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Abstract

Background: Prospective studies have suggested higher factor VIII (FVIII) levels is an 

independent risk factor for coronary heart disease (CHD) and stroke. However, limited 

information, including on genetic and epigenetic contributors to FVIII variation, is available 

specifically among African Americans (AAs), who have higher FVIII levels than Europeans.

Objectives: We measured FVIII levels in ~3,400 AAs from the community-based Jackson Heart 

Study and assessed genetic, epigenetic, and epidemiological correlates of FVIII, as well as 

incident cardiovascular disease (CVD) associations.

Methods: We assessed cross-sectional associations of FVIII with CVD risk factors as well as 

incident CHD, stroke, heart failure, and mortality associations. We additionally assessed 

associations with TOPMed whole genome sequencing data and an epigenome-wide methylation 

array.

Results: Our results confirmed associations between FVIII and risk of incident CHD events and 

total mortality in AAs; mortality associations were largely independent of traditional risk factors. 

We also demonstrate an association of FVIII with incident heart failure, independent of B-type 

natriuretic peptide. Two genomic regions were strongly associated with FVIII (ABO and VWF). 

The index variant at VWF is specific to individuals of African descent and is distinct from the 

previously reported European VWF association signal. Epigenome-wide association analysis 

showed significant FVIII associations with several CpG sites in the ABO region. However, after 

adjusting for ABO genetic variants, ABO CpG sites were not significant.

Conclusions: Larger sample sizes of AAs will be required to discover additional genetic and 

epigenetic contributors to FVIII phenotypic variation, which may have consequences for CVD 

health disparities.
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INTRODUCTION

Coagulation factor VIII (FVIII) circulates bound to von Willebrand factor (VWF) and serves 

as a co-factor for factor IX-mediated activation of factor X, which ultimately generates a 

fibrin blood clot. Mutations of the factor VIII gene (F8) result in low levels of FVIII and the 

hereditary X-linked bleeding disorder hemophilia A [1] . Conversely, higher basal levels of 

FVIII are a risk factor for primary and recurrent venous thromboembolism (VTE) [2]. FVIII 

is an acute phase protein and levels tend to correlate with other inflammation biomarkers as 

well as traditional cardiovascular disease (CVD) risk factors such as age, body mass index 

(BMI), and diabetes [3]. Nonetheless, in some studies, higher FVIII levels were an 

independent risk factor for arterial thrombotic disease such as myocardial infarction (MI) or 

stroke [4-9], as well as overall mortality[10]. More recently, instrumental variable or 

Mendelian randomization analyses of FVIII have suggested FVIII levels may be causally 

related to both CHD and VTE risk [11].
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Cardiovascular diseases, including MI, ischemic stroke, venous thromboembolic disease 

(VTE), and heart failure (HF) disproportionately affect African Americans (AAs) [12, 13]. 

FVIII levels are higher among AAs than individuals of European ancestry (EAs) [14, 15] 

and may be a stronger risk factor for VTE in AAs than EAs [16, 17], but the role of FVIII as 

a risk factor for CVD outcomes has been less well-studied among AAs [18].

Genetic factors contribute to inter-individual variation in FVIII levels, with heritability 

estimates in the range of 40-60% [19-21]. A major determinant is ABO blood group [19], 

but familial aggregation of high FVIII levels persists even after adjustment for ABO [22]. 

Through genome-wide association studies (GWAS) and exome studies, several additional 

FVIII associated loci have been discovered, though these studies were conducted primarily 

in individuals of European descent [11, 23-25].

Compared to traditional GWAS, whole genome sequencing (WGS) assesses genetic variants 

(both coding and non-coding) in the lower frequency range, as well as African population-

specific variants poorly represented on genotyping arrays and current imputation reference 

panels [26]. Epigenetic factors can also influence complex traits such as FVIII level, but 

association of DNA methylation at a genome-wide scale with FVIII levels in population-

based samples has not been previously examined. To further characterize the epidemiologic, 

genetic, and epigenetic correlates of FVIII, and the relationship of FVIII to CVD risk in 

AAs, we performed a series of analyses in ~3,400 AAs from the Jackson Heart Study (JHS).

METHODS

The Jackson Heart Study (JHS)

Between 2000 and 2004, JHS recruited 5,306 AA participants from the Jackson, Mississippi 

metropolitan area. A range of measures, including traditional and putative CVD risk factors, 

health behaviors, detailed demographic, socioeconomic and sociocultural factors, 

medication use, anthropometry, blood pressure, assessments of kidney function and diabetes, 

and biochemical analytes, were obtained at the baseline JHS examination and in subsequent 

clinic visits [23]. The current analysis is confined to 3,493 individuals who had FVIII 

measured as part of the JHS ancillary study “Thrombosis Genetics in African Americans” 

and gave consent that allows genetic research (Figure S1). Computed tomography (CT), 

ultrasound, and echocardiographic imaging data collection, reading, and quality control in 

JHS for assessment of carotid IMT, Left ventricular mass index (LVMI), LV hypertrophy 

(LVH), Ankle brachial index (ABI), coronary artery calcification (CAC) and abdominal 

aortic calcification (AAC), have been previously described [27-29]. All-cause mortality and 

incident coronary heart disease (CHD) and stroke events were adjudicated from the 

beginning of the study through 2014, while adjudication of incident HF events began in 

2005 [30]. Overall CHD includes fatal CHD, myocardial infarction, coronary artery bypass 

surgery, or angioplasty. Hard CHD includes fatal CHD and myocardial infarction. Strokes 

were defined according to the World Health Organization definition and include both 

ischemic and hemorrhagic subtypes. Individuals with a prior history of stroke or CHD (prior 

to 2000) or HF (prior to 2005) or who did not consent to medical record abstraction were 

excluded from incident event analyses. Median follow-up for mortality is ~14 years, ~12 

years for stroke and CHD, and ~10 years for HF.
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Laboratory measurements

FVIII antigen level (as the percent of pooled normal plasma) was measured at the University 

of Vermont using EDTA plasma from the JHS baseline exam and a sandwich ELISA 

(Affinity Biologicals). Values above the upper limit of detection were set to 800%. High-

sensitivity C-reactive protein (CRP), total cholesterol, high-density lipoprotein cholesterol 

(HDLc) and triglycerides (TG), serum creatinine and B-type natriuretic peptide (BNP) were 

measured as previously described.

Statistical Analysis of FVIII with CVD risk factors and outcomes

Cross-sectional associations of FVIII with baseline JHS participant characteristics and with 

measures of subclinical CVD were assessed using generalized estimating equations (GEE), 

to account for familial correlation, with FVIII as the independent variable and covariate 

adjustment for age and sex, and baseline characteristics and subclinical CVD measures 

treated as dependent variables. Effect estimates were reported per standard deviation (SD) 

change in FVIII. AAC, CAC, LVMI, cIMT, CRP, TG, and BMI (in JHS) were natural 

log(LN)-transformed prior to analysis. Cox proportional hazards models with sandwich 

variance estimator, to account for relatedness in the sample, were used to calculate hazard 

ratios and 95% confidence intervals (CI) for covariate-adjusted associations with all-cause 

mortality and incident CVD events. Associations were reported both using FVIII as a 

continuous trait (transformed as a z-score) and as a categorical variable divided into FVIII 

quartiles. All associations were assessed using SAS 9.3. Heritability of FVIII was estimated 

using a subset of 1,578 related JHS individuals from 433 families, adjusting for age and sex 

[30].

Whole genome sequencing (WGS) and FVIII association analysis

Eligible JHS participants underwent ~30X WGS at the Northwest Genomics Center at 

University of Washington through the NHLBI Trans-Omics for Precision Medicine 

(TOPMed) project. Details of the sequencing, variant calling, and quality control (QC) 

protocols used in TOPMed are described at https://www.nhlbiwgs.org/data-sets. Regression 

of inverse normalized FVIII on genotype was adjusted for age, sex, and the first ten principal 

components (PCs) for global ancestry. We used a linear mixed model approach to account 

for familial relationships, as implemented in SAIGE on the University of Michigan 

ENCORE server (https://encore.sph.umich.edu) [35]. We included 31,176,270 single 

nucleotide variants and small indels with sequence depth >10 and minor allele count >20. A 

significance threshold of 1 × 10−9 was used for single variant analyses [31]. To assess the 

number of distinct signals at a given locus, we performed step-wise conditional regression 

analysis.

We also performed genome-wide gene-based testing for rare variants with inverse-

normalized FVIII using the mixed model SMMAT aggregate association testing method 

(adjusting for potential relatedness using an estimated kinship matrix and covariates) using 

Wu weights for each variant [32]. We aggregated variants for association tests grouping 

variants by gene and restricting to variants of MAF<1% that are either loss of function or 

missense and predicted to be pathogenic on the basis of a FATHMM-XF coding score>0.5 
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[33]. We use a Bonferroni correction for the number of tested genes containing more than 

one polymorphic variant (n= 18,750, p< 2.67 × 10−6).

Global and local ancestry estimation and admixture mapping

We utilized an earlier version of TOPMed WGS (freeze 5b, September 2017) to estimate 

global and local ancestry among JHS participants (n=2,958). Using as a reference panel 37 

African, 35 European, and 20 Native American individuals with phased sequence data (for 

chromosomes 1-22) [34], we used RFMix version 1.5.4 [35] to infer the number of alleles 

inherited from each ancestral population (African, European, Native American). To estimate 

the overall admixture proportions for each JHS participant, we calculated the genome-wide 

average local ancestry. We used GENESIS [36] to perform admixture mapping using a linear 

mixed model, investigating each ancestral group (African, European, and Native American) 

separately, adjusting for age, sex and overall admixture proportions as fixed effects. To 

account for relatedness, we included ancestry-adjusted kinship estimates as a random effect. 

We used the genome-wide p-value significance threshold of 5.5×10−6, as estimated using the 

test statistic simulation approach described in [37].

Epigenome-wide analysis

Illumina Methylation EPIC array data (containing over 850,000 CpG methylation sites) was 

generated using blood samples collected at the JHS baseline exam. Methylation β values 

(the ratio of intensities between methylated and un-methylated alleles) were normalized with 

respect to background color intensity using the normal-exponential out-of-band (NOOB) 

preprocessing method in the R package minfi[38]. Cell counts (granulocytes, monocytes, 

natural killer, CD4+ T lymphocytes, naïve CD8+ T lymphocytes, exhausted cytotoxic CD8+ 

T cells (defined as CD8 positive CD28 negative CD45R negative), and plasma blasts) were 

estimated according to the method of Houseman et al and Horvath et al [39, 40]. 

Methylation β values were adjusted for important batch covariates (sample batch, plate, and 

plate position) using Combat as implemented in the sva and ChAMP R packages. 

Epigenome-wide association analysis (EWAS) was performed using ln transformed FVIII as 

the dependent variable, adjusted for age, sex, the first ten ancestry PCs from Affymetrix 6.0 

GWAS array data, and estimated cell counts (n=1670). EWAS was performed using linear 

mixed models in R. For top CpGs, we adjusted for family structure as a random effect in the 

R package lmer; this was done for presented results. Effect sizes were based on Pearson 

correlation coefficients. We performed sensitivity analyses adjusting top CpGs for potential 

confounders of methylation levels (BMI, smoking, and socioeconomic status (SES) (as 

represented by income)), in a reduced sample size of n=1430. To assess statistical 

significance of findings, we used a genome-wide significance threshold of P = 3.6 × 10−8 

[41].We removed lead CpGs which overlap common SNPs in African populations from 

1000 Genomes, based on suggested masking from http://zwdzwd.github.io/

InfiniumAnnotation [42].
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RESULTS

Association of FVIII with cardiovascular risk factors and subclinical CVD

Of the 3,493 JHS participants included in the current analysis, the mean age was 55.6 years 

(range 21- 93), 38% were male, 13% were current smokers, 54% were obese, 57% had 

hypertension, 23% had diabetes, 11% had a prior history of CVD, and 2.9% were taking 

anticoagulant medication. FVIII levels ranged between 16% and 800% (median 135%, mean 

145%, SD 59%). FVIII levels were strongly correlated with age and were higher in women 

(mean 149%, SD 60%) than men (mean 139%, SD 57%) (Table 1). One male participant had 

circulating levels (FVIII=16%) compatible with a diagnosis of mild hemophilia A, but 

bleeding history in this individual is unknown.

In analyses adjusted for age and sex), higher BMI, larger waist circumference, higher TG, 

higher CRP, lower HDLc, higher fasting glucose, diabetes, and hypertension were each 

significantly associated with higher FVIII (all P<0.01) (Table 1). In a multivariate regression 

model containing terms for all CVD risk factors significantly associated with FVIII (P<0.01) 

(see Table 1), age, diabetes, triglycerides, and CRP remained strongly associated with higher 

FVIII levels (all P<0.001). As shown in Table 2, among subclinical disease outcomes 

available in JHS, higher FVIII was nominally associated with LVH (P=0.01). There was no 

evidence of association of FVIII with ABI, cIMT, LVMI, continuous or dichotomous AAC 

or CAC (all P>0.05).

Association of FVIII with incident clinical outcomes

In Cox models minimally adjusted for age and sex, continuous FVIII level was significantly 

associated with overall CHD, hard CHD, HF, and death (all P ≤ 0.05), but not with stroke 

(Table 3). These associations were somewhat attenuated upon adjustment for traditional 

CVD risk factors, including CRP (Table 3). In the model adjusted for CVD risk factors 

including CRP, the p-values for association with HF and mortality remained significant 

(both P < 0.05), and the association with hard CHD was marginally significant (P = 0.05). 

The hazard ratios (HR) per standard deviation increase in FVIII were 1.15 (95% confidence 

interval (CI) 1.03 – 1.28), 1.16 (1.08 – 1.25), and 1.15 (1.00 – 1.33) for HF, mortality, and 

hard CHD, respectively. When the FVIII association with HF was additionally adjusted for 

BNP, the HR remained significant (1.14; 95% CI 1.02 – 1.28; P=0.02). When the FVIII 

association with mortality was additionally adjusted for BNP, white blood count (WBC), and 

estimated glomerular filtration rate (eGFR), this association also remained significant (HR 

1.15; 95% CI 1.06 – 1.24 per SD unit; P = 0.001).

When analyzed according to FVIII quartiles (Table S1), there again was a significant linear 

increase in risk of hard CHD, HF, and death in the minimally-adjusted model (P≤0.05), but 

only HF and mortality remained significant in the fully adjusted model. Individuals in the 

upper quartile of FVIII among JHS participants had an estimated 2.35-fold increased risk of 

HF (1.44 – 3.84) and 1.97-fold increased risk of death (1.50 – 2.59), compared to those in 

the bottom quartile.

Raffield et al. Page 6

J Thromb Haemost. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genetic association analysis of FVIII

Adjusting for age and sex, heritability (h2) of inverse normalized natural log transformed 

FVIII was estimated as 0.47 (standard error (SE) = 0.06, p= 2.69 × 10−18) in JHS. In WGS-

based association analysis of 3,349 JHS TOPMed participants, two genomic regions were 

strongly associated with FVIII (Figure S2). On chromosome 9q34, there was a broad 

association peak containing 312 genome-wide significant variants (P<1 × 10−9) centered on 

the ABO gene (index variant chr9:133257521_T/TC or rs8176719, MAF of 0.29, associated 

with 0.52 ± 0.03 SD unit higher FVIII, P=5 × 10−84) (Figure 1A). The effect allele of the 1 

base pair (bp) indel index variant corresponds to the non-O allele of the ABO blood group. 

Upon conditional analysis adjusting for the O/non-O rs8176719 variant, the next strongest 

independent signal was chr9:133255669_CG/C_rs56392308 (MAF=0.064, P= 4.5 × 10−15) 

associated with 0.46 ± 0.05 lower FVIII, another 1 bp indel which encodes the A2 allele 

(ABO*A2.06). After a second round of conditional analysis adjusting for both O/non-O and 

A2 indels, there was a residual marginally significant signal at chr9:133264269_C/T 

(rs41302905 or rs141515001) associated with lower FVIII (MAF=0.003; P=5×10−5). This 

variant is part of an extended haplotype which includes two missense variants, rs41302905 

and rs55876802, which together comprise part of several O2 alleles (ABO*O.02).

The second FVIII-associated region located on chromosome 12p13.31 contained 33 

genome-wide significant variants (P<1 × 10−9) centered around the VWF gene (Figure 1B). 

The peak association signal at the VWF locus included nine single nucleotide variants in 

near complete LD with one another (rs115708869, rs142033986, rs115364369, 

rs184911391, rs74731445, rs76100694, rs114537734, rs114018824, rs57950734; MAF of 

~0.11 for each) that were associated with 0.34 ± 0.05 SD unit lower FVIII (P=1-2 × 10−18). 

Based on 1000 Genomes allele frequencies, each of these nine SNV are considerably more 

prevalent among African (MAF ~0.15) compared to non-African populations (MAF<0.001). 

Eight of the nine SNVs are intronic, whereas rs57950734 encodes the missense variant 

p.His817Gln, which was previously associated with lower FVIII in a VWF gene-based 

association analysis conducted in AAs [43]. Upon conditional regression analysis of FVIII 

in JHS adjusting for the index VWF variant rs115708869, the strongest remaining 

association was chr12:6044584_A/G or rs216294 (MAF=0.05, P=1 × 10−5) with the minor 

allele associated with higher FVIII.

In gene-based rare variant association analysis of FVIII, there were no associations that 

reached the genome-wide significance threshold of < 2.7 × 10−6 (Figure S3, Table S2).

We further compared our single variant WGS-based FVIII association results in JHS AAs to 

previously published FVIII GWAS or exome-based association analyses that have been 

performed predominantly in European ancestry individuals (Table 4). At the ABO locus, the 

O/non-O variant rs8176719 variant most strongly associated with FVIII in our WGS-based 

analysis in AAs is in moderate LD (r2=0.82 in EUR, r2=0.51 in AFR in 1000 Genomes 

phase 1 data) with the sentinel variant rs687289 reported in the largest existing FVIII GWAS 

(n~36,000 multi-ethnic individuals, of whom ~70% were European ancestry) [11]. As 

expected, rs687289 is also strongly associated with FVIII in JHS AAs (P=1.8 × 10−50). By 

contrast, the sentinel variant at the VWF locus reported in [11] (rs2238109; MAF=0.39; 

β=0.026; P=3.5E−24) was only nominally associated with FVIII in JHS AAs (MAF=0.42; 
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β=0.06; P=0.019). Of other VWF coding variants previously reported to be associated with 

FVIII (or VWF) levels [48], we observed nominally significant and directionally consistent 

associations with FVIII for rs1063856 (Thr789Ala), rs216321 (Ala852Gln), and rs2229446 

(Arg2185Gln) in our JHS AA samples. Two other variants (at STXBP5 and ST3GAL4) 

reported in [11] had p-values ~0.06 in JHS and the estimated beta coefficients were 

directionally consistent (Table 4). We were unable to replicate a previously reported MAT1A 
rs2236568 variant suggestively associated with FVIII in AAs [24].

Admixture analysis of FVIII

In a subset of n=2,958 JHS participants with genome-wide ancestry estimates and FVIII 

measurements, each percentage point higher of age- and sex-adjusted African ancestry was 

associated with 28%±10% higher mean FVIII (P=0.006). After additional adjustment for 

other FVIII correlates (BMI, triglycerides, CRP, diabetes, hypertension) and SES, the 

association of African ancestry proportion with FVIII was no longer significant (β = 13% ± 

11%; P=0.21). We performed an admixture mapping scan in JHS using genome-wide local-

ancestry estimates for African and European ancestry. None of the regions tested reached the 

empirically-derived significance threshold of P<5.5 × 10−6 (Figure S4).

Epigenome-wide association analysis of FVIII

EWAS identified 30 genome-wide significant CpGs (P <3.6 × 10−8) associated with FVIII. 

Nine of these CpG sites are located in or near ABO (Table 5). The most significant CpG was 

cg21160290 in ABO (Pearson’s correlation coefficient = 0.19, P = 5.21 × 10−22) located in 

the ABO 3’ UTR. Following additional adjustment for potential environmental or lifestyle 

confounders of methylation levels (BMI, smoking, and SES), the strong signal near ABO 

remained significant, with the same lead CpG (cg21160290), whereas most of the other CpG 

associations became non-significant after these adjustments. (Table S3). Some of the CpG 

associations were likely attenuated due to reduced sample size (n= 1430) due to missing 

covariate data but others may have been confounded by BMI, smoking, or SES. Finally, 

when we conditioned all CpGs within 1 Mb on each side of cg21160290 on our lead ABO 
genetic association signal rs8176719 in n= 1,657 individuals overlapping the WGS and 

EWAS datasets; the EWAS signal in the ABO region was markedly attenuated (cg21160290 

p=0.06); this result is unsurprising given the high correlation between ABO SNP genotypes 

and CpG methylation beta values (r=0.58 for cg21160290 and rs8176719). Non-ABO CpG 

associations were not further examined, as they were not coincident with a genetic signal, 

and require further replication in additional African American cohorts.

Relationship of ABO and VWF FVIII-associated variants to clinical CVD outcomes

There was no evidence of association for either ABO rs8176719 or VWF rs115708869 with 

incident CHD, stroke, HF, or mortality in JHS (Table S4), though these analyses have 

limited statistical power due to the relatively small number of incident events. We used the 

Cerebrovascular Disease and Cardiovascular Disease Knowledge Portals to access summary 

statistics from larger GWAS analyses for stroke and CVD. African specific VWF lead 

variant rs115708869 was not present in CAD, stroke, or heart failure GWAS summary 

statistics. rs8176719 was also not present in summary statistics, but moderately correlated 

variant rs687289 (the lead from the largest FVIII GWAS [11]; r2=0.51 in 1000G AFR with 
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rs8176719) was associated with coronary artery disease (p=4.76 × 10−6, OR=1.04, 

n=184,305) in the CARDIoGRAMplusC4D analysis [44], with ischemic stroke in the 

MEGASTROKE analysis (p=2.67 × 10−4, OR=1.03, n= 521,612) [45], and with heart failure 

in European UK Biobank participants (p=2.38 × 10−5, OR=1.08, n=394,156) [46]. Further 

analysis is needed to clarify the association of the multiple signals at the ABO locus with 

cardiovascular events, and to disentangle FVIII mediated effects from pleiotropic effects of 

ABO genetic variation on lipid and glycemic measures.

DISCUSSION

In a large prospective community-based study of AAs, we confirmed the association of 

FVIII with clinical events including hard CHD and total mortality. These FVIII associations 

were largely independent of traditional risk factors, including other inflammation 

biomarkers. We also demonstrate an association of FVIII with incident HF, independent of 

BNP. In WGS-based association analysis, we observed two genomic regions strongly 

associated with FVIII in AAs, the ABO region on chromosome 9q34 and the VWF gene on 

chromosome 12p13.31. The association signal at the VWF locus includes the African 

ancestral coding variant p.His817Gln and is distinct from the previously reported European 

VWF association signal for FVIII. At the ABO locus, there were at least two conditionally-

independent association signals (O/non-O allele the A2 allele) in our AA sample.

FVIII and CVD risk in AAs

The role of FVIII as a risk factor for incident CHD [4-7] and stroke [8, 9] has been 

suggested in several prospective studies of healthy middle-aged and older adults, though it 

remains less clear whether the FVIII association is independent of other CVD risk factors 

[47]. FVIII is strongly correlated with atherosclerosis-related risk factors such as age, BMI, 

diabetes and other coagulation and inflammatory biomarkers [3]. Results from our cross-

sectional analyses in JHS confirm age, diabetes, triglycerides, and CRP as the major 

correlates of higher FVIII in AAs. In a previous race-stratified analysis from REGARDS, 

FVIII was found to be associated with risk of overall and hard CHD, and to a lesser extent 

stroke, independent of traditional CVD risk factors and CRP in both EAs and AAs [18]. 

Among REGARDS AAs, the HR per SD unit increase in FVIII were 1.65 (1.28 – 2.13), 1.64 

(1.28 – 2.11), and 1.38 (1.15 – 1.66) for hard CHD, overall CHD, and stroke, respectively. 

The weaker associations with incident CVD events observed in JHS may reflect the smaller 

numbers of cases compared to REGARDS, FVIII assay heterogeneity, or FVIII 

measurement error.

The stronger associations of FVIII with mortality compared to associations with incident 

CVD in JHS are consistent with the findings in several other multi-ethnic studies [52,53], 

with an approximately two-fold increased risk of mortality comparing the bottom quartile to 

the upper quartile. Some of these prior studies included individuals of both European and 

African ancestry, but our analysis is the first to demonstrate the association of FVIII with 

mortality in AAs. In MESA, FVIII was also associated with cancer-specific mortality [47]. 

The reason for the stronger relationship of FVIII to morality compared to incident CVD is 

unclear. FVIII is an acute phase reactant, and thus, similar to CRP and fibrinogen, may 
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reflect a low-grade chronic inflammatory state characteristic of various chronic diseases 

including not only atherosclerosis but cancer and other age-related diseases.

The associations of FVIII with LVH and HF have not been reported. A study of British men 

found no association of FVIII with HF [48]. Nonetheless, hypercoagulability is a general 

feature of HF [49, 50], and arterial and venous thrombotic events are a common 

complication of patients with HF [51]. FVIII has also been associated with increased risk of 

incident atrial fibrillation [52], an important risk factor for HF. Several coagulation markers 

have been correlated with N-terminal-pro hormone BNP (NT-proBNP), suggesting increased 

coagulation activity may be related to neurohormonal activation and cardiac stress [53]. 

Given the importance of HF in CVD health disparities, further study of FVIII as a predictor 

of HF is warranted, particularly as the association observed in JHS was independent of 

adjustment for other risk factors and biomarkers such as BNP and renal function.

Genetics of FVIII in AAs

Our results show that the overall contribution of genetic factors to phenotypic variation in 

FVIII in AAs is similar to that previously reported in EAs (h2~50%) [19-21]. We were also 

able to confirm and extend the association of ABO and VWF variants to FVIII in AAs. In 

particular, the 1 bp deletion variants that define O/non-O and A2 alleles were directly 

genotyped in our analysis through WGS, thereby allowing us to “fine-map” these two ABO 

groups as the strongest determinants of FVIII (as opposed to correlated non-coding proxy 

variants). Our results are consistent with previous studies based on targeted genotyping or 

haplotype imputation showing O and A2 blood group alleles associated with lower FVIII 

[54] and that ABO accounts for ~10% of the variability of FVIII phenotypic variance in 

otherwise unselected individuals [55]. The effects of ABO blood groups on FVIII appear to 

be mainly mediated by VWF levels; lower VWF levels in O-group subjects are due to 

shorter VWF survival, mainly attributable to faster clearance [56-58]. A smaller, direct or 

VWF-independent ABO influence on FVIII has also been reported [54].

Epigenetic association analyses may identify novel mechanisms that contribute to regulation 

of hemostasis and thrombosis. Changes in gene expression and methylation of F8 and other 

inflammation-related genes were associated with SES [59] and neighborhood characteristics 

[60], suggesting that such epigenetic changes may mediate the effects of environmental or 

psycho-social stressors on CVD. By performing EWAS for FVIII in a subset of AAs from 

JHS, we identified several candidate loci, including differentially methylated CpG sites in 

the 3’UTR of ABO, which were also correlated with O vs non-O variant rs8176719. ABO 
gene transcription is dependent on differential DNA methylation of promoter and 3’ flanking 

regions [61, 62], and the non-O/O variant rs8176719 has been strongly associated both with 

ABO gene expression across a variety of tissues and with methylation at the same CpG sites 

[63]. Finally, it is important to note that our EWAS was performed using peripheral whole 

blood DNA. As methylation is a tissue-specific process, whole blood DNA methylation 

marks might not be a good proxy for methylation status at more biologically relevant cells, 

such as endothelial cells where FVIII is mainly expressed.

In contrast to the ABO locus, where the FVIII-associated variants appear to be largely 

consistent between AAs and EAs, we observed very little association with the previously 
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reported European VWF rs2238109 variant associated with FVIII. Instead, the main 

association signal at the VWF locus in our AA sample is highly specific to AAs. Of the nine 

variants that comprise this AA-specific association signal, the most likely causal variant is 

rs57950734 which encodes p.His817Gln. This variant has been previously associated with 

lower FVIII in a targeted coding sequence analysis of VWF among ~4500 AAs [43]. FVIII 

circulates bound to VWF, which protects FVIII from early degradation. The VWF 

p.His817Gln variant, located within the VWF D′ domain within the FVIII binding region, is 

preferentially associated with lower FVIII (and has little effect on plasma VWF levels) [43]. 

This variant has also been reported in several patients with type 2N von Willebrand disease 

in which patients’ experience bleeding due to the inability of FVIII to appropriately bind to 

VWF [66]. Moreover, in vitro, the p.His817Gln amino acid substitution results in 

significantly lower FVIII binding capacity [64], suggesting it is the causal variant for lower 

FVIII observed in the JHS sample.

Paradoxically, the VWF p.His817Gln variant is common in AAs, but associated with lower 
FVIII. On average, FVIII levels are higher in AAs compared to EAs, yet we were unable to 

identify any African ancestral genetic factors that account for these differences through our 

WGS-based association analyses or through a complementary genome-wide local ancestry-

based admixture scan in JHS. Genome-wide African admixture proportion was not 

associated with FVIII in JHS or in other studies[65], upon adjustment for other FVIII 

correlates including SES. We also did not observe any genome-wide significant association 

signal at the F8 structural gene locus. Of 37 missense variants within F8 identified by WGS 

in JHS with an allele frequency of 0.1% or greater, only rs1800297 showed suggestive 

evidence of association with higher/lower FVIII (P=0.06). The rs1800297 variant, which 

encodes a B-domain substitution D1241E, has been previously associated with FVIII levels 

in Europeans [68]. There was no association of FVIII with the common African rs1800291 

missense variant (p.M2257V) in JHS, (P=0.71), consistent with the hypothesis that this is 

likely a benign African-derived variant [68,69]. Together, these observations suggest that 

non-genetic, epigenomic, or environmental factors may have a major contribution to the 

inter-ethnic FVIII phenotypic differences.

Mechanistic and causal relationships between FVIII, ABO, and CVD risk

While very large studies have established that ABO blood group, particularly O vs. non-O is 

associated with risk of VTE, CHD, and stroke [66-69], the mechanism is most clearly 

established for VTE, where both FVIII and VWF are important mediators. For arterial 

thrombotic diseases, the mechanistic relationships are less established, as ABO alleles are 

pleiotropically associated with many other potential CVD risk factors and mediators, 

particularly LDL cholesterol [70]. In JHS, we did not observe any association between O vs. 

non-O and risk of CHD, stroke, HF, or mortality, but our sample size is orders of magnitude 

smaller than those assessed in European studies. In a multi-ethnic analysis from REGARDS, 

ABO blood type did not account for the higher stroke risk among AAs [71].

The association of FVIII with VTE and the protection from CHD in individuals with 

genetically low FVIII (hemophilia A) [72] and hemophilia carriers [73] support a direct 

causal role of FVIII in arterial thrombosis. Other observational data have suggested that the 
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association of FVIII with CVD risk appears to be independent of ABO blood group [4] but 

not necessarily independent of VWF [6]. A limitation of our study is the lack of availability 

of measured VWF (which is highly correlated with FVIII) in JHS; therefore a direct 

comparison of risk assessment was not possible. Recently, instrumental variable or 

Mendelian randomization analyses of FVIII using results of recent FVIII GWAS in 

Europeans have suggested FVIII levels may be causally related to both CHD and VTE risk, 

as the risk estimates were only modestly attenuated upon adjustment for VWF levels, 

whereas VWF (but not FVIII) was causally related to ischemic stroke [11]. The disparate 

association of the African VWF p.His817Gln variant with lower FVIII (but not VWF) levels 

[43, 64, 74] makes it a potentially attractive genetic instrument to further assess the causal 

role of FVIII in AAs. We were unable to observe any significant association with clinical 

events in JHS, but our power to detect such an association was likely limited by the small 

number of CVD cases and length of follow-up. Another limitation of our study is that VTE 

events have not been adjudicated in JHS; therefore, we were unable to assess the risk of our 

main FVIII-associated genetic variants with VTE risk. It will be important to perform 

genetic discovery in even larger samples of AAs to more comprehensively characterize the 

distinct and shared genetic determinants of FVIII and to assess whether the potential causal 

relationship of FVIII with CVD, and also the novel association of FVIII with heart failure/

LVH, can be extended to broader AA populations.
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ESSENTIALS

Higher factor VIII (FVIII) levels are a known cardiovascular disease risk factor.

We here examine the epidemiological and genetic correlates of FVIII in African 

Americans.

FVIII was associated with incident heart failure, mortality, and coronary heart disease.

Genetic variants at ABO and VWF, as well as methylation at ABO, associated with 

FVIII.
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Figure 1. 
LocusZoom plots for ABO and VWF loci, with linkage disequilibrium calculated in Jackson 

Heart Study participants with TOPMed freeze 6 data.

A. VWF locus (rs115708869)

b. ABO locus (rs8176719)
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Table 1.

Associations between factor VIII and cardiovascular disease risk factors in the Jackson Heart Study (JHS), 

reported as the difference in the listed variable per standard deviation higher factor VIII. The mean (SD) or, for 

dichotomous variables, %, for each variable (untransformed) is also listed.

Trait Mean (SD) or % N β Standard
Error

p-value

Age (years) 55.59 (12.80) 3493 2.91 0.25 <0.0001

Male sex 37.79% 3493 −0.17 0.04 <0.0001

Current smoker 13.31% 3463 −0.07 0.06 0.25

Ln BMI (kg/m2) 31.89 (7.31) 3486 0.02 0.004 <0.0001

Waist (cm) 101.2 (16.27) 3486 2.04 0.29 <0.0001

Systolic BP (mmHg) 127.37 (16.61) 3487 0.32 0.29 0.26

Diastolic BP (mmHg) 75.77 (8.75) 3487 −0.18 0.14 0.20

Fasting glucose (mg/dL) 90.45 (8.86) 2591 0.47 0.17 0.01

Total Cholesterol (mg/dL) 199.21 (40.62) 3238 1.07 0.79 0.18

LDLc (mg/dL) 126.49 (36.94) 3205 0.35 0.68 0.61

HDLc (mg/dL) 51.64 (14.78) 3237 −1.03 0.29 0.0003

Triglycerides (mg/dL) 107.57 (82.18) 3238 0.07 0.01 <0.0001

C-reactive protein (mg/dL) 0.53 (0.98) 3487 0.20 0.02 <0.0001

Hypertension 57.34% 3493 0.10 0.05 0.01

Diabetes 23.15% 3491 0.28 0.05 <0.0001

Models (other than those for age and sex) are adjusted for age and sex.

Abbreviations: SD=standard deviation; HDLc=high density lipoprotein cholesterol; LDLc=low density lipoprotein cholesterol; BP=blood pressure.

BMI, C-reactive protein, and triglycerides were natural log transformed.

Fasting glucose was only tested in those without diabetes at visit 1.
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