Table 1.
Layer | Number of filters, n | Size/stride | Activation function | Output size |
Input | N/Aa | N/A | N/A | 480×640×20×2 |
Average pool | N/A | 25×25×1/20×20×1 | N/A | 23×31×20×2 |
Convolutional | 8 | 2×2×1/1×1×1 | Linear | 22×30×20×8 |
Dropout | N/A | N/A | N/A | 22×30×20×8 |
Convolutional | 16 | 3×3×5/1×1×1 | N/A | 20×28×16×16 |
Max pool | N/A | 8×8× /2×2×1 | N/A | 7×11×16×16 |
Batch normalization | N/A | N/A | Leaky Relub | 7×11×16×16 |
Convolutional | 64 | 2×2×2/1×1×1 | N/A | 6×10×15×64 |
Batch normalization | N/A | N/A | Leaky Relu | 6×10×15×64 |
Convolutional | 32 | 4×4×1/1×1×1 | N/A | 3×7×15×32 |
Batch Normalization | N/A | N/A | Relu | 3×7×15×32 |
Dropout | N/A | N/A | N/A | 3×7×15×32 |
Convolutional | 16 | 2×2× /1×1×1 | N/A | 2×6×15×16 |
Batch normalization | N/A | N/A | Relu | 2×6×15×16 |
Flatten | N/A | N/A | N/A | 2880 |
Fully connected | 16 | 2880×16 | N/A | 16 |
Fully connected | 4 | 16×4 | N/A | 4 |
Output layer | N/A | 4×1 | Sigmoid | 1 |
aN/A: not applicable.
bReLu: rectified linear unit.