Skip to main content
. 2020 May 22;22(5):e17252. doi: 10.2196/17252

Table 1.

Architecture of a 3D convolutional neural network used to distinguish obstructive apnea from central apnea.

Layer Number of filters, n Size/stride Activation function Output size
Input N/Aa N/A N/A 480×640×20×2
Average pool N/A 25×25×1/20×20×1 N/A 23×31×20×2
Convolutional 8 2×2×1/1×1×1 Linear 22×30×20×8
Dropout N/A N/A N/A 22×30×20×8
Convolutional 16 3×3×5/1×1×1 N/A 20×28×16×16
Max pool N/A 8×8× /2×2×1 N/A 7×11×16×16
Batch normalization N/A N/A Leaky Relub 7×11×16×16
Convolutional 64 2×2×2/1×1×1 N/A 6×10×15×64
Batch normalization N/A N/A Leaky Relu 6×10×15×64
Convolutional 32 4×4×1/1×1×1 N/A 3×7×15×32
Batch Normalization N/A N/A Relu 3×7×15×32
Dropout N/A N/A N/A 3×7×15×32
Convolutional 16 2×2× /1×1×1 N/A 2×6×15×16
Batch normalization N/A N/A Relu 2×6×15×16
Flatten N/A N/A N/A 2880
Fully connected 16 2880×16 N/A 16
Fully connected 4 16×4 N/A 4
Output layer N/A 4×1 Sigmoid 1

aN/A: not applicable.

bReLu: rectified linear unit.