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Abstract

Background: In highly seasonal environments, animals face critical decisions regarding time allocation, diet
optimisation, and habitat use. In the Arctic, the short summers are crucial for replenishing body reserves, while low
food availability and increased energetic demands characterise the long winters (9–10 months). Under such
extreme seasonal variability, even small deviations from optimal time allocation can markedly impact individuals’
condition, reproductive success and survival. We investigated which environmental conditions influenced daily,
seasonal, and interannual variation in time allocation in high-arctic muskoxen (Ovibos moschatus) and evaluated
whether results support qualitative predictions derived from upscaled optimal foraging theory.

Methods: Using hidden Markov models (HMMs), we inferred behavioural states (foraging, resting, relocating) from
hourly positions of GPS-collared females tracked in northeast Greenland (28 muskox-years). To relate behavioural
variation to environmental conditions, we considered a wide range of spatially and/or temporally explicit covariates
in the HMMs.

Results: While we found little interannual variation, daily and seasonal time allocation varied markedly. Scheduling
of daily activities was distinct throughout the year except for the period of continuous daylight. During summer,
muskoxen spent about 69% of time foraging and 19% resting, without environmental constraints on foraging
activity. During winter, time spent foraging decreased to 45%, whereas about 43% of time was spent resting,
mediated by longer resting bouts than during summer.
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(Continued from previous page)

Conclusions: Our results clearly indicate that female muskoxen follow an energy intake maximisation strategy
during the arctic summer. During winter, our results were not easily reconcilable with just one dominant foraging
strategy. The overall reduction in activity likely reflects higher time requirements for rumination in response to the
reduction of forage quality (supporting an energy intake maximisation strategy). However, deep snow and low
temperatures were apparent constraints to winter foraging, hence also suggesting attempts to conserve energy
(net energy maximisation strategy). Our approach provides new insights into the year-round behavioural strategies
of the largest Arctic herbivore and outlines a practical example of how to approximate qualitative predictions of
upscaled optimal foraging theory using multi-year GPS tracking data.

Keywords: Hidden Markov modelling, Behavioural state classification, Seasonality, Activity budgets, Arctic ungulate,
Optimal foraging theory

Background
To improve reproductive success and survival, wild ani-
mals adjust their behaviour and scheduling of activities
to varying resource availability, environmental condi-
tions and risk levels [1]. Assessing how animals fine-
tune their behaviour to fluctuating conditions is thus
fundamental to our understanding of how species cope
with ecological constraints. This is especially urgent in
the context of climate change, which may alter the range
of biotic and abiotic conditions animals encounter. Arc-
tic and alpine herbivores are challenged by some of the
greatest seasonal differences in foraging, light and cli-
matic conditions. Consequently, movement behaviour
and foraging strategies are expected to vary markedly ac-
cording to daily, seasonal, and interannual changes in
local conditions [2–5].
Balancing trade-offs between energetic costs and gains,

predation risk and environmental constraints, animals
are constantly faced with decisions regarding optimal
foraging timing, space and diet [6]. Traditionally, opti-
mal foraging theory (OFT) distinguished between energy
intake maximisation and time minimising strategies [6,
7]. Energy-maximising animals optimise energy intake
by allocating most of their available time to feeding,
whereas time-minimisers should only feed for the time
necessary to satisfy minimum energetic requirements.
While the former strategy yields the greatest amount of
energy for maintenance, growth and reproduction, the
latter provides the minimum amount of energy required
to fulfil basic energetic needs while allowing higher time
allocation to behaviours that improve survival, such as
staying inactive during certain periods of the day to re-
duce the risk of predation. For herbivores in extreme en-
vironments, constraints such as adverse weather
conditions may also be energetically limiting factors, and
a net energy maximisation (i.e. energy conservation)
strategy has therefore been proposed as additional po-
tential optimal foraging strategy [2, 5, 8, 9]. This strategy
is identical to the energy intake maximisation strategy as
long as foraging provides a net energy gain. However,

when the gained benefits do not outweigh the energetic
costs of the foraging effort, animals should attempt to
conserve energy instead of maximising intake. As con-
straints on foraging decisions can vary considerably be-
tween seasons, animals may adopt different strategies
over the course of the year [5].
Conventionally, studies testing predictions of OFT

focus on fine-scale foraging behaviour, usually assessed
in experimental settings with direct observational data
collected over relatively short periods and at small
spatial scales. However, foraging behaviour of free-
ranging animals follows a hierarchy of spatial and tem-
poral scales, from bites at the food patch level to larger
movements, representing foraging decision-making at
daily, seasonal, and annual scales [10, 11]. Assessing op-
timality based on the maximisation of short-term gains
may be misleading when considering longer time scales,
and Owen-Smith et al. [12] therefore proposed an
‘upscaled’ approach to OFT, where the basic principles
of OFT also apply to larger-scale movement behaviour.
This approach is especially applicable to terrestrial her-
bivores, as vegetation usually remains constant in its
spatial distribution, but may vary substantially in both
availability and quality over time [12]. Indeed, interpret-
ing activity budgets and behavioural responses to envir-
onmental conditions against qualitative predictions
derived from (upscaled) OFT has proven useful to ap-
proximate seasonal behavioural strategies and to identify
key constraints on foraging [2, 8, 13].
Thus far, studying the behaviours of wild animals and

drivers thereof has been difficult, especially in remote re-
gions and over time periods covering seasonal as well as
interannual variability in environmental conditions.
However, improvements in tracking technologies now
allow recordings of high-precision animal movements
over extended periods, independent of weather and light
conditions even in inaccessible regions, while greatly re-
ducing sampling or observer bias [14]. Simultaneously
with these technological advancements, behaviour-
focused modelling approaches have evolved, designed to
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detect different behaviours from telemetry data and to
investigate their relationship with environmental condi-
tions [15]. In particular, hidden Markov models (HMMs)
have emerged as flexible behaviour-based tools for the
analysis of regular observational time series driven by
underlying, serially correlated states [16]. Moreover,
physics-based numerical models explicit in space and
through time (e.g. MicroMet and SnowModel [17, 18])
are increasingly capable of providing realistic environ-
mental data at resolutions and extents relevant for eco-
logical applications [19, 20], i.e. data traditionally
unavailable from in situ measurements. Combined, these
developments in data acquisition and analyses are greatly
improving our ability to assess wildlife-environment
interactions.
The muskox (Ovibos moschatus) is the largest arctic

herbivore, well adapted to a cold and highly seasonal en-
vironment [21]. Due to the remoteness of its habitats,
and the challenging environmental conditions and long
periods of polar night throughout most of its range,

detailed behavioural and matching environmental data
covering several years with complete seasonal cycles
were thus far lacking. In this study, we take advantage of
a unique data set of multi-year movements of 19 female
muskoxen tracked with GPS (Global Positioning System)
collars in northeast Greenland (28 muskox-years, with
153–1062 observation days/animal) and apply HMMs to
infer likely behavioural states (resting, foraging, relocating)
from step lengths and turning angles between hourly posi-
tions. Our objectives were to (a) quantify diel, seasonal,
and interannual variation in activity budgets and to (b) in-
vestigate how behavioural time allocation and state-
switching are influenced by environmental conditions,
using an extensive set of spatially explicit and/or tempor-
ally dynamic environmental variables. Finally, we also
aimed to (c) evaluate whether the emerging behavioural
patterns follow qualitative predictions derived from
upscaled OFT. To do so, we formulated season-specific
predictions for each of the foraging strategies proposed by
OFT (see Table 1) against which we compared our results.

Table 1 Predictions for expected patterns in time allocation, state occupancy probabilities and activity scheduling if muskoxen were
to follow either of the three proposed strategies according to optimal foraging theory, for the summer and winter season,
respectively

Summer season (snow-free) Winter season (snow-covered)

Energy intake maximisation strategy: muskoxen aim to maximise energy intake (i.e. time spent foraging and forage quality), only limited by
digestive physiological constraints (i.e. time required for rumination)

S1INTAKE: time allocation only influenced by forage quality/quantity (e.g.
landcover, NDVI) since forage quality/quantity determines time required
for rumen fill and rumination

W1INTAKE: time allocation only influenced by forage quality/quantity/
accessibility (e.g. landcover, snow depth) since forage quality/quantity/
accessibility determines time required for rumen fill and rumination

S2INTAKE: probability of foraging remains constant independent of
changes in environmental conditions (e.g. temperature, wind)

W2INTAKE: probability of foraging/resting remains constant independent of
changes in environmental conditions (e.g. temperature, snow depth)

S3 INTAKE: no specific daily scheduling of activities W3INTAKE: no specific daily scheduling of activities

S4INTAKE: no interannual differences in time allocation W4INTAKE: no interannual differences in time allocation

Time minimisation strategy: muskoxen only forage the minimum required time to satisfy basic energetic needs, while reducing e.g. risk of
predation

S1TIME: time allocation/state switching mainly influenced by forage
quality/quantity (e.g. landcover, NDVI), time of day and light conditions

W1TIME: time allocation/state switching mainly influenced by forage quality/
quantity/accessibility (e.g. landcover, snow depth), time of day and light
conditions

S2TIME: proportion of time spent foraging decreases with increasing
forage quality/quantity as same foraging effort yields higher energetic
gains

W2TIME: proportion of time spent foraging increases with decreasing forage
quality/quantity/accessibility to compensate for reduced energetic gains of
foraging effort

S3TIME: specific daily scheduling of activities indicates avoidance of
periods with e.g. higher risk of predation

W3TIME: specific daily scheduling of activities indicates avoidance of periods
with e.g. higher risk of predation

Net energy maximisation strategy: muskoxen aim to maximise energy intake but switch to resting (i.e. energy conservation) as soon as
constraints/costs of foraging outweigh gains of foraging effort

S1NET: time allocation/state switching mainly influenced by forage
quality/quantity and environmental conditions representing constraints

W1NET: time allocation/state switching mainly influenced by forage quality/
quantity/accessibility and environmental conditions representing constraints

S2NET: probability of foraging decreases with environmental conditions
causing thermal stress or insect harassment (e.g. high temperature, low
wind speed)

W2NET: probability of resting increases with conditions causing heat loss
(e.g. low temperature, high wind speed) or increasing energetic costs of
movement and forage access (e.g. deep snow)

S3NET: specific daily scheduling of activities indicates avoidance of daily
periods during which constraints peak (e.g. highest temperatures)

W3NET: less pronounced specific daily scheduling of activities because peaks
in constraints (e.g. temperature/snow depth) do not necessarily follow
regular daily patterns

S4NET: interannual differences in time allocation depending on
interannual differences in the strength of environmental constraints

W4NET: interannual differences in time allocation depending on interannual
differences in the strength of environmental constraints
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Methods
Study area and study species
The study area in northeast Greenland (approx. 5000 km2;
Fig. 1 a-b) is characterised by a high-arctic climate with
pronounced variability in light and weather conditions
throughout the year. The mean annual ambient
temperature is − 9 °C (1997–2017), peaking in July
(monthly mean of 6.6 °C) and dropping to lowest values in
February/March (− 20 °C). Snow typically covers the
ground from early September to early June, but interan-
nual variation in snow accumulation and duration of snow
cover is considerable [22]. Broad valleys separated by
fjords and mountains up to 1600m in elevation determine

the landscape’s topography. The vegetation consists of dif-
ferent tundra habitat types of varying productivity [23].
Muskoxen are the only large herbivores in the study area.
Considered sedentary [24], the resident population was es-
timated to range between 2900 and 4600 individuals in
1990 [25], with mean annual densities varying between 1
and 3 individuals km− 2 between 1996 and 2013 [26]. In
summer, muskoxen mainly consume energy-rich grami-
noids [27, 28], whereas shrubs, but also graminoids, are
important in winter [29, 30]. Winter diets may vary sub-
stantially between years depending on snow conditions
[28], but also over the course of the winter, with lower diet
quality in late as compared to early winter [30].

Fig. 1 a Map indicating the study area (black rectangle) in northeast Greenland (white). b Map of the study area in detail (WGS 84, UTM zone 27),
showing the distribution of landcover types (note that in the statistical models, lakes, non-vegetated and bare ground were pooled to ‘bare
ground’). For the distribution of remaining static covariates, see Additional file 1: Fig. S1. c Muskox tracks during the snow-free summer and d
snow-covered winter period across years, colour-coded by animal ID (within season). For an overview of muskox observations per season and
year, see Additional file 1: Figs. S2-S3
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Collection of muskox movement data
In October of 2013 and 2015, n = 14 and n = 5 adult fe-
male muskoxen were fitted with GPS collars (Tellus Large;
Followit Lindesberg AB, Sweden), respectively (for a de-
tailed description of collaring procedures, see [24, 31]).
Note that a total of 15 females were collared in 2015, but
10 of the collars, fitted with a GPS unit from a different
manufacturing batch, exhibited lower positional accuracy
(location error of 19.6m (SD = 25.4) as opposed to 8.04m
(SD = 7.23)) and were therefore excluded from analyses to
minimise misclassification of behavioural states. Collars
were programmed to record one position per hour.

Processing of movement data
Hourly location data were screened for impossible move-
ments (detailed in [24]). Collar fix rate was generally high
(98.5%), but in some instances, GPS fixes could not be ob-
tained for several consecutive hours. If observation gaps
exceeded 10 h, we split the movement tracks (n = 19) into
bursts (n = 32) to keep time-series regularization (required
for HMMs) and consequently needed interpolation of en-
vironmental covariate values for missing observations to a
minimum. To account for potential snow-related differ-
ences in movement characteristics (e.g. shorter step length
when moving in snow), bursts were subsequently divided
into ‘seasonal’ bursts on the individual level: bursts were
characterised as ‘snow-free’ (hereafter referred to as ‘sum-
mer’) for the period between the first and last 48 h where
an individual did not encounter snow, and otherwise as
‘snow-covered’ (‘winter’) (see environmental data section
on how snow conditions were acquired). Indeed, mean step
lengths were over 80% longer in summer vs. winter (155.2
m v. 85.7m, respectively). All seasonal bursts with less than
4 full weeks of consecutive observations were excluded
from analyses (n = 7). Combined, 13.03% of observations
were removed from the initial GPS dataset, and a total of
242,378 observations (nsummer = 28,165, nwinter = 214,213)
divided into 70 seasonal bursts (Additional file 1: Fig. S2)
were included in the final analyses, corresponding to 28
muskox-years with 153–1062 observation days/animal. For
an overview of observations per season and animal ID, see
Fig. 1 C-D and Additional file 1: Fig. S3/Table S1.

Environmental data
To assess how muskox time allocation and state-switching
probabilities were influenced by environmental conditions,
we considered a wide range of spatially explicit and/or tem-
porally dynamic environmental covariates known to influ-
ence ungulate behaviour (e.g. [4, 32]), detailed in Table 2.
The temporally dynamic and spatially explicit meteoro-
logical covariates (air temperature, snow depth, wind speed,
wind direction, total precipitation, see Table 2) were mod-
elled for the study area and period using SnowModel and
MicroMet (see [34] for details). Values for all covariates

were extracted based on muskox GPS positions, and asso-
ciated timestamps for temporally dynamic covariates.
While muskox locations were recorded hourly, temporally
dynamic covariates were available at a 3-hourly or daily
resolution, respectively. However, assuming that meteoro-
logical conditions do not change substantially within 3 h
and given that muskoxen might change position in space
and thereby encounter different covariate values (i.e.
spatial variation), we decided not to resample the muskox
location data. Snow depth was only included in the ana-
lyses of winter bursts, whereas NDVI was only available in
the absence of snow and hence solely included as covari-
ate in the analyses of summer bursts. As NDVI reflected
temporal dynamics in NDVI over the course of the sum-
mer season, we included it in addition to the temporally
static NDVI-based landcover classification (see Table 2) to
investigate if/how behavioural variation in muskoxen was
related to seasonal changes in vegetation greenness. Any
missing covariate values were filled in by linear
interpolation. Considered covariates did not exhibit collin-
earity issues (i.e. Pearson correlation coefficient < |0.6|).

Statistical analyses
To analyse muskox movement patterns over time, we fitted
separate bivariate HMMs to the hourly-observed step lengths
and turning angles for the summer and winter bursts, re-
spectively. HMMs assume the observed movement patterns
to be driven by an underlying latent state sequence (i.e. a
finite-state Markov chain). These data-driven states can be
interpreted as proxies for the animals’ unobserved behav-
ioural modes [16]. Step lengths and turning angles were
modelled using gamma and von Mises distributions, respect-
ively, in each case conditional on the underlying state. As
neither observed movement variables (Additional file 1: Fig.
S4) nor initially explored modelled state-dependent distribu-
tions (Additional file 1: Fig. S5) revealed large differences be-
tween individuals’ movement patterns, we did not explicitly
account for individual variation between animals in the
HMMs. To assess potential spatio-temporal association
between individuals (i.e. joint movements), we calculated
the percentage of simultaneous positions where two ani-
mals were less than 100m apart (group definition pro-
vided in [26]), using the global proximity analysis as
implemented in the wildlifeDI R package. On average,
0.68% [range: 0–22%] of simultaneous summer and 0.67%
[0–24%] of simultaneous winter GPS fixes were located
within the defined distance threshold, and we therefore
considered individuals to move independently of each
other (see also Additional file 1: Fig. S2 [24];).
We used the HMMs to detect and classify the three most

commonly observed major behavioural states within the daily
activity patterns of muskoxen and other ungulate species
(e.g. [32, 36]), namely resting (state 1), foraging (state 2) and
relocating (state 3). We also explored HMMs with two, four
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Table 2 Overview of covariates considered in the HMMs for the snow-free summer and snow-covered winter bursts
Covariate
type

Covariate Description Biological effect Data type Spatial/
temporal
resolution

Data source

temporal time of day hour of the day diel variation in environmental
conditions, associated with
predation risk levels

continuous hourly

Julian day day of the year proxy for fine-scale
seasonal variation in
environmental conditions
and diet quality

continuous daily

year season-year (e.g.
winter season
2013/2014, summer
season 2014)

interannual variation in
environmental conditions

categorical annual

light light conditions (daylight
or darkness) at time of
observation

light, visibility, associated
with predation risk levels

categorical hourly determined using ‘stream
Metabolism’ package in R

static landcover type NDVI-derived landcover
classification (NDVI
≥0.35 = ‘dense vegetation’,
0.1–0.35 = ‘sparse vegetation’,
< 0.1 = ‘bare ground’
(including non-vegetated
areas such as glaciers,
perennial snow and lakes))

associated with plant
productivity, forage
abundance

categorical 30 m vegetation classes classified
based on NDVI, using Landsat
4-5TM satellite image, dated
17 July 2009; non-vegetated
derived from 1:100.000
topographic maps, field
measurements from study
area [23, 33]

elevation (m.a.s.l.) elevation above sea level associated with plant
productivity and snow
accumulation

continuous 30 m ASTER Global Digital Elevation
Model (DEM) Version 2
(https://asterweb.jpl.nasa.gov/
gdem.asp)

terrain ruggedness
(index)

mean of the absolute
differences between
the value of a cell and
the value of its 8
surrounding cells, i.e.
measure of terrain
heterogeneity

associated with vegetation
heterogeneity and variation
in snow conditions

continuous 30 m calculated from DEM using
‘terrain’ function in ‘raster’
package in R

distance to coast
(m)

Euclidian distance
to coastline

proxy for coast-inland
gradients in e.g.
precipitation, temperature

continuous 30 m calculated from DEM using
‘raster’ package in R

hillshade (unitless) amount of incoming
radiation, combining
slope and aspect

associated with local
temperature, plant
productivity and snow
melt dynamics

continuous 30 m calculated from DEM using
‘hillShade’ function in ‘raster’
package in R

dynamic snow depth (m) snow depth associated with forage
accessibility and costs of
foraging/movement

continuous,
modelled

300 m, 3 h MicroMet high-resolution
meteorological model
coupled with SnowModel
snow-evolution modelling
tool [17, 18, 34]

ambient
temperature (°C)

ambient air temperature
(2 m above ground
surface)

thermal conditions,
associated with insect
harassment

wind speed (m/s) wind speed (2 m above
ground surface)

associated with thermal
conditions (windchill
effect) and insect
harassment

wind direction
(degrees from north)

wind direction (2 m
above ground surface)

associated with thermal
conditions (windchill effect)

precipitation (mm) precipitation (rainfall
or snow) at time t

precipitation, associated
with thermal conditions

NDVI (index) Normalized Difference
Vegetation
Index (NDVI)

measure of vegetation
greenness, related to
vegetation growth
and aboveground
biomass [35]

continuous,
observed

300 m, daily Moderate Resolution
Imaging
Spectroradiometer
(MODIS) Daily
Surface Reflectance [34]
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and five states (Additional file 1: Figs. S6-S7), but although
the Bayesian Information Criterion (BIC) favoured the 5-
state model, we found that the HMMs with three states were
the most reliable to interpret in a biologically meaningful
way while still providing good model fit (Additional file 1:
Fig. S9; for a more detailed discussion of state-selection in
HMMs, see [37]). To investigate the influence of environ-
mental conditions on muskox movement behaviour, the
state transition probabilities were expressed as functions of
the covariates using a multinomial logit link function with
categories representing the different states the process might
switch to [15]. Forward selection based on BIC was used to
determine the influence of 14 covariates considered in each
of the seasonal HMMs. To capture their periodic nature, we
included sine and cosine terms for cyclic covariates (e.g. time
of day). All HMMs were fitted in R (version 3.6.0 [38]) via
numerical likelihood maximisation using the moveHMM
package [39]. To avoid local maxima, we fitted each model
with 30 sets of random starting values and chose the one
with the highest log-likelihood value in each case.

Based on the final seasonal models, we decoded the la-
tent states using the Viterbi algorithm [40], which provides
the most likely state sequence given the model and thus
the basis for calculating activity budgets and duration of
behavioural bouts. Furthermore, for each of the covariates,
we calculated the stationary probabilities of state occu-
pancy as a function of the covariate values [41], with the
other continuous covariates held fixed at their respective
seasonal means, and the categorical covariates set to a ref-
erence category.

Approximation of foraging strategies
To evaluate whether the observed patterns in time alloca-
tion, state occupancy probabilities and activity scheduling
followed either of the three foraging strategies (energy in-
take maximisation, time minimisation, net energy maxi-
misation) proposed by OFT, we formulated qualitative
season-specific predictions (Table 1) against which we
compared our results (Table 3).

Table 3 Summary of how results support predictions (Table 1) for expected patterns in time allocation, state occupancy
probabilities and activity scheduling if muskoxen were to follow either of the three proposed strategies according to optimal
foraging theory, for the summer and winter season, respectively

summer season (snow-free) winter season (snow-covered)

prediction supported reasons for support or rejection prediction supported reasons for support or rejection

S1INTAKE partially - time allocation strongly (but not only)
influenced by foraging conditions
(landcover, ruggedness)

- short resting bout duration

W1INTAKE partially - time allocation influenced by forage conditions
(landcover, ruggedness)

- long resting bout duration

S2INTAKE yes - no covariates selected that represent
potentially constraining environmental
conditions (e.g. temperature)

W2INTAKE no - time allocation not independent of potentially
constraining environmental conditions (snow,
temperature, wind speed)

S3 INTAKE yes - no specific daily scheduling of activities W3INTAKE no - distinct daily scheduling of activities

S4INTAKE yes - year not selected as covariate W4INTAKE partially - year selected as covariate
- no pronounced interannual variation in activity budgets

S1TIME partially - light and foraging conditions (landcover,
ruggedness) strongly influence time
allocation

- time of day not selected as covariate

W1TIME partially - time allocation influenced by time of day, forage
(landcover, ruggedness) and light conditions

S2TIME no - time spent foraging is constantly high
throughout summer

W2TIME no - foraging activity decreased over course of the winter
(i.e. with declining forage quality, see Schmidt et al.
2018)

S3TIME no - no specific daily scheduling of activities
during midnight sun period

W3TIME yes - distinct daily scheduling of activities

S1NET no - no covariates selected that represent
potentially constraining environmental
conditions (e.g. temperature)

W1NET yes - time allocation influenced by forage (landcover,
ruggedness) and potentially constraining environmental
conditions (snow, temperature, wind speed)

S2NET no - no covariates selected that represent
potentially constraining environmental
conditions (e.g. temperature)

W2NET yes - probability of resting increased with deep snow, low
temperature, high wind speeds

- long resting bout duration

S3NET no - time of day not selected as covariate W3NET no - distinct daily scheduling of activities

S4NET no - year not selected as covariate W4NET partially - year selected as covariate
- no pronounced interannual variation in activity budgets
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Results
State-allocation and goodness-of-model-fit
The estimated state-dependent distribution for step
lengths and turning angles differed between summer and
winter (Fig. 2), but states generally followed the same pat-
tern: State 1 was characterised by short step lengths and
high turning angles (i.e. undirected movements), pre-
sumed to represent resting behaviour. State 2 included
medium step lengths and turning angles centred around
zero but with low concentration (i.e. low kappa) around
the mean (indicating tortuous movements with a slight
overall tendency for forwards movements). State 3 was as-
sociated with larger step lengths and turning angles highly
concentrated around zero, representative of very directed
movements. We thus assumed states 2 and 3 to reflect
foraging and relocating behaviour, respectively. This

interpretation is corroborated by Fig. 3 a-b, displaying ex-
ample time series of step lengths and associated decoded
states for both seasons. Mean step lengths were generally
smaller during winter than summer (Fig. 2), supporting
the separate modelling of the two seasons. The model-
induced marginal distributions of the two movement vari-
ables corresponded well with the underlying empirical dis-
tributions (Fig. 2). For more details on model evaluation,
see Additional file 1: Figs. S8-S9. The forward covariate se-
lection procedure produced different results for summer
and winter (Additional file 1: Fig. S10).

Behavioural time allocation during summer
For the summer season, the final model included light,
landcover type, terrain ruggedness and Julian day as covar-
iates (Additional file 1: Fig. S10), i.e. predominantly

Fig. 2 Histograms of step length and turning angle between hourly relocations, respectively, for the summer a, b and winter c, d season,
overlaid with the state-dependent distributions as estimated by the HMMs selected by BIC. The state-dependent distributions were weighted
according to the proportion of time spent in the different states, as inferred by the Viterbi sequence. Dashed black lines indicate the associated
marginal observation distributions. Note that the x- and y-axes for step length were truncated at the upper range limit to facilitate visualisation
(maximum observed step length was 3486 m for summer, and 3897m for winter). Tables included in panels provide parameter estimates per
state and model (mean step length with standard deviation; mean turning angle (phi) and angle concentration (kappa))
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covariates reflecting variation in forage quality/quantity,
supporting predictions S1INTAKE and S2INTAKE (Table 3).
Muskox females spent an average of 69% [range: 63–74%]
of time foraging, 19% resting [15–23%], and 12% relocat-
ing [7–19%] during summer (Additional file 1: Fig. S11 A),
with the highest mean time spent foraging in August (66%
[55–73%]), and only about 14% of time spent resting in
June [10–21%] and July [10–17%] (Fig. 4 a). Time allo-
cated to foraging was lowest on bare ground and highest
in dense vegetation, and vice versa for relocating (Fig. 4 d).
The probability of foraging increased with increasing ter-
rain ruggedness (i.e. a proxy for vegetation heterogeneity,
see Table 2), whereas probability of relocating decreased
(Fig. 5 a). Neither landcover type nor terrain ruggedness
strongly affected the probability of resting. Light seemed

to have the strongest effect in summer, with muskoxen al-
locating more time to resting during darkness (32% [14–
43%]) than daylight (18% [15–21%], Additional file 1: Fig.
S11 B). Most observations included in the summer model
were recorded during the midnight sun period, hence
muskoxen were more likely to switch to the resting state
during dark hours as soon as the sun began to set again
(mid-August onwards). As evident from the covariate se-
lection process and in line with predictions S3INTAKE and
S4INTAKE (Table 3), neither time of day nor year explained
much of the behavioural variation. Accordingly, no spe-
cific scheduling of daily activity could be detected during
the midnight sun period (comprising most observations),
and interannual differences in time allocation between
summer seasons appeared minimal (Fig. 4 b-c).

Fig. 3 Example of state-decoded step lengths for the a summer and b winter season, showing a period of 18 days for one individual female,
respectively. For all state-decoded muskox locations, see Additional file 1: Fig. S15. c Monthly boxplots for the individual-based mean duration of
behavioural bouts
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Fig. 4 Behavioural time allocation in female muskoxen in northeast Greenland depending on a day of the year, aggregated by month, b time of
day during different light seasons (polar night = period of 24 h of darkness, midnight sun = period of 24 h daylight), c year and d landcover type
(bare ground, sparse or dense vegetation). Note that in c year t denotes the winter season t-1 to t, i.e. for instance 2014 is the winter 2013–2014.
For behavioural time allocation by Julian day, i.e. not aggregated by month, see Additional file 1: Fig. S11 D
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Fig. 5 Stationary probabilities (mean and 95% CI) of behavioural state occupancy as a function of the environmental covariates included in the
final HMMs for the a summer and b-f winter season. According to BIC model selection, the final summer model included light, landcover type,
terrain ruggedness and Julian day as covariates; the final winter model included Julian day, time of day, landcover type, terrain ruggedness, snow
depth, light, ambient temperature, year, distance to coast and wind speed. Probabilities were calculated for each covariate and state by fixing the
values of the remaining continuous environmental covariates at their respective seasonal mean. Continuous temporal covariates were set to
Julian Day 213 (i.e. August 1st) and 91 (i.e. April 1st) for summer and winter, respectively, and to12 o’clock for time of day. Categorical covariates
were set to their corresponding reference categories, i.e. to bare ground (landcover type), daylight, and, for the winter model, winter 2013–2014
(year). Monte Carlo simulation from the estimator’s approximate multivariate normal distribution was used to obtain pointwise 95% CIs. Coefficients of
the multinomial logistic regression underlying this figure, as well as figures for probabilities of behavioural state occupancy for different categories (e.g.
sparse/dense vegetation, darkness), are provided in the supplementary materials (Additional file 1: Tables S2-S3, Figs. S12-S14)
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Behavioural time allocation during winter
The final winter model included Julian day, time of day,
landcover type, terrain ruggedness, snow depth, light, am-
bient temperature, year, distance to coast and wind speed
as covariates (Additional file 1: Fig. S10). In line with pre-
diction W1NET, these covariates reflect variation in both
forage as well as potentially constraining environmental
conditions (Table 3). However, as time of day was selected
as well, support for prediction W1TIME was likewise indi-
cated. The average proportion of time spent in the for-
aging state during winter was lower (45% [34–50%]), and
time spent resting about twice as high as during summer
(43% [37–3%]) (Additional file 1: Fig. S11 A). Time spent
foraging dropped to lowest mean value of 34% in both
February [20–46%] and March [19–45%], and time spent
resting was highest in January (54% [46–62%]) (Fig. 4 a).
Similar to the summer model, covariates representing

forage quality/quantity/accessibility (landcover, rugged-
ness, distance to coast, see Table 2) were positively related
to the probability of foraging, and probability of relocating
increased with decreasing probability of foraging. Musk-
oxen spent most time foraging in dense vegetation, and
more time relocating on bare ground (Fig. 4 D). Increasing
terrain ruggedness – in winter a proxy for heterogeneity
in both snow accumulation and vegetation (Table 2) – in-
creased the probability of foraging but decreased the prob-
ability of relocating (Fig. 5 b). Responses to environmental
conditions constituting potential energetic constraints
(snow depth, ambient temperatures, wind speed) generally
supported prediction W2NET (Table 3). When encounter-
ing deep snow, muskoxen were more likely to be resting,
and less likely to be foraging or relocating (Fig. 5 c). Low
ambient temperatures and high windspeeds likewise in-
creased the probability of resting (Fig. 5 d, f). As opposed
to the midnight sun period, distinct daily activity patterns
were observed for the rest of the year (Fig. 4 b). During
the polar night and the period of increasing light, pro-
nounced unimodal activity peaks were apparent, whereas
a bimodal pattern was exhibited during the period of de-
creasing light. These results are in accordance with predic-
tion W3TIME (Table 3). Although year was selected as
covariate, activity budgets did not show pronounced inter-
annual variation between winter seasons (Fig. 4 c), lending
some support for both W4INTAKE and W4NET (Table 3).

Duration of behavioural bouts
Throughout the year, duration of foraging and relocating
bouts remained relatively constant (foraging (mean
[range]) = 4.2 h [3.5–5 h]; relocating = 4 h [3.2–4.6 h])
(Fig. 3 c). Resting bout duration, however, varied mark-
edly over the course of the year (mean = 3.6 h), with lon-
gest bouts in March (5.8 h [4.7–6.8 h]) and shortest in
July (1.2 h [1.1–1.4 h]) (Fig. 3 c). This result is indicative
of S1INTAKE and either W1INTAKE or W2NET (Table 3).

Discussion
Understanding how environmental conditions shape the
foraging behaviour of free-ranging animals is a funda-
mental aspect of ecology, as foraging tactics influence in-
dividuals’ fitness and thus ultimately population
dynamics [42, 43]. However, assessing animals’ foraging
strategies and testing their optimality over time and
space is challenging, especially for species where detailed
year-round observations and direct assessments of for-
aging efforts and gains are not feasible. Muskoxen in-
habit one of the most remote and seasonally extreme
environments of this planet, and our study provides the
first detailed account of behavioural strategies covering
the full seasonal cycle over multiple years with pro-
nounced variation in environmental conditions.

Optimising energy intake? Foraging strategies during
summer
As capital breeders [44], muskoxen rely heavily on body re-
serves gained during the short forage-abundant summer to
secure winter survival and calf production [45, 46] – even
more so than reindeer/caribou (Rangifer tarandus), the only
other arctic ungulate species [44]. In agreement, we found
muskox time allocation during summers to be influenced
primarily by forage and light conditions. Activity budgets in-
dicated almost continuous foraging (Fig. 4 a), interrupted
only by short resting and relocating periods (Fig. 3 c), with
no specific daily scheduling of activities (Fig. 4 b) and little
interannual variation (Fig. 4 c). These results clearly indicate
that muskoxen in northeast Greenland follow an energy in-
take maximisation strategy during summer, as previously
suggested by studies based on direct behavioural observa-
tions for other muskox populations [47–49].
Muskoxen allocated substantially more time to foraging

during summer than winter (Fig. 4 a, Additional file 1: Fig.
S11 A), mainly as a result of drastically shorter resting bouts
(Fig. 3 c). This seems to be a widespread behavioural pat-
tern observed in muskox populations elsewhere [3, 49], but
also other ungulate species [2, 4, 50]. As high digestibility of
plant material decreases time required for rumination [50],
the short resting bouts likely reflect abundant high-quality
forage. Indeed, digestibility and quality of summer forage is
generally high in the Arctic [49, 51], and terrain heterogen-
eity and associated differences in plant phenology allow for
selective foraging of vegetation in early growth stages (i.e.
with highest digestibility) until late in the growing season
[49]. The positive effect of terrain ruggedness on foraging
activity (Fig. 5 a) was equally evident from our results.
Heat stress is a well-known constraint to animals’ activ-

ity [8, 32], especially in cold-adapted species [4]. Although
muskoxen may be susceptible to high temperatures,
physiological and behavioural limits to heat tolerance are
unclear [52]. According to our results, muskox foraging
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behaviour appears unconstrained by heat stress given the
experienced summer temperatures (up to 16.4 °C).

Digesting or conserving energy? Foraging strategies
during winter
While arctic ungulates may heavily rely on body reserves
gained during summer, foraging strategies during the
long winters have to supplement summer reserves and
may consequently be likewise important for survival
[53], foetus development [54] and maintenance of the
rumen microbiome [55]. We found partial support for
all three tested OFT strategies (Table 3), hence our re-
sults are not easily reconcilable with just one dominant
foraging strategy.
Evidently, muskoxen were less active (i.e. foraging or

relocating) and rested more during winter (Fig. 4 a,
Additional file 1: Fig. S11 A), with considerably lon-
ger resting bouts (Fig. 3 c). This increase in resting
time is likely a functional response to the reduction
in forage quality, requiring more time for digestion
[50], providing some support for an energy intake
maximisation strategy. As in summer, forage condi-
tions (i.e. landcover type, ruggedness) strongly influ-
enced behavioural time allocation in winter, with
suboptimal foraging conditions apparently motivating
relocation to different areas (Fig. 5 b).
However, behavioural time allocation and state-

switching were also, albeit to a lesser degree, influenced by
environmental conditions reflecting potential energetic
constraints: Muskoxen reduced foraging activity and were
more likely to rest when encountering conditions leading
to heat loss (low ambient temperatures, high wind speeds,
Fig. 5 d, f) or increased costs of foraging and movement
(deep snow, Fig. 5 c). This finding, suggesting attempts to
conserve energy, is indicative of a net energy maximisation
strategy and rather contradicts a strategy of energy intake
maximisation. Similar responses to adverse weather condi-
tions have been found for muskoxen in West Greenland
[47] as well as other ungulate species [2, 4], and inactivity
and resting while lying down have been shown to reduce
the metabolic costs of thermoregulation in cold weather
[56]. However, given our movement data at an hourly
resolution, we are currently not able to distinguish ‘true’
resting (i.e. time that would otherwise be available for for-
aging) from ruminating (dictated by digestive constraints).
To determine to what degree ruminants living in highly
seasonal environments allocate time to digestion versus
energy conservation, future studies should attempt to
more finely distinguish these two behaviours.

Diel activity patterns
Throughout the year, muskoxen were active during all
hours of the day, but more likely to rest during darkness
(Fig. 4 b, Additional file 1: Fig. S11 B). At the latitude of

our study area (74 ° N), distinct cycles of daylight and
darkness only occur for 12.5 weeks in spring and autumn,
respectively. Nonetheless, we found distinct scheduling of
daily activity for all seasons except for the period of con-
tinuous daylight (Fig. 4 b). However, predation risk and
human disturbance are extremely low in our study area
[26], and we therefore consider these factors unlikely de-
terminants of activity scheduling. Hence, we argue against
time minimisation as dominant foraging strategy in this
population. Instead, we interpret these results as a clear
expression of basic ultradian ruminant activity patterns, as
also observed in predator-free Svalbard reindeer at similar
latitudes [2, 57]. Moreover, time spent resting increased
steadily from the end of summer towards highest levels in
mid-winter (January to March), with a concomitant de-
crease in foraging time (Fig. 4 a). As the quality of muskox
diets in the study area decreases significantly over winter
[30], this result provides additional evidence against a time
minimising strategy.

Limitations and future prospects
Previous studies assessing muskox activity patterns based
on direct behavioural observations [3, 36, 47–49, 58] were
of small geographic coverage and biased towards summers
and daylight hours. Coupling telemetry data with hidden
Markov modelling, we overcome these observational chal-
lenges, allowing us to gain detailed year-round insights
into this key arctic herbivore’s behavioural variation. Our
quantification of season-specific time allocation and
identification of foraging constraints constitutes a crit-
ical step towards direct tests of optimal foraging strat-
egies [32]. Clearly, combining location data with more
precise estimates of availability, quality and type of
consumed forage allows for a more direct assessment
of obtained energetic benefits and thus foraging strat-
egies [12], and hence constitutes a logical next step
to complement our approach.
As we used an unsupervised HMM approach based on

the distribution of step lengths and turning angles and not
validated by direct observations of the animals, state clas-
sification should be interpreted with caution, i.e. only be
considered as proxy for the underlying ‘true’ animal be-
haviour [59]. We limited our classification to the three
most common, straightforward to interpret behavioural
states, as recommended in an unsupervised HMM frame-
work [37]. The state characterisations corresponded well
to those described for other large herbivores [60, 61]. The
resting state reflected minimal movements and uniformly
distributed turning angles (with a somewhat higher prob-
ability of being directed towards 180° due to an artefact of
GPS error). The foraging state was associated with slow,
often tortuous movements resulting from alternate sta-
tionary foraging and intermittent small relocations when
searching for suitable foraging spots. The relocation state
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was characterised by the longest steps and highest direc-
tional persistence. Muskoxen specifically have been found
to move between 1.6 and 5.8 m/min while foraging, de-
pending on season and vegetation type encountered [47].
Aggregated to an hourly scale, these values correspond
well to the HMM-derived distribution of step lengths in
state 2 (i.e. foraging) for summer and winter (Fig. 2). Obvi-
ously, muskoxen express a more nuanced range of behav-
iours than the three behavioural states considered here.
However, due to the hourly resolution of our data, many
behaviours can fall ‘under the radar’, i.e. the model-
derived behavioural state classification can only provide a
rough estimate of hourly behaviour and can generally not
account for short-term or non-exclusive behaviours, such
as social interactions or short foraging ‘pit-stops’ during
larger-scale relocation bouts.
Nonetheless, even the interpretation of a 3-state model

provides challenges. For example, muskoxen typically did
not move extensively within an hour (see Fig. 2), making
the distinction between resting and foraging behaviour dif-
ficult at times. Misclassifications may for instance happen
during winter when the necessity to crater through snow to
reach the underlying vegetation limits displacement during
foraging, leading to an overestimation of resting time. This
may have contributed to the fact that we were unable to de-
termine a dominant fitting OFT strategy for winter. How-
ever, cratering behaviour appears confined to rather
shallow snow depths [62], and muskoxen were found to
rest longer as snow thickness at feeding craters increased
[58]. These observations support the overall trend of de-
creasing foraging probability with increasing snow depth in
our study. In summer, when switching between resting and
foraging is highly volatile, short resting bouts (i.e. below 1
h) in particular may be masked, potentially leading to an
overestimation of foraging time. Overall, however, we are
confident that state classification in our HMMs is robust
and captures most of the variation in muskox movement
behaviour. A validated supervised classification approach
would obviously help to quantify and/or rule out uncertain-
ties related to misclassification, but was not feasible in the
context of our study as direct observations were not pos-
sible in winter, i.e. for most of the year. Future studies
could further refine state estimation by coupling GPS loca-
tion data with more fine-scaled, continuous acceleration or
other biologging data using hierarchical HMMs [63].
While our ability to collect fine-scale movement data is

rapidly increasing, such data needs to be matched with en-
vironmental data at relevant temporal and spatial scales.
Here, we tested a wide range of covariates, including rarely
available temporally dynamic and spatially explicit covari-
ates at the highest spatial resolution (300m) and temporal
frequency (3 h and daily) possible for this region. Although
these covariates should in theory most directly represent
the conditions influencing individuals and consequently

explain much of the behavioural variation, this was only
partially reflected in the results of the covariate selection
process. This could signal a real biological effect, suggesting
that muskoxen, well-adapted to extreme weather variability,
are not particularly sensitive to dynamically changing envir-
onmental conditions. It may, however, also indicate that in
highly heterogeneous environments, temporally static prox-
ies for resource and climate gradients at high spatial reso-
lution (e.g. landcover, ruggedness) may outperform
temporally dynamic direct variables at coarser scales (e.g.
NDVI). Given the importance of vegetation and snow con-
ditions for alpine and arctic ungulates, further improve-
ments in vegetation mapping as well as observations and
modelling of wildlife-relevant snow variables [20, 35] are
critical for detailed assessments of how animals respond to
environmental variability.

Conclusions
By combining unique data sets of GPS-based movements
and spatiotemporal environmental covariates within
HMMs, we tested a series of qualitative predictions derived
from upscaled OFT. We conclude that during the brief
high-arctic summers, muskox females adopt an energy in-
take maximisation strategy, largely unconstrained by envir-
onmental conditions. For the long winter season, our
results indicate partial support for all three tested foraging
strategies. However, deep snow, low ambient temperatures
and strong winds were clearly constraining foraging behav-
iour in winter (Fig. 5), with muskoxen instead allocating
more time to resting, likely to conserve energy.
With climate change altering seasonal patterns and thus

challenging species’ behavioural rhythms and adaptations
[64, 65], assessing how environmental conditions shape the
foraging behaviour of free-ranging animals is an increasingly
urgent task. In environments as marginal as the high Arctic,
where rapid warming is already impacting the entire bio-
physical system [66], even small deviations from optimal for-
aging behaviour may potentially have large consequences
for reproductive success and survival, and thus ultim-
ately population dynamics. Providing novel insights
into the current relationship between environmental
conditions and muskox behaviour, this study improves
our understanding of how ungulate species are able
to survive under highly variable conditions via adap-
tive fine-scale behaviour and lays the foundation for
assessing behavioural plasticity for future adaptation.
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