GPA is only about half as large in All Students as in the 
U.S. (1). Thus, although no predictors of graduation are especially 
good, the net equal-weight GRE-P and GRE-Q combination looks 
better than GPA overall. Results in the addendum (7) for formal 
model evaluation criteria, which include a likelihood measure and a 
penalty for adding parameters, look consistent with this conclusion, 
although a simple model including GPA and the net GRE-P and 
GRE-Q but omitting the irrelevant GRE-V (1) is not included. Ex-
tending the results to lower scores, particularly relevant for GRE-Q 
whose range is strongly restricted in the sample, not just the strata 
(7), is uncertain, but past indications are that such dependencies do 
not become any weaker in the low end (8).

DISCUSSION
Miller et al. deserve credit for collecting a substantial amount of use-
ful data on a question of wide interest. Since their dataset includes a 
relatively large predictor range, it opens up the possibility of making 
more reliable estimates than ones based on data or anecdotes from 
individual programs. Some of their results are already useful, e.g., 
showing that the GRE-V adds essentially nothing to the statistical 
predictive power in this sample (1). The correlation coefficients 
(7) let us see that an equal-weight GRE-P and GRE-Q combination 
is only a slightly stronger predictor than plain GRE-Q, a result 
that may have little import for admissions decisions but might 
matter in evaluating costs of admissions requirements. There are 
anecdotal reports that the direct financial cost of an added test is a 
barrier for many students, especially from underrepresented groups. 
There is also a slight statistical hint, about a 1 SE effect, suggesting 
that different weights for GRE-Q and GRE-P might be useful for 
U.S. females.

Only a few straightforward further steps would be needed to 
make much fuller use of these data. Most important by far would be 
to publish the results for the model without the biasing stratifica-
tion by program rank. Another very useful step would be to publish 
results (ranges of predictors, coefficients, and correlations) on the 
40% of the sample that are not U.S. citizens, just like on the U.S. 
subsamples. Publishing ranges of variables for All Students would 
also be useful. Publishing a comparison of a model that drops GRE-P 
with one that uses an equal-weight P and Q sum would help in cost-​
benefit decisions about requiring GRE-P. A small amount of addi-
tional calculation would allow an analysis using scores rather than 
percentiles.

Even a more transparent analysis of these data, however, will po-
tentially be subject to systematic errors of unknown sign, as with any 
observational study. Since there are now fairly many physics de-
partments unsure of what GRE policy to adopt, a randomized con-
trolled trial now might directly address the causal policy question: 
What effects do different admissions policies have on student outcomes? 
Different volunteer departments could be randomly assigned to dif-
ferent GRE policies for a year and then switched for the next year. 
The resulting cohorts could then be followed not only for degree 
completion but also for other outcomes. Regardless of the results, it 
would set an example of scientists trying to use objective scientific 
methods to help make policy choices.

Even if more reliable outcome estimates become available, inter-
esting arguments (far beyond the scope of this technical comment) 
will continue over how to balance different goals. The effects of 
changing criteria may not even be dominated by the individual-level 
effects discussed here, but by much harder to predict changes in 
institutional traits and motivational signaling effects. For example, 
if GRE-P were not used in graduate admissions decisions, many in-
stitutions might change undergraduate physics curricula and grad-
ing standards, for better or worse or both.

The emerging interest in “preregistration” in the social sciences, 
in which analysis methods are peer reviewed before data are 
collected, is a promising tool for statistical studies of educational 
inputs and outcomes intended to inform policy decisions. Pre-
registration is not a panacea, but it can help anticipate and mitigate 
methodological concerns that might arise after publication, as in 
this instance.
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