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ABSTRACT
Background. Lower-grade gliomas (LGGs) is characteristic with great difference in
prognosis. Due to limited prognostic biomarkers, it is urgent to identifymoremolecular
markers to provide amore objective and accurate tumor classification system for LGGs.
Methods. In the current study, we performed an integrated analysis of gene expression
data and genome-wide methylation data to determine novel prognostic genes and
methylation sites in LGGs.
Results. To determine genes that differentially expressed between 44 short-term
survivors (<2 years) and 48 long-term survivors (≥2 years), we searched LGGs TCGA
RNA-seq dataset and identified 106 differentially expressed genes. SERPINA5 and
TIMP1 were selected for further study. Kaplan–Meier plots showed that SERPINA5
and TIMP1 expression were significantly correlated with overall survival (OS) and
relapse-free survival (RFS) in TCGA LGGs patients. We next validated the correlation
between the candidate genes expression and clinical outcome in CGGA LGGs patients.
Multivariate analysis showed thatTIMP1mRNAexpression had a significant prognostic
value independent of other variables (HR= 4.825, 95%CI= 1.370–17.000, P = 0.014).
Then, differential methylation sites were identified from differentially candidate gene
expression groups, and all fourmethylation sites were significantly negatively correlated
with gene expression (spearman r <−0.5, P < 0.0001). Moreover, hyper-methylation
of four methylation sites indicated better OS (P < 0.05), and three of them also shown
statistical significantly association with better RFS, except for SERPINA5 cg15509705
(P = 0.0762).
Conclusion. Taken together, these findings indicated that the gene expression and
methylation of SERPINA5 and TIMP1may serve as prognostic predictors in LGGs and
may help to precise the current histology-based tumors classification system and to
provide better stratification for future clinical trials.
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INTRODUCTION
Gliomas are the most common primary malignancies of the central nervous system that
include astrocytoma, ependymoma, oligodendroglioma, and mixed oligoastrocytomas,
and ranged in grade II to IV as defined by theWorld Health Organization (WHO). Because
of its histopathological heterogeneity, the clinical outcome of glioma patients varies widely
(Louis et al., 2007; Louis et al., 2016). Lower-grade gliomas (LGGs), comprising WHO
grades II and III astrocytoma, oligodendroglioma and mixed oligoastrocytoma, exhibit
infiltrative and highly invasive nature and intrinsic tendency to recur or progress intoWHO
grade IV gliomas (Brat et al., 2015). Despite recent advances in neurosurgery, radiotherapy
and chemotherapy, LGGs patients have a wide range of survival, ranging from 1 to 15 years
(Brat et al., 2015; Ceccarelli et al., 2016; Ricard et al., 2012). Currently, biomarkers used to
treat and predict the prognosis of LGGs are limited (Brennan et al., 2013; Louis et al., 2014),
so it is urgent to identify more molecular markers to provide a more objective and precise
tumor classification system for LGGs.

The genetic and epigenetic landscapes of LGGs have been extensively studied (Brat et al.,
2015; Chan, Mao & Ng, 2016; Suzuki et al., 2015). Transcriptomic data, one of the most
commonly available high-throughput molecular data, plays a critical role in identifying
novel tumor genetic biomarker and discovering new drug targets. Verhaak et al. (2010)
analyzed gene expression data of glioblastoma (GBM) and classified GBM into Proneural,
Neural, Classical, and Mesenchymal subtypes.Weller et al. (2015) analyzed transcriptome-
wide data of primary tumor samples identified eight transcriptionally different groups (five
isocitrate dehydrogenase (IDH)1/2 mutant, three IDH1/2 wild type). Recently, studies
have revealed that IDH mutations disrupt histone demethylation and suggest a better
survival rate (Lu et al., 2012). In particular, IDH mutation and 1p/19q deletion are used as
biomarkers to classify gliomas in the 2016 WHO classification of central nervous system
tumors (Louis et al., 2016). However, current molecular classification does not guarantee
accurate diagnosis and individualized medication for LGG patients.

DNA methylation, an epigenetic modification via methylation of cytosin carbon 5,
is an important epigenetic modification related to the pathogenesis of gliomas (Ellis,
Atadja & Johnstone, 2009; Herman et al., 1996; Noushmehr et al., 2010). Previous evidences
demonstrated that the increased methylation of DNA in 5’ upstream regulatory sites
negatively correlate with gene expression of some tumor-suppression genes (Merlo
et al., 1995). It is widely recognized that the activity of DNA-repair enzyme O (sup 6)-
methylguanine-DNAmethyltransferase (MGMT) is controlled by its promotermethylation
status, which can effectively predict the responsiveness of the gliomas to alkylating agents
(Esteller et al., 2000; Hegi et al., 2005). These evidences suggested that alteration of DNA
methylation can be exploited for functional characterizations and diagnosis of gliomas.
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However, there is still no clear understanding of the epigenetic alterations in LGGs, and of
the potential role of DNA methylation markers as prognostic biomarkers.

In the present study, we performed an integrated analysis of gene expression data and
DNA methylation data from The Cancer Genome Atlas (TCGA) and Chinese Glioma
Genome Atlas (CGGA) databases to determine novel prognostic genes and methylation
sites in LGGs. We found that the gene expression and methylation of SERPINA5 and
TIMP1 can function as prognostic predictors in LGGs, which might help to precise the
current histology-based tumors classification system and to provide better stratification
for future clinical trials.

MATERIALS AND METHODS
Lower-grade glioma datasets
TCGA LGG dataset was downloaded from the University of California Santa Cruz cancer
browser https://genome-cancer.ucsc.edu/ (version: 2015-02-24) as training dataset. In
total, 473 samples (225 grade II, 248 grade III gliomas) having clinical data were profiled
for class discovery and survival analysis. A total of 131 samples (97 grade II, 34 grade
III gliomas) from CGGA repository (http://cgga.org.cn/) was included in our analysis as
validation dataset, and all samples’ clinical data were downloaded for survival analysis.
Overall survival (OS) was defined as the time interval from resection until the date of death.
Relapse-free survival (RFS) is the period from resection to the radiological evidence of first
tumor recurrence.

Gene expression data analysis
Gene expression data of TCGA LGG are from the Illumina HiSeq 2000 RNA Sequencing
platform, and all counts data is then log2(count+1) transformed. The differential gene
expression analysis and the adjusting formultiple testingwas performedwith edgeRpackage
(Robinson, McCarthy & Smyth, 2010). The CGGA microarray dataset was generated by
Agilent Whole Human Genome Array, and probe intensities were normalized using
GeneSpring GX 11.0 (Yan et al., 2012). In the TCGA LGG dataset, 299 patients were
classified as short-term survivors (<2 years) and the remaining 174 patients as long-term
survivors (≥2 years). In order to exclude the influence of loss of follow-up or short
follow-up time, we excluded the samples that did not reach the end time, and only samples
that had died and had a clear survival time were included for screening of differential
expressed genes (DEGs). Thus, a total of 44 short-term survivors (<2 years) and 48
long-term survivors (≥2 years) were included in the gene differential expression analysis.
Genes were considered to have significant difference in expression if |log fold change
(FC)| ≥ 1.0 and adjusted P < 0.05. The prognostic value of DEGs generated from TCGA
lower-grade glioma dataset were then validated using Kaplan–Meier survival analysis with
the CGGA LGG microarray dataset.

DNA methylation analysis
DNA methylation data of TCGA LGG are generated by the Illumina Infinium
HumanMethylation450 platform. Mapping between probes on the RNA-seq and DNA
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methylation probes on the methylation array was performed. The β value was used to
estimate the methylation level of probes. Probes with β ≥0.5 was considered as hyper-
methylated sites, and β <0.5 was considered as hypo-methylated sites. The correlation
between gene expression levels andDNAmethylation levels were assessed using Spearman’s
correlation analysis. |Spearman r| ≥0.6 was indicated a strong correlation and P < 0.05
was considered as statistically significant (Zeng et al., 2018).

To investigate the correlation between gene expression and DNA methylation, we
performed a parallel DNAmethylation analysis of the candidate genes.Mapping SERPINA5
and TIMP1 to DNAmethylation probes identified 23 and 14methylation sites, respectively.
To obtain differentiallymethylated sites, patients were divided into two groups according to
the median of gene expression. Of the 37 methylation sites, 4 differential methylation sites
(SERPINA5 cg15509705; TIMP1 cg27151711; TIMP1 cg16523424; TIMP1 cg04791822)
were identified (Table S2).

Functional enrichment analysis
The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used
to identify the potential biological functions of co-differentially expressed genes (co-DEGs)
in LGGs (https://david.ncifcrf.gov/home.jsp) (Huang da, Sherman & Lempicki, 2009; Yan
et al., 2019). Gene ontology (GO) analysis, including biological processes (BP), molecular
function (MF), and cellular composition (CC), was performed to annotate these genes
and determine functional enrichment. P <0.05 was considered as statistically significant
for pathway enrichment. Then, the protein and protein interaction network of SERPINA5
and TIMP1 were constructed with GENEMANIA online database (https://genemania.org/)
(Warde-Farley et al., 2010; Zhang et al., 2017).

Statistical analysis
Statistical analyses were performed with SPSS 13.0 (SPSS Inc., Chicago, IL, USA) and
GraphPad Prism 5.0 (Graphpad Inc., San Diego, CA, USA). Nonparametric test was
performed to identify genes that were differentially expressed between two groups.
Spearman’s correlation analysis was used to determine the correlation between gene
expression levels and DNA methylation status. Kaplan–Meier survival analysis was carried
out to assess the survival distribution and the log-rank test was performed to determine the
significance of the differences between two groups (Wang et al., 2019). For multivariable
analysis, a Cox proportional hazardsmodelwas constructed forOSwith a limited backward-
LR procedure and was adjusted by potential confounding covariates. Hazard ratio (HRs)
and 95% confidence intervals (CIs) were used to describe the risk. P <0.05 was considered
as statistically significant.

RESULTS
Identification of prognostic DEGs in LGGs (Fig. 1)
We first sought to identify DEGs between 44 short-term survivors (<2 years) and 48 long-
term survivors (≥2 years) in the LGGs of TCGA microarray dataset. In total, 106 genes
(78 upregulated genes and 28 down-regulated genes) were identified to be differentially
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Figure 1 Identification of differential expressed genes between short-term survivors (<2 years) and
long-term survivors (≥2 years) in the lower-grade gliomas in the TCGAmicroarray dataset. (A) Vol-
cano plot of the differential genes expression analysis. (B) Hierarchical cluster analysis of the mRNA ex-
pression profiles of short-term survivors and long-term survivors.

Full-size DOI: 10.7717/peerj.9262/fig-1

Table 1 Differential expressed genes between short-term survivors (<2 years) and long-term sur-
vivors (≥2 years) in the lower-grade gliomas in the TCGAmicroarray dataset.

Differentially expressed genes (DEGs)

Up-regulated genes EMP3, FBXO17, SERPINA5, VAV3, IGFBP2, TIMP1,
METTL7B, CHI3L1, GALNT3, ABCC3, ZDHHC23, STAC,
AQP5, CMYA5, MOXD1, FBLN7, HILS1, HOXA3, VASN,
HOXA5, TOM1L1, MAP1LC3C, C13orf26, EVC2, WISP1,
RARRES2, PDLIM4, SHROOM3, NPNT, RBP1, NKX2-5,
GDF15, ANXA1, IGF2BP3, ADAM12, TSTD1, FABP5,
TRPM8, DSG2, MEOX2, MAOB, PLA2G5, C11orf63,
RYR3, HOXB3, HOXA2, PLA2G2A, CLEC5A, LOXL1,
RGS22, FMOD, SHOX2, DMRTA2, PDPN, CA3, POSTN,
SAA1, WNT16, CNGA3, LGR6, HOXA4, GPR1, LTF,
HOXA7, TCTEX1D1, C21orf62, HMGA2, CXCL14, OTP,
EYA4, HOXD11, SLC47A2, DDIT4L, COL22A1, IL13RA2,
DES, ALDH1A3, C2orf39

Down-regulated genes ADAMTS20, CRTAC1, TMEM100, DAPL1, HMX1,
WNT7B, NEUROD4, GFRA1, NDST4, FERMT1, PRLHR,
DLL3, C5orf38, LPPR3, SMOC1, SFRP2, LOC154822,
KLRC2, CSMD3, CUX2, PAX1, IRX2, HPSE2, SPHKAP,
TSHR, psiTPTE22, TLX1, IRX1

expressed (Fig. 1A, Table 1). The results of two-dimensional hierarchical cluster indicated
that the mRNA expression profiles of short-term survivors and long-term survivors
distributed in separate clusters (Fig. 1B).

Functional enrichment analysis of DEGs in LGGs
To explore the potential biological functions of prognostic related DEGs in LGGs, GO
categories and KEGG Pathway enrichment analysis were performed using the DAVID
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online database. GO analysis revealed that 106 DEGs were significantly enriched in cell
components such as proteinaceous extracellular matrix, extracellular space, extracellular
exosome and basement membrane, and was involved in the biological processes such as
multicellular organism development, thyroid gland development and anterior/posterior
pattern specification (Table S1 ). KEGG Pathway enrichment analysis showed that DEGs
mainly enriched in phenylalanine metabolism and histidine metabolism, but the result was
not significant (Table S1).

Survival value of top significant DEGs in LGGs
Then, TCGA-LGG and CGGA-LGG datasets were used to verify the prognostic value of
the top eight significant changed genes, including EMP3, FBXO17,METTL7B, SERPINA5,
SSTR5, TIMP1, TMEM61, VAV3. In the TCGA LGG dataset, SERPINA5 high expression
indicated the worse OS and RFS of LGG patients (Figs. 2D, 2L). However, TIMP1 high
expression can only predict the shorter OS of patients and has no significant correlation
with the RFS of LGG patients (Figs. 2F, 2N). Moreover, the expression of SERPINA5 and
TIMP1 in the CGGA dataset were coincident with those of TCGA dataset, with significant
differences in OS (Fig. 3). Additionally, SERPINA5 and TIMP1 mRNA expression were
significantly increased with the increase of glioma grades in both TCGA LGG dataset and
CGGA dataset (Fig. 4).

The association between expression of the candidate genes and clinical characteristics in
CGGA lower-grade glioma patients is presented in Table 2. Univariate analysis indicated
that karnofsky performance score (KPS) ≥70 was significantly associated with better
survival in patients (HR = 0.127, 95% CI [0.037–0.434], P = 0.001), and tumor grade
(grade III vs grade II) was significantly correlated with poor survival in patients (HR =
8.883, 95% CI [3.670–21.501], P = 0.000001). Multivariate analysis, adjusted for KPS and
tumor grade, also showed that the top two DEGs were significantly associated with survival.
TIMP1 high expression group exhibited poor survival as compared to low expression
group (HR = 8.656, 95% CI [2.578–29.060], P = 0.014). Unfortunately, SERPINA5 high
expression was not an independent poor predictor for OS of LGGs patients (HR = 0.473,
95% CI [0.192–1.164], P = 0.103).

DNA promoter hypermethylation silences SERPINA5 and TIMP1
mRNA expression
To investigate the correlation between gene expression and DNA methylation, we
performed a parallel DNAmethylation analysis of the candidate genes.Mapping SERPINA5
and TIMP1 to DNAmethylation probes identified 23 and 14methylation sites, respectively.
To obtain differentiallymethylated sites, patients were divided into two groups according to
the median of gene expression. Of the 37 methylation sites, 4 differential methylation sites
(SERPINA5 cg15509705; TIMP1 cg27151711; TIMP1 cg16523424; TIMP1 cg04791822)
were identified (Table S2). As shown in Fig. 5, the methylation status of 4 methylation sites
were remarkably lower in high gene expression group than low gene expression group.
Furthermore, the correlation analysis revealed that 4 methylation sites were negatively
correlated with gene expression levels (Spearman r <−0.4, P < 0.0001, Fig. 5).
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Figure 2 Correlation between the top six significant changed genes’ expression and patients’ survival
in lower-grade glioma with TCGA LGG dataset. (A–F) Kaplan–Meier plot for overall survival between
LGG patients with high level and low level of EMP3, FBXO17,METTL7B, SERPINA5, TIMP1, VAV3
mRNA expression in TCGA LGG dataset. (G–L) Kaplan–Meier plot for relapse-free survival between LGG
patients with high level and low level of EMP3, FBXO17,METTL7B, SERPINA5, TIMP1, VAV3mRNA
expression in TCGA LGG dataset.

Full-size DOI: 10.7717/peerj.9262/fig-2

SERPINA5 and TIMP1 methylation are potent prognostic markers for
LGGs
In order to identify the effect of these methylation sites on prognosis, we assessed
the association between 4 methylation sites and prognosis with the TCGA LGG DNA
methylation dataset. The samples were divided into two groups with methylation β value
of 0.5 as the cut-off value and the prognostic difference were compared. As shown in
Figs. 6A–6D, hyper-methylation of 4 methylation sites indicated better OS (SERPINA5
cg15509705: HR = 1.66, 95% CI [1.101–2.501], P < 0.0001; TIMP1 cg27151711: HR =
5.375, 95%CI [2.435–11.87], P < 0.0001; TIMP1 cg16523424: HR= 3.978, 95%CI [2.245–
7.049], P <0.0001; TIMP1 cg04791822: HR = 7.284, 95% CI [2.458–21.59], P <0.0001).
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Figure 3 Correlation between the top six significant changed genes’ expression and patients’ survival
in lower-grade glioma with CGGA dataset. (A–F) Kaplan–Meier plot for overall survival between patients
with high level and low level of EMP3, FBXO17,METTL7B, SERPINA5, TIMP1, VAV3mRNA expression
in CGGA dataset.

Full-size DOI: 10.7717/peerj.9262/fig-3

In addition, except for SERPINA5 cg15509705 (HR = 1.411, 95% CI [0.967–2.058],
P = 0.0762, Fig. 6E), hypo-methylation of 3 other methylation sites the high-risk group
exhibited significantly worse RFS (TIMP1 cg27151711: HR= 4.700, 95% CI [2.127–10.38],
P <0.0001; TIMP1 cg16523424: HR = 3.037, 95% CI [1.738–5.307], P < 0.0001; TIMP1
cg04791822: HR = 5.653, 95% CI [1.936–16.51], P < 0.0001, Figs. 6F–6H).

Functional enrichment analysis of SERPINA5- and TIMP1-associated
co-expressed genes
Then, we used GENEMANIA online database to identify the proteins interacting with
SERPINA5 and TIMP1. As shown in Fig. 7A, SERPINA5 mainly interacts with PROC,
which has serine hydrolase activity and functions as a negative regulation of hemostasis
and coagulation. While TIMP1 interacts with extracellular matrix proteins MMP1, MMP3
and MMP9, and participants in the processes of extracellular matrix disassembly and
organization, collagen catabolism and metabolism (Fig. 7B).

DISCUSSION
This study was conducted to identify DEGs between long-term and short-term survivors
in LGGs with TCGA LGG RNA-seq dataset and we obtained 106 DEGs, among which
SERPINA5 and TIMP1 were differentially expressed. Since removing the ‘‘the samples that
did not reach the end time’’ might skew the results, we analyzed the differentially expressed
genes without removing any data, and SERPINA5 and TIMP1 were also differentially
expressed between short-term and long-term survivors in LGGs (SERPINA5: log FC =
0.833, adjusted P = 0.00488; TIMP1: log FC = 0.788, adjusted P = 0.00253). Thus, this
study focused on these two genes.
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Figure 4 SERPINA5 and TIMP1mRNA expression in glioma tissues. (A, B) The mRNA expression of
SERPINA5 in grade II or grade III patients in TCGA LGG and CGGA LGGs cohort. The results are mean
± SD, ∗P < 0.05, ∗∗∗∗P < 0.0001. (C, D) The mRNA expression of TIMP1 in grade II or grade III patients
in TCGA LGG and CGGA LGGs cohort. The results are mean± SD, ∗P < 0.05, ∗∗∗∗P < 0.0001.

Full-size DOI: 10.7717/peerj.9262/fig-4

Table 2 Associations of SERPINA5 and TIMP1 expression with clinical variables in CGGA dataset.

Overall survival Univariate Multivariate
P-value HR [95% CI] P-value HR [95% CI]

Age 0.066 1.037[0.998–1.078] ns –
Gender: male vs female 0.474 1.342[0.599–3.006] ns –
Histology, Astrocytoma 0.104 2.024[0.866–4.731] ns –
Oligoastrocytoma/Oligodendroglioma ns –
KPS: ≥70 vs <70 0.001 0.127[0.037–0.434] ns –
IDH1: mut vs wild type 0.305 0.656[0.293–1.467] ns –
Tumor grade: Grade ?vs Grade? 0.000001 8.883[3.670–21.501] 0.000257 5.551[2.214–13.915]
SERPINA5 expression: high vs low 0.103 0.473[0.192–1.164] ns –
TIMP1 expression: high vs low 0.000478 8.656[2.578–29.060] 0.014 4.825[1.370–17.000]

Notes.
Bold font indicates statistical significance.
KPS, karnofsky performance score; IDH1, isocitrate dehydrogenase 1; SERPINA5, Serpin family A member 5; TIMP1, TIMP Metallopeptidase Inhibitor 1; HR, Hazard ra-
tio; CI, confidence intervals.
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Figure 5 DNAmethylation of SERPINA5 and TIMP1 is related to gene expression. (A, C, E, G) Ac-
cording to the median of gene expression, LGGs samples were divided into two groups to obtain differ-
ential methylation site between two groups. The results are mean± SD, ∗∗∗∗P < 0.0001. (B, D, F, H) The
correlation between SERPINA5 and TIMP1 gene expression levels and DNA methylation levels of CpG
sites were assessed using Spearman’s correlation analysis.

Full-size DOI: 10.7717/peerj.9262/fig-5
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Figure 6 Methylation of SERPINA5 and TIMP1 CpG sites is associated with the survival of LGGs pa-
tients. Samples were divided into two groups with methylation beta value of 0.5 as the cut-off value and
compared the difference of prognosis between the two groups. (A–D) Kaplan–Meier survival curves for
overall survival between differentially methylated status of SERPINA5 and TIMP1 and patients in the
TCGA LGG patients. (E–H) Kaplan–Meier plot for relapse-free survival between patients with hyper-
methylation and hypo-methylation of SERPINA5 and TIMP1 in TCGA LGG patients.

Full-size DOI: 10.7717/peerj.9262/fig-6
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Figure 7 The PPI network of SERPINA5 and TIMP1 generated by the GENEMANIA online database.
Full-size DOI: 10.7717/peerj.9262/fig-7

SERPINA5 (protein C inhibitor, PCI) is a member of serine protease inhibitor super
family, which can inhibit several serine proteases, including protein C and various
plasminogen activators and kallikreins, and it thus plays diverse roles in hemostasis and
thrombosis in multiple organs (Yang & Geiger, 2017). Extracellular matrix degradation is
facilitated by uPA, allowing tumor cells to invade surrounding tissue (Fortenberry, 2015).
SerpinA5 is an uPA inhibitor that prevents the conversion of plasminogen to plasminogen
and subsequent extracellular matrix degradation (Smith & Marshall, 2010). Previous
studies indicated that the dysregulation of SERPINA5 has been implicated in migration,
invasion and metastasis in hepatocellular carcinoma, ovarian and prostate cancers
(Bijsmans et al., 2011; Cao et al., 2003; Jing et al., 2014). However, the roles of SERPINA5
in gliomas remains unknown. In this study, we found that SERPINA5 expression was
significantly correlated with OS and RFS in LGG patients, and SERPINA5 high expression
indicated patients with worse survival. More recently, researchers have found that the high
methylation degree of CpG sites significantly correlated with lower SERPINA5 expression
levels and two distinct CpG sites of the SERPINA5 promoter were hypermethylated in
normal epithelial prostate cells, benign hyperplasic cells and low-invasive malignant
LNCaP cells, whereas essentially unmethylated in aggressive DU-145 and PC-3 cell line
(Hagelgans et al., 2017). In addition, SERPINA5 has been identified to be more highly
methylated in HR-, basal-like, or p53 mutant breast cancer than HR+, luminal A, or p53
wild-type breast cancers, and gene signature composed of SERPINA5 and 3 other genes
can predict the prognosis of patients with stage I LUAD (Conway et al., 2014; Luo, Wang
& Zhang, 2018). These evidences suggested that methylation of SERPINA5 may be used
to indicate the malignancy of some tumors and to predict the prognosis of patients. In
this study, our results also shown that hyper-methylation of SERPINA5 was statistical
significantly association with lower expression and better prognosis in LGGs. Previous
research has reported that the expression of coagulation inhibitors PRCO and SERPINA5
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is strongly regulated by sex-specific GH patterns (Wong et al., 2008). While the exact role
of SERPINA5 in glioma progression remains to be determined.

Experimental studies have demonstrated the contribution of TIMPs to the majority of
cancer hallmarks, and human cancers invariably have shown TIMP deregulation in the
tumor or stroma (Jackson et al., 2017). Previous studies reported that the characteristic of
human neural stem cells (hNSCs) migration towards intracranial glioma is regulated by the
TIMP1 (Lee et al., 2014). Moreover, researchers have shown that both serum TIMP1 level
and TIMP1 mRNA expression of glioma tissue in GBM patients were significantly higher
than grade II/III patients (Sreekanthreddy et al., 2010;Xu et al., 2019), and serumangiogenic
profile in GBM patients identified that the serum TIMP-1 level as an independent predictor
of survival (Crocker et al., 2011). The overall relationship of high TIMP1 expression with
poor cancer outcome has been demonstrated in gliomas (Aaberg-Jessen et al., 2009).
Consistent with previous studies, our results shown that TIMP1 high expression was also
independent poor predictor for OS. Additionally, we also found that methylation of TIMP1
were highly negatively correlated with its gene expression and hyper-methylation of TIMP1
indicated better OS and RFS. Collectively, these results suggested that TIMP1 may be
an important biomarker in glioma patient fluids and target for designing therapy. Thus,
further studies should be performed to establish the exact mechanisms of TIMP1 in the
tumor microenvironment and its pro-tumorigenic function in gliomas. TIMP1 mainly
participants in the processes of extracellular matrix disassembly and organization (Soini
et al., 2001). Further experiments are needed to explore the precise role of TIMP1 in glioma
progression, and the potential application for the novel treatment of LGGs.

Previous evidences indicated that dysregulation of F-box protein-mediated
ubiquitylation has been implicated in cancer and other diseases (Duan et al., 2012; Frescas
& Pagano, 2008). In this study, we also found that FBXO17 high expression indicated
LGGs patients with worse survival. Moreover, our results shown that hyper-methylation of
FBXO17 was statistical significantly association with lower expression and better prognosis
in LGGs (Fig. S1 ). In addition, it has been reported that EMP3 high expression is associated
with a worse prognostic significance in OS in glioma patients (Gao et al., 2016; Zeng et al.,
2018). Consistent with previous studies, our study also supported an oncogenic role on the
part of EMP3 in glioma.

IDH1/2 mutations are clearly important prognostic markers in gliomas (Sanson et al.,
2009; Weller et al., 2009; Yan et al., 2009). In LGGs, patients with IDH1/2 mutation
have better prognosis than patients with IDH wild-type (Lu et al., 2012). In anaplastic
oligodendroglial tumors, IDH1 mutation are prognostic for overall survival but not
predictive for outcome to PCV chemotherapy (Van den Bent et al., 2010). In this study,
we analyzed the prognostic value of IDH mutation for LGG patients using CGGA LGG
dataset and found that there was no significant difference in overall survival between IDH
mutation and IDH wild-type patients, whichmay be caused by the unbalanced distribution
of 1p/19q co-deletion, MGMT methylation and the TCGA molecular subtypes. Therefore,
it is a limitation that we did not compare the prognostic value of the proposed markers
(SERPINA5 and TIMP1) with the previously recommended or currently used marker
IDH1.
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CONCLUSIONS
In this study, we identified SERPINA5 and TIMP1 as prognostic predict markers in LGGs,
and the methylation of these genes is correlated with the survival of LGG patients. Our
research indicated that both genes expression strongly correlated with methylation level
are more likely to be associated with cancer outcomes. In addition, the present study firstly
revealed that SERPINA5 hypo-methylation was negatively correlated with its expression,
and both hypo-methylation and high expression of SERPINA5 predict poor survival in
LGGs.
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