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Abstract

Background: Fungi constitute an important yet frequently neglected component of the human microbiota with a
possible role in health and disease. Fungi and bacteria colonise the infant gastrointestinal tract in parallel, yet most
infant microbiome studies have ignored fungi. Milk is a source of diverse and viable bacteria, but few studies have
assessed the diversity of fungi in human milk.

Results: Here we profiled mycobiota in milk from 271 mothers in the CHILD birth cohort and detected fungi in 58
(21.4%). Samples containing detectable fungi were dominated by Candida, Alternaria, and Rhodotorula, and had
lower concentrations of two human milk oligosaccharides (disialyllacto-N-tetraose and lacto-N-hexaose). The
presence of milk fungi was associated with multiple outdoor environmental features (city, population density,
and season), maternal atopy, and early-life antibiotic exposure. In addition, despite a strong positive correlation
between bacterial and fungal richness, there was a co-exclusion pattern between the most abundant fungus
(Candida) and most of the core bacterial genera.

Conclusion: We profiled human milk mycobiota in a well-characterised cohort of mother-infant dyads and provide
evidence of possible host-environment interactions in fungal inoculation. Further research is required to establish
the role of breastfeeding in delivering fungi to the developing infant, and to assess the health impact of the milk
microbiota in its entirety, including both bacterial and fungal components.
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Background
Fungi constitute an important yet frequently neglected
component of the human microbiome [1, 2] with a pos-
sible role in health and disease [3, 4]. Fungal and bacter-
ial colonisation occur in parallel during early life [5], yet
most infant microbiome studies have overlooked fungi.
Milk is a source of diverse and viable bacteria [6], but
only a few studies have assessed fungi in human milk
[7–12]. Additionally, although geographical differences
were observed in a recent study of 80 women from 4
countries [9], the maternal, infant, and environmental
determinants of milk fungi (mycobiota) are still mostly
unknown.
Bovine and human studies have confirmed the presence

of potentially viable fungi in milk using microscopy,
culture-dependent, and culture–independent methods [7–
10, 13]. One metagenomics study of human milk suggests
that fungi likely constitute 0.5–2% of the milk microbial
community [8]. Another study of 76 mother-infant dyads
found that maternal age, blood type, antibiotics, vaginal de-
livery, and infant sex were associated with Candida colon-
isation of the infant, and in a subset, maternal vaginal and
rectal samples were identified as potential origins of this
taxon [14]. Bottle feeding and frequent pacifier use was as-
sociated with a higher rate of oral Candida carriage in
asymptomatic infants [15, 16]. Host genetic variation in
major histocompatibility genes were also associated with
variations in bovine milk mycobiota [13]. Home character-
istics and season are associated with indoor fungi [17, 18]
and thus could plausibly influence milk mycobiota; how-
ever, mothers’ milk and the home environment (another
potential source of milk fungi) have not been examined.
Bacteria-fungi interactions are ubiquitous in microbial

communities including the human gut microbiota. These
interactions occur through direct physical interactions or
several types of molecular communications affecting the
composition and function of each respective assemblage
[19]. Both bacteria and fungi compositions are altered in
different disease conditions including inflammatory bowel

disease [20, 21]. Inter-kingdom bacteria-fungi interactions
have rarely been investigated in milk [9, 13]. To address
these open questions, we analyzed the presence, compos-
ition, and determinants of human milk mycobiota at 3–4
months postpartum in a subset of Canadian mother-infant
dyads from the CHILD Cohort Study [22].

Results
In our study population (Table S1) the majority of dyads
were urban residents (96%) although population dens-
ities ranged widely from 0 to 36,170 persons/km2 (me-
dian 3447). 67% of mothers were atopic and 25%
delivered by Caesarean section. 18% of infants developed
possible or probable asthma by the age of 3 years.
Mean ± SD bacterial richness and diversity of milk were
145 ± 46 and 15.2 ± 9.2, respectively (Table S2).

Presence of milk fungi was significantly and
independently associated with environmental
characteristics, human milk oligosaccharides, and milk
bacterial composition
Using a minimum threshold of 1000 reads/sample in-
formed by positive PCR results (Fig. 1a), 58/271 (21.4%) of
mothers’ milk samples contained fungi. To address
whether milk fungi were more likely acquired externally
(e.g. from the environment, maternal skin and/or the in-
fant oral cavity) or internally from the maternal gastro-
intestinal tract, we assessed associations of fungi presence
with environmental vs. maternal or other factors. Both en-
vironmental (e.g. study city, population density, and sea-
son) and maternal characteristics (e.g. antibiotics and
atopy) were associated with fungi presence in univariate
analyses (Figs. 1b & 2a). Milk from mothers in Vancouver
had the highest presence of fungi (32% vs. 18–21% in Ed-
monton, Toronto, and Manitoba; unadjusted OR = 2.06,
95%CI 1.11–3.82, for Vancouver vs. other cities; p = 0.021;
Figs. 1b & 2a). Vancouver is a large coastal Canadian city
with more humid climate, higher annual precipitation,
and milder winters compared with the other study sites

Fig. 1 Presence of fungi in human milk and associated environmental, maternal and infant characteristics. a Defining fungi presence according to
the depth of sequencing informed by the positive PCR bands. b Presence of fungi according to study site, population density, and season tested
by chi-square test

Moossavi et al. BMC Microbiology          (2020) 20:146 Page 2 of 13



(Table S3), and thus likely has higher load of environmen-
tal fungi [23]. In line with this, season and population
density were also associated with fungal presence, with the
lowest presence detected in spring and at low population
density (Figs. 1b & 2a).
Among the maternal, infant, and early life factors

assessed, maternal intrapartum antibiotics and infant anti-
biotics at the time of sample collection were associated
with a higher likelihood of fungi presence (Fig. 2a) indicat-
ing that bacteria originating from the mother or infant
might be associated with the presence of milk fungi. In-
deed, milk bacterial taxonomic clusters, defined previously
on the basis of hierarchical clustering of core taxa [24],
were significantly associated with presence of fungi (p <
0.001; Figs. 2a & 4a). Cluster 1 (enriched in Moraxella-
ceae, Enterobacteriaceae, and Pseudomonadaceae) had the
highest presence of fungi (42%) followed by Cluster 2
(enriched in Streptococcaceae, Staphylococcaceae, and
Oxalobacteraceae) (30%) compared to Cluster 3 (enriched
in Oxalobacteriaceae and Comamonadaceae) (18%) and
Cluster 4 (Streptococcaceae and Comamonadaceae) (12%).
We also assessed the association of milk fungi with se-

cretor status and the 19 most abundant human milk oli-
gosaccharides (HMOs), which were previously measured
in the same samples [25]. Secretor status is genetically
determined by polymorphisms in the fucosyl transferase
2 (FUT2) gene that influences the synthesis of fucosy-
lated HMOs [26]. The impact of maternal secretor status
[27] and HMOs on infant gastrointestinal bacterial com-
position is well established [28], but little is known about
their impact on milk mycobiota. There is some evidence
that certain HMOs can inhibit fungi in vitro [29], but it is
also plausible that other HMOs could be metabolised by
fungi and support their growth. Here, we found no

association between secretor status and milk fungi pres-
ence; however, two FUT2-independent HMOs (disialyl-
lacto-N-tetraose (DSLNT) and lacto-N-hexaose (LNH))
were less abundant in milk containing fungi (Figs. 2a, 3a
and b), suggesting that these HMOs might inhibit or be
metabolised by milk fungi. Alternatively, these HMOs
might indirectly influence the milk mycobiota via modu-
lating the milk microbiota or fatty acids composition [30].
To identify the determinants of milk fungi while con-

trolling for the above-mentioned factors, we performed
unsupervised variable selection by least absolute shrink-
age and selection operator (LASSO) and used the
LASSO-selected variables to predict the presence of milk
fungi. In agreement with the logistic regression results
above, LASSO identified season, population density,
study city, residential vegetation, bacterial clusters, bac-
terial outliers (previously identified based on variance in
the first principal component score [31]), DSLNT, LNH,
intrapartum antibiotics, and child antibiotics at 3 months
as predictors of fungi presence. In addition, LASSO
identified maternal asthma and atopy, suggesting that
atopic mothers may have distinct skin fungal load and/
or composition, which has been observed in other stud-
ies [32]. Combined, these selected variables had a rela-
tively good predictive accuracy for presence of fungi
(AUC = 0.77, 95% CI 0.70–0.85) (Fig. 3c). In a multivari-
able logistic regression model adjusted for all of the
LASSO-selected factors, DSLNT, LNH, bacterial taxo-
nomic clusters, and child antibiotics at 3 months were
the strongest independent predictors of fungi presence
(Fig. 2b). As it is plausible that not all fungal genera re-
spond to these variables similarly, we also examined the
association of these factors with the presence of specific
fungal taxa (see below).

Fig. 2 Association of human milk fungi presence with environmental, maternal and infant characteristics. a Unadjusted univariate associations of
fungal presence with maternal, infant and early life factors, breastfeeding and selected HMOs, indoor and outdoor environmental factors, and
milk bacterial composition tested by logistic regression. b Adjusted multivariable associations of host and environmental factors with the
presence of fungi. Variable selected by LASSO (see Fig. 3c) were included in the multivariable logistic regression
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Among other factors we evaluated, fungi presence was
not associated with visible mould or moisture levels in
the home, older siblings, pet ownership, maternal BMI,
or history of infant oral thrush (a fungal infection caused
by Candida spp.) in the first 3 months of life (Fig. 2a).
We lacked information on breast thrush and mastitis,
which are also known to be associated with Candida
spp. in milk [10]. Additionally, although others have
found that milk collection using a pump and bottle feed-
ing were associated with increased presence of Candida
spp. in milk [16], we did not observe an association be-
tween fungi presence and mode of breastfeeding (nurs-
ing at the breast vs. pumped milk feeding at least once
in the preceding 2 weeks) (Fig. 2a). Breastfeeding exclu-
sivity (i.e. formula supplementation) at the time of sam-
ple collection was also not associated with fungal
presence (Fig. 2a).

Milk microbiota composition differs in the presence vs.
absence of breastmilk fungi
Since we observed that bacterial taxonomic clusters were
associated with fungi presence (Figs. 2a & 4a), we further
explored the relationship between milk bacteria and
mycobiota. In our previous analysis of milk bacteria, we
identified “outlier” samples based on variance in the first
principal component score [31] (Figure S1). Outlier sta-
tus was not associated with any technical or biological
variables previously assessed, but here we found that
outliers had significantly higher presence of fungi com-
pared to the rest of the samples (43% vs. 19%, OR = 3.17
95%CI 1.49–6.65, p = 0.002) (Figs. 2a & 4a). Additionally,
Proteobacteria richness and diversity were lower in

samples containing fungi (Fig. 4b), and a similar trend
was observed for total milk bacteria. Overall, the relative
abundance of Proteobacteria was lower while Firmicutes
and Bacteroidetes were higher in the presence of fungi
(Fig. 4c). Using linear discriminant analysis [33], mem-
bers of Actinobacteria, Bacilli, and γ-Proteobacteria were
enriched in the presence of fungi while α-Proteobacteria
and β-Proteobacteria were depleted (Fig. 4d).

Milk fungi profile was dominated by Basidiomycota and
Ascomycota and tended to differ by study site, maternal
antibiotic use, and maternal atopy
Next, among the 58 samples with detectable fungi, we
assessed fungal composition and diversity. Ascomycota and
Basidiomycota were the dominant fungal phyla in the milk
(Fig. 5a) in agreement with previous reports [7, 9]. Compos-
ition was quite heterogeneous at the genus level (Fig. 5b).
Overall, 12 genera had a minimum mean relative abundance
of > 1% (Table S4). The most prevalent fungi were Candida
(present in 60% of samples containing fungi, mean 28.6%±
38.2%% relative abundance), Alternaria (50%, mean 6.9%±
20.8%), and Rhodotorula (43%, mean 10.3%±24.7%). Some
samples were dominated by one genus (relative abundance >
50%) - most frequently belonging to Candida (n= 17, 29% of
samples), Alternaria (n= 4, 7%), or Rhodotorula (n= 6, 10%).
Less prevalent yet dominant genera within some samples in-
cluded Clavispora (n=2, 3%), Exophiala (n = 2, 3%), and Peni-
cillium (n = 2, 3%). Other samples contained multiple less
prevalent genera (Fig. 5b). Acknowledging the low power due
to small sample size, we detected borderline differences in the
presence of Alternaria according to intrapartum antibiotics
exposure, and Rhodotorula between study cities (Fig. 5c).

Fig. 3 Association of human milk fungi presence with milk components and other factors. a Relative abundances and b Absolute concentrations
of Disialyllacto-N-tetraose (DSLNT) and Lacto-N-hexaose (LNH) based on milk fungi presence tested by ANOVA. c Prediction accuracy of fungi
presence based on unsupervised variable selection by LASSO. The selected variables were classified as: environmental (study site, population
density, season, residential vegetation); bacterial (bacterial taxonomic cluster and bacterial composition outlier); HMOs (DSLNT and LNH); maternal
and infant (intrapartum antibiotics, child antibiotics at 3 months, maternal asthma, and maternal atopy)
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Mean fungal richness and diversity at amplicon se-
quencing variant (ASV) level were 17.9 ± 13.7 and 2.9 ±
2.6, respectively. Fungal diversity was higher in atopic vs.
non-atopic mothers (3.6 vs. 1.9, p = 0.044) (Fig. 5d). We
did not find any other significant associations between
fungal taxonomic structure or diversity with other ma-
ternal, infant, early life, environmental, and milk factors
(not shown).

Milk fungi exhibit co-exclusion associations with milk
bacteria
Finally, we assessed the inter-kingdom associations of
abundant milk bacteria and fungi (taxa with > 1% mean
relative abundance). Interestingly, bacterial richness was
positively correlated with fungal richness (both assessed
at the ASV level, r = 0.48, p < 0.001; Fig. 5e) though bac-
terial and fungal diversities were not significantly corre-
lated (r = 0.21, p = 0.11). In addition, bacterial taxonomic
clusters and compositional outliers were significantly as-
sociated with fungi α (Figure S2) and β diversity (Fig. 5f).
While several bacterial genera were positively associated
with each other, indicative of co-presence, we did not

detect any associations between different fungal genera.
Candida was the only fungal genus associated with bacter-
ial genera; these inter-kingdom associations were negative,
suggesting a mutual exclusion relationship (Fig. 5g).

Discussion
We found that approximately 20% of milk samples con-
tained detectable fungi and provide evidence that fungal
presence was associated with environmental characteris-
tics and milk bacteria. Milk fungal taxonomy was con-
sistent with previous reports [7, 9]. Ascomycota and
Basidiomycota were the dominant fungal phyla in the
milk and three genera of Candida, Alternaria, and Rho-
dotorula were the most prevalent taxa. Some of the pre-
viously reported fungal genera including Saccharomyces
and Aspergillus [7, 9] were not among the abundant gen-
era identified in our study, perhaps due to geographical
variations and/or other differences in the participants
characteristics. To our knowledge, this is one of the lar-
gest studies of human milk mycobiota performed to
date, and the only milk mycobiota study to examine
home environmental characteristics. Our results expand

Fig. 4 Association of human milk bacteria and fungi. a Presence of fungi according to bacterial taxonomic clusters and bacterial outliers. b
Association of total bacteria and Proteobacteria richness and diversity with presence or absence of milk fungi tested by Wilcoxon rank sum test. c
Differential abundance of milk major bacterial phyla with presence or absence of milk fungi. d Linear discriminant analysis of milk bacteria
according to presence or absence of fungi
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Fig. 5 (See legend on next page.)

Moossavi et al. BMC Microbiology          (2020) 20:146 Page 6 of 13



considerably upon existing knowledge about milk fungi,
providing evidence for bacterial-fungal interactions
within the human milk microbiome.

Are fungi universally present in milk?
It is intriguing that fungi were not present in the majority
of samples in our study. Previous culture-dependent and
-independent studies in bovine animals [13, 34] and
humans [7–10, 16] have confirmed the presence of fungi
in milk. However, while the majority of bovine milk sam-
ples contained detectable levels of fungi [13], the presence
of fungi in human milk has varied from 40% (by culture),
to 35–80% (qPCR), and 70–100% (sequencing) in different
studies [7, 9, 11]. The presence of fungi in our study was
lower than previously reported sequencing estimates; po-
tentially due to the higher and more conservative threshold
we applied to define fungal presence, other methodological
differences (e.g. milk sample collection method, the volume
of milk used for DNA extraction, sequencing depth, or tar-
get region: ITS2 in our study and 28S rRNA and ITS1 in
previous reports), true geographical variations among
countries (Canada in our study vs. Spain, South Africa,
Finland, and China in previous reports), and/or differences
between study cohorts, sampling time, and mode of breast-
feeding. Our results are consistent with reports of non-
universal fungal presence in the infant gastrointestinal tract
over the first year of life [4]. Given that fungi constitute the
rare biosphere of the human microbiota [1], it is conceiv-
able that a greater sampling effort may improve their
identification in low biomass samples such as milk.

Origins and maternal determinants of milk fungi
The origins of milk fungi are unclear and it is not known
whether milk is evolved to transfer maternal fungi to the in-
fant. The external (retrograde inoculation) and internal (oro-
entero-mammary) pathways hypothesized for the origins of
milk bacteria [35, 36] could potentially be extended to milk
fungi. However, the supporting evidence in general is lacking.
Additionally, it is not clear whether fungi exist in the intra-
mammary milk or only following expression potentially ori-
ginating from maternal skin. Dominance of milk mycobiota
by Candida (a common oral fungi [37]) in a subset of sam-
ples in our study and others [7, 10, 11] suggest the infant oral
cavity as a potential source of milk fungi even in the absence

of symptomatic oral thrush [15], while dominance of envir-
onmental fungi such as Penicillium, Exophiala, and Rhodo-
torula in other samples suggest contribution from maternal
skin or other environmental surfaces.
Although previous studies have found that milk collection

using a pump, bottle feeding, and frequent pacifier use were
associated with increased presence of Candida spp. in human
milk and the infant oral cavity [15, 16], we did not observe
any differences in mycobiota presence, diversity, or compos-
ition according to mode of breastfeeding (nursing at the breast
vs. pumped and bottle feeding at least once in the preceding 2
weeks). It remains possible that pumping has a transient effect
on the milk mycobiota that was not detectable in our study.
Our findings suggest the diversity of milk fungi is influ-

enced by maternal characteristics, such as atopy. The direc-
tion of association with maternal atopy warrants further
investigation, as it is possible that host immunity influences
both atopic sensitization and fungal colonization of the skin
and/or milk, or alternatively, that environmental fungi in-
fluence both maternal atopy and milk mycobiota [32]. Add-
itionally, intrapartum antibiotic exposure was associated
with lower presence of Alternaria in milk. Although antibi-
otics do not directly target fungi, their impact on the overall
bacterial composition has been shown to eliminate con-
straints on fungal (mainly Candida) colonisation and
growth [38]. It is therefore plausible that intrapartum anti-
biotics indirectly modulate the fungal community in the
maternal vaginal and/or gastrointestinal tract as well as the
infant oral cavity – all of which are potential sources of
milk fungi.
To our knowledge, ours is the first study to report

associations between specific HMOs and milk fungi,
which warrants further exploration. There is prelimin-
ary evidence that milk protein content might be asso-
ciated with milk fungi [7], but the extent to which
other milk components including HMOs and immu-
nomodulatory factors influence milk fungi remains to
be elucidated.

Regional and seasonal differences in the presence of
fungi
The environmental pool of available species is an import-
ant factor influencing the formation and composition of
microbial communities [39]. Similar to Boix-Amorós

(See figure on previous page.)
Fig. 5 Association of milk mycobiota diversity and composition with environmental and maternal factors and milk bacterial composition. Milk
fungi taxonomy at (a) phylum and (b) genus levels. Samples are in the same order in panels a and b. c Association of intrapartum antibiotics and
study city with the presence of selected fungal species tested by chi-squared test. d Association of birth mode and city with fungal richness, and
of maternal atopy and indoor moisture level with fungal diversity, tested by Wilcoxon rank sum test. e Correlation of bacteria and fungi richness
and diversity. f Association of milk bacterial clusters and bacterial composition outliers with fungal β diversity assessed on Bray-Curtis dissimilarity
matrix and tested by PERMANOVA. g Co-occurrence analysis of most abundant bacteria and fungi (> 1% mean relative abundance) in milk based
on Spearman rank correlation. Only significant edges with r > |0.5| are visualised. Nodes with no connections were removed, including 5 bacterial
and 11 fungal taxa. IAP, intrapartum antibiotics. ~ p < 0.1, * p < 0.05
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et al., we observed geographical variations in the presence
of milk fungi with the highest prevalence of fungi ob-
served in milk from mothers residing in Vancouver (a
large coastal Canadian city with humid climate, high an-
nual precipitation, and mild winters) compared with
smaller Canadian cities in the Prairies with lower average
temperature precipitation. This difference was partly ex-
plained by differences in population density and season,
but was not related to other characteristics of the outdoor
environment (e.g. greenness) or home environment (e.g.
mould, dust). Presence of fungi was lower in milk samples
collected in spring consistent with seasonal variations re-
ported in goat milk fungi [40] which could be partly at-
tributed to fluctuations in outdoor [41] and indoor [42]
environmental fungi levels.

Bacteria-fungi interaction in the milk: direct or indirect
interaction?
We observed associations between bacterial composition
and presence and relative abundance of fungi, suggesting
that some milk bacterial communities were more per-
missive to fungal presence, or vice-versa. Correlation of

bacterial and fungal richness but not diversity suggests
that certain factors may impact microbial dispersal in
general, and thus enhance both bacterial and fungal
richness, whereas the diversity of each kingdom is separ-
ately determined by the niche relevant biotic and abiotic
factors. To our knowledge, only one previous study has
examined the potential interaction of fungi and bacteria
in milk, finding a positive correlation between the skin
inhabitant genus Malassezia and bacterial load [7]. Our
results provide preliminary evidence for antagonistic
bacteria-fungi interactions, consistent with evidence that
some milk bacteria demonstrate antifungal properties
[43, 44], as observed in other environments [45]. Overall,
these results could reflect one or more of the following
biological relationships: a) some milk bacterial commu-
nities are more permissive to fungal presence and prolif-
eration, b) milk bacterial dynamics are influenced by
fungi when they are present, and/or c) milk bacterial
composition is influenced by the milk environment,
which also independently facilitates fungal inoculation
or colonisation [46]. More research is needed to deter-
mine whether this observation is due to active fungi-

Fig. 6 Potential sources of milk mycobiota and factors influencing their presence and composition. Environmental factors including season, city,
and vegetation can influence the abundance and composition of the available pool of fungal species that colonise the maternal skin and infant
oral cavity. Fungi could be transferred to the milk from the skin and/or infant oral cavity via a retrograde mechanism. Milk bacterial composition
could also influence milk fungi either within the milk environment or via interactions on the skin or in the infant oral cavity. Maternal
characteristics and components of the milk microenvironment could also influence milk mycobiota
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bacteria ecological interactions within the milk environ-
ment, or perhaps the infant oral cavity.

Strengths and limitations
This study is among the first to assess milk mycobiota in
association with home environment characteristics and
milk bacterial composition. A key limitation is that we
defined the threshold of fungi presence in relation to
PCR amplification results. More accurate methods such
as quantitative PCR or culture are required to confirm
fungi presence. The availability of outdoor and indoor
environmental features in addition to host variables
allowed us to comprehensively assess determinants of
milk mycobiota, although we lacked information on
breast thrush (or use of anti-fungal medications) and
mastitis, which are known to be associated with Candida
spp. in milk [10]. Although the infants were generally
healthy at the time of sample collection, this study was
slightly enriched for infants who developed asthma later
in life and this could limit the generalizability to healthy
infants. Finally, as with all culture-independent studies,
we do not have information on the viability of milk fungi
detected in our study.

Conclusion
In conclusion, we profiled human milk mycobiota in a
well-characterised cohort of mother-infant dyads and
provide evidence of possible host-environment interac-
tions in fungal inoculation (Fig. 6). This research on the
composition and potential determinants of milk fungi
gives rise to several new avenues of exploration. For ex-
ample, the origins of milk fungi are unclear and it is not
known whether milk has evolved to transfer fungi to the
infant nasopharyngeal and/or gastrointestinal micro-
biota. Our data suggest that environmental fungal load
is a determinant of milk fungi presence, and that sources
of milk fungi likely include the maternal skin and/or in-
fant oral cavity and other environmental surfaces which
are more directly influenced by environmental fungi.
Further studies are needed to confirm these potential
sources and determinants of milk mycobiota. The bio-
logical nature of the associations we have observed be-
tween bacteria and fungi in milk is also unclear, but
could involve competition for nutrient sources or biofilm
formation. It is possible that bacteria and fungi form
complexes in the infant mouth or maternal skin and are
translocated together. The role of milk fungi in infant
health and disease should be explored since early life ex-
posure to fungi and gastrointestinal mycobiota have
been associated with altered risk of asthma and allergy
in children [3, 4, 47, 48]. Further research is required to
establish the role of breastfeeding in delivering fungi to
the developing infant, and to assess the health impact of
the milk microbiota in its entirety, including both

bacterial and fungal components. Additionally, further
investigation is required to assess the role of milk fungi
in infant health outcomes.

Methods
Study design
Women with singleton pregnancies were enrolled be-
tween 2008 and 2012 into the general population
CHILD birth cohort (n = 3455), from which a subset of
271 mother-infant dyads was selected for this study [22].
The subset was selected from samples with available 16S
rRNA microbiota data [24] and was enriched for chil-
dren diagnosed with possible or probable asthma.
Asthma was diagnosed by an expert study physician at
the clinical assessment at age 3 years and was classified
for this analysis as “possible or probable asthma” or “no
asthma”. Samples with high concentration of DNA based
on bacterial 16S rRNA V4 PCR amplification (≥15 ng/
μL) were prioritised. Written informed consent was ob-
tained from the participants. The study was approved by
the Human Research Ethics Boards at McMaster Univer-
sity, the Hospital for Sick Children, and the Universities
of Manitoba, Alberta, and British Columbia.

Milk sample collection
Each mother provided one sample of milk at 3–4months
postpartum [mean (SD) 17 (5) weeks postpartum] in a
sterile milk container provided by the CHILD study. To
control for differences in the milk composition of fore-
and hindmilk [49] as well as the diurnal variation [50], a
mix of foremilk and hindmilk from multiple feeds during
a 24-h period was collected. Hand expression was recom-
mended, but pumping was also acceptable. The sample
was collected in a real life situation with no recommended
hand or environment cleaning procedures. Samples were
refrigerated at 4 °C at home for up to 24 h before being
collected and processed by study staff [51]. Samples were
stored at − 80 °C until analysis.

DNA extraction and fungal sequencing
DNA was extracted from 1ml of milk sample as previ-
ously described [24]. Milk mycobiota was assessed by se-
quencing the internal transcribed spacer (ITS) 2 region
of the eukaryotic ribosomal gene with modified ITS3/
ITS4 primers [13] on a MiSeq platform (Illumina, San
Diego, CA, USA) as previously described [13]. For each
sample, the PCR reaction was performed in duplicate,
consisting of an initial denaturing step at 95 °C for 5 min
followed by 32 amplification cycles at 95 °C for 40 s,
52 °C for 45 s, and 72 °C for 40 s, with a final extension
step at 72 °C for 5 min in an Eppendorf Mastercycler pro
(Eppendorf, Hamburg, Germany). Sterile DNA-free
water was used as negative controls in sequencing li-
brary preparation. Fecal samples and mock community
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containing 8 bacteria and 2 fungi species (Saccharomyces
cerevisiae and Cryptococcus neoformans) (Zymo Re-
search, CA, USA) were used as positive controls. PCR
amplification was assessed on all samples by agarose gel
electrophoresis and visible bands were reported by two
independent observations (SM, KF). Duplicate PCR
products were pooled and the concentration of double-
stranded DNA was quantified by Quanti-iT PicoGreen
dsDNA Assay kit (Invitrogen, CA, USA). The concentra-
tions of milk double-stranded DNA were used to nor-
malise the samples 250 ng/μL of DNA and samples were
pooled accordingly. For samples with very low DNA
concentration, the maximum 10 μL of sample was
pooled. Based on previous bovine milk mycobiome work,
we anticipated that a subset of samples would be nega-
tive for fungi [13]. Therefore, we pooled samples into
three pools based on DNA concentration and PCR amp-
lification (high, intermediate, and low DNA concentra-
tion). Pooled DNA was then cleaned using DNA Clean
& Concentrator (Zymo Research, USA) and the concen-
tration was measured using Qubit dsDNA HS Assay Kit
(Invitrogen, CA, USA). To minimise the potential impact
of well-to-well contamination for low DNA samples
[52], the final pooled DNA consisted of high, intermedi-
ate, and low DNA with proportions of 80:10:10.

Fungal sequencing processing
Overlapping paired-end reads were processed with
DADA2 pipeline [53] using the QIIME 2 v.2018.6 [54].
Unique amplicon sequence variants (ASVs) were
assigned a taxonomy and aligned to the 2017 release of
the UNITE v.7 reference database at 99% sequence simi-
larity [55]. Demultiplexed sequencing data was deposited
into the Sequence Read Archive of NCBI (accession
number PRJNA536254).
Initial preprocessing of ASVs was conducted using

Phyloseq v. 1.26.1 [56]. Overall, 1421 unique ASVs were
detected. ASVs belonging to kingdoms other than Fungi
(e.g. plants, n = 334 ASVs) were removed. We obtained a
mean (SD) of 16,520 (78,489) and median (IQR) of 52
(13–709) high quality fungal sequencing reads per milk
sample, compared with 129,100 (69,044) reads from the
positive controls (stool sample and mock community),
and 9 (17) reads in negative controls. The mock commu-
nity was dominated by Cryptococcus neoformans (Basid-
iomycota phylum) suggesting sequencing bias against
Ascomycota. We did not identify any fungal contamin-
ant ASVs using decontam [57]. The majority of samples
had very low sequencing reads with 184/271 having less
than 300 reads per sample. The threshold applied to de-
fine presence of fungi was informed by the presence of
visible PCR bands on gel electrophoresis. There was a
clear trend between the presence of a PCR band and the
number of sequencing reads, with 9% of samples

containing 300–500 reads having a band vs. 71% of sam-
ples with 1000–5000 and 91% of samples with more
than 5000 reads (Fig. 1a). To optimize the retention of
samples that were PCR-positive by visual inspection, as
well as the elimination of samples with very low sequen-
cing depth, samples with at least 1000 sequencing reads
were considered positive for fungi. These samples were
rarefied to the minimum sequencing depth of 1000 se-
quences, resulting in 58 fungi-positive samples contain-
ing a total of 625 fungal ASVs. The number of reads for
each ASV was relativized to the total sum. Fungal rich-
ness (observed taxa) and diversity (inverse Simpson
index) were estimated at ASV and genus levels.

Covariates
Participants were recruited from four Canadian cities:
Vancouver (49.2827° N, 123.1207° W, British Columbia),
Edmonton (53.5444° N, 113.4909° W, Alberta), Manitoba
(49.8951° N, 97.1384° W, Winnipeg and two rural
towns), and Toronto (43.6532° N, 79.3832° W, Ontario).
Average climate information from 1981 to 2010 was ob-
tained from Environment and Climate Change Canada
(http://climate.weather.gc.ca; access date 13 March 2019;
used in descriptive but not statistical analyses). Infant
sex, birth weight, gestational age, and birth mode were
documented from hospital records. Infant feeding, his-
tory of oral thrush, and season of milk sample collection
were reported by standardized questionnaire. At the
time of sample collection (3–4 months), breastfeeding
status was classified as “exclusive” (human milk only) or
“partial” (human milk supplemented with infant formula
or supplementary food). The mode of breastmilk feeding
was also reported and classified as “all direct breastfeed-
ing” (nursing at the breast only, with no feeding of
pumped milk), or “some pumped milk” (at least one
serving of pumped milk in the past 2 weeks) [58]. Popu-
lation density was estimated for CHILD participants’
homes using 2006 census data on population counts
within the smallest available census geographical bound-
ary (250 m) and was categorized as high or low (above
or below the median). Census data also provided the
rural vs. urban residence. Green space exposure was
quantified using the derived normalized difference vege-
tation index (NDVI) in a 250 m buffer around the
mother’s residential addresses. NDVI, with values ran-
ging from − 1 to 1 is an indicator of overall greenness
based on land surface reflectance of visible and near in-
frared parts of spectrum. Time weighted averages across
the 12 months postpartum were assigned and catego-
rized into grey (− 1.0 to 0.2), moderate green (0.2 to 0.3),
and green (0.3 to 1.0). Home environment characteristics
including dust, moisture, and visible mould levels were
determined based on questionnaires completed by
mothers and a walk-through home assessment by
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trained research staff from the CHILD Study [59]; each
exposure was categorized into high or low (above or
below median). Bacterial V4 16S rRNA gene sequencing
was previously performed [24].

Statistical analysis
Data analysis was conducted in R v. 3.5.2 [60]. Presence/
absence was tested by κ2 and logistic regression for cat-
egorical variables and analysis of variance (ANOVA) for
continuous variables. Bacterial enrichment based on
presence of fungi was assessed by linear discriminant
analysis effect size (LEfSe) with default parameters and
logarithmic LDA score threshold of 4 [33]. Association
of fungal structure with covariates was assessed using
ANOVA after centre log-ratio transformation [61, 62]. P
values were corrected with Benjamini-Hochberg’s false
discovery rate (FDR) method [63]. Milk microbiota out-
liers were defined as those contributing greater than the
median plus twice the interquartile range of the sample
variance to the total [31]. LASSO was performed using
glmnet package with default parameters to define the
optimum lambda with 10-fold cross-validation. Using
the optimum lambda, coefficients were estimated for
model parameters [64]. While LASSO does not neces-
sarily provide evidence for biological associations, it is a
good technique for feature selection as it shrinks the
beta coefficients of variables with minimal contribution
to zero. This approach minimally increases the bias
while enhancing the interpretability of results. LASSO is
most suitable when a small to moderate number of
moderate-sized effects are expected [65] (as is the case
in our study). Association of LASSO-selected variables
with fungal presence was assessed using multivariable lo-
gistic regression and the performance was assessed by
area under the receiver operation curve (AUC). AUC
values correspond to the accuracy of a binary classifica-
tion with higher numbers indicative of higher accuracy
[66]. Association of fungal alpha diversity with host and
environmental factors were assessed by Wilcoxon rank
sum or Kruskal-Wallis tests. Correlation of bacterial and
fungal alpha diversity measures was assessed using
Spearman rank correlation following log10 transform-
ation. Fungi β diversity was assessed on Bray-Curtis dis-
similarity using permutation ANOVA (PERMANOVA).
Data analyses codes will be available upon request.

Inter-kingdom network analysis
Co-occurrence of the most abundant bacterial and fun-
gal genera (> 1% mean relative abundance) were assessed
by Spearman rank correlation using CoNet [67]. One
hundred bootstrap samples were used to infer pseudo p
values. Only edges with correlation scores of > 0.5 and
p < 0.05 (Bonferroni-corrected) were retained. The net-
work was visualised in Cytoscape [68].
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