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Antibiotic resistance and viral diseases are rising around the world
and are becoming major threats to global health, food security,
and development. One measure that has been suggested to
mitigate this crisis is the development of new antibiotics. Here,
we provide a comprehensive evaluation of the phylogenetic and
biogeographic patterns of antiinfective compounds from seed
plants in one of the most species-rich regions on Earth and identify
clades with naturally occurring substances potentially suitable for
the development of new pharmaceutical compounds. Specifically,
we combine taxonomic and phylogenetic data for >7,500 seed
plant species from the flora of Java with >16,500 secondary me-
tabolites and 6,255 georeferenced occurrence records to 1) identify
clades in the phylogeny that are characterized by either an over-
representation (“hot clades”) or an underrepresentation (“cold
clades”) of antiinfective compounds and 2) assess the spatial pat-
terns of plants with antiinfective compounds relative to total plant
diversity across the region. Across the flora of Java, we identify
26 “hot clades” with plant species providing a high probability of
finding antibiotic constituents. In addition, 24 “cold clades” consti-
tute lineages with low numbers of reported activities but which
have the potential to yield novel compounds. Spatial patterns of
plant species and metabolite diversity are strongly correlated
across Java, indicating that regions of highest species diversity
afford the highest potential to discover novel natural products.
Our results indicate that the combination of phylogenetic, spatial,
and phytochemical information is a useful tool to guide the selec-
tion of taxa for efforts aimed at lead compound discovery.

natural products | biodiversity | chemical diversity | phylogenetics |
chemoinformatics

The continued high rates of antibiotic use in healthcare and
livestock farming have led to a dramatic increase in antimi-

crobial resistance, with multidrug-resistant bacteria emerging as
a major public health threat worldwide (1). Scientists have
warned that we very soon might face a “postantibiotic era” (2),
just 90 y after the discovery of penicillin by Sir Alexander
Fleming. The major threats of antimicrobial resistance include a
longer duration of illnesses as well as an increase of infection-
related mortality rates, higher costs of medical treatments, and
the inability to perform certain procedures due to the high risk of
postoperative infections (2). A number of strategies have been
suggested to alleviate these risks, including a more responsible
use of antibiotics, improvements of infection control measures,
heightened awareness of the risks of increasing resistance, and
the development of novel antimicrobial agents (1). However,
despite the urgent need for new antibiotics, many pharmaceuti-
cal companies have largely suspended their antibiotic drug dis-
covery efforts, mainly due to very high investment and low
returns, as well as legislative and other restrictions (1, 3).
Nine antibiotic classes, which can be differentiated based on

their scaffolds (the core molecular structure common to each

class), contribute to most of the clinically approved antibiotics
today. The incremental modification of available natural scaf-
folds has become the prevailing approach of antibiotic drug
discovery (4, 5). Most of these were developed between the mid-
1930s and early 1960s, and only three new classes were in-
troduced after an innovation gap of around 40 y (4), despite
having already been known for at least two decades. While
combinatorial chemistry has allowed the pharmaceutical industry
to produce and screen vast numbers of molecules, this approach
was only moderately successful in finding compounds with new
modes of action (3, 5). Compound libraries produced through
combinatorial chemistry might have larger numbers of com-
pounds, but unless focused around an already known lead
compound (new chemical entity with the potential to develop a
new drug; ref. 6) they contain a lower rate of biologically relevant
ones (7). Only 22 to 33% of the antiinfective drugs approved
between 1981 and 2014 have active ingredients of synthetic ori-
gin, while the vast majority are natural products, or their deriv-
atives or mimetics (5).
Plants have been used medicinally since ancient times (e.g.,

the use of poppy by Sumerians around 4000 BCE; ref. 8), and—
considering the number of people depending on them—still
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constitute the most important part of healthcare today, as a
major part of the developing world depends on traditional
medicine as primary health care (9). Of the ∼370,000 seed plant
species that are scientifically described and named (10) only a
fraction have been studied phytochemically or evaluated for their
biological activity (11). Even if most clinically used antibiotics
are derived from microbial origin, plants should not be dis-
regarded as a source for antiinfective agents since they have
exceptional abilities to produce cytotoxic agents and to resist
pathogenic microorganisms (12, 13). More than 200,000 natural
products have been discovered from plants to date (14), with
estimates of the total number exceeding 500,000 (15). While
there should be an abundance of undiscovered bioactive plant
natural products (16), selecting target species for screening and
phytochemical evaluation is not trivial (but see ref. 17). In the
past, random sampling and ethnobotanical approaches were
most common (16, 18), whereas approaches incorporating evo-
lutionary thinking or ecological observations have been rare (but
see refs. 19 and 20–23).
Throughout their evolutionary history, plants have developed

a wide range of chemical compounds associated with their
growth and survival as well as with interactions with their abiotic
and biotic (intra- and interspecific) environment, which de-
termine their survival and ultimately their evolutionary success
(24). Novel metabolites can originate through several processes,
such as gene or whole-genome duplication events (25, 26) fol-
lowed by divergence (18, 27, 28). These events may uncouple
gene copies from selective pressures and eventually lead to the
emergence of novel metabolites (29). Furthermore, already
existing pathways may be modified to produce novel metabolites
under natural selection (30). Thus, given that chemical com-
pounds represent an adaptation to a species’ ecological niche,
and assuming that ecological niches are at least to some extent
conserved (i.e., ancestral ecological tolerances are retained; ref.
31), specific metabolites will not be randomly distributed across
species but generally shared among closely related ones (14, 30,
32). This correlation between phylogeny and biosynthetic path-
ways (phylogenetic signal; e.g., refs. 33 and 34) allows for a more
efficient selection of plants for lead compound discovery (20, 22,
35–38) by identifying clusters of species with desired metabolite
profiles (39). Zhu et al. (19) showed that families producing
“drugs” across plants, bacteria, fungi, and metazoa tend to be
concentrated in “drug-producing” clusters in the respective
phylogenies: Eighty percent of approved drugs are concentrated
in 17 “drug-prolific” families. Furthermore, they suggested that
the paucity of drugs outside “drug-productive” families is not
necessarily the result of underexploration but indicates a lack of
appropriate compounds. However, in contrast to these findings,
almost 30% of novel secondary metabolites published in 2001 to
2011 were found in families outside these “drug-productive”
clusters, showing that previously unrecognized groups can sig-
nificantly contribute to novel drug leads (19). At the same time,
the shared evolutionary history suggests that biological and
chemical diversity might not be correlated linearly as closely
related species would tend to produce similar metabolites. In
addition, if the number of molecular scaffolds available through
common metabolic pathways is limited, so should be the number
of possible metabolites (18), suggesting that the rates of evolu-
tion of chemical diversity might be lower than that of species
diversity (40). Also, similarity in metabolites should not be mis-
taken as similarity in function or bioactivity, as a single simple
structural change can substantially change the biological profile.
In order to streamline and target the search for new anti-

infective compounds, we present an approach that integrates
phylogenetic and spatial data with information on bioactivity. As
only a small portion of known plant species have been thor-
oughly screened, high biodiversity regions offer a great potential
for the discovery of new lead compounds (41). With more than

40,000 species of vascular plants, the Malesian region is one of
the global centers of plant species richness (42–44). Within this
region, Indonesia stands out particularly, being one of 17 megadiverse
countries (45) and containing the world’s third-largest area of
rainforest, spread over more than 16,000 islands. At the same
time, however, the biodiversity of this region is under severe
threat from habitat loss, highlighted by two biodiversity hotspots
(Wallacea and Sundaland; refs. 46 and 47). In addition, many
medicinal plants are under threat from overexploitation due to
unsustainable or destructive harvest (48–50). Thus, we stand not
only to lose known medicinal plants but also plants with
until-now-unknown properties and potentially new compounds
of medicinal value. Focusing on the island of Java, we combine
taxonomic, phylogenetic, spatial, and phytochemical information
to 1) identify over-/underrepresentation of antiinfective activities
across the flora and 2) evaluate the relationship between bio-
diversity and secondary metabolite diversity.

Results and Discussion
Natural Product Classes.The most frequent natural product classes
that were identified for the 16,072 metabolites of Javanese seed
plants were terpenes, phenylpropanoids, phenols, sugars, and
lactones, coinciding with the general distribution in plants (Ta-
ble 1). Remarkably, we found antiinfective metabolites in each of
the natural product classes incorporated here. Among these,
metabolites with a fluorene motif were observed to have the
highest proportion of antiinfectives (75%; Table 1). However,
this is also the natural product class with the fewest number of
metabolites (eight, with six identified as antiinfective). Other
classes with a high ratio of antiinfective metabolites were qui-
nones (29%), xanthones (24%), anthracenes (23%), and cou-
marins (23%). Indeed, these natural product classes frequently
display antiinfective activities (12, 51), and several have distinct
redox properties, a trait that usually is less favored for com-
mercial antibiotics. The natural product classes with the lowest
proportion of antiinfective metabolites are sugars and glycosy-
lated compounds (6.7%). This is not surprising, since those
metabolites will have a growth-promoting effect on pathogens
due to their easily accessible carbon source. In addition, their
hydrophilicity does not make them very bioavailable as such,
although glycosides often act as storage compounds and pro-
drugs of their aglycones in plants, and thus their potential may be
underestimated (52).

Phylogenetic Analyses.We found significant levels of phylogenetic
signal of antiinfective activities for all species found on Java (D =
0.655) as well as for native species only (D = 0.691; SI Appendix,
Table S1). The observed values of D differed significantly both
from a random distribution as well as from a conserved pattern
(Brownian motion). This demonstrates an underlying phyloge-
netic pattern in the distribution of drug-productive sources in
seed plants, which is an important prerequisite for utilizing
phylogenetic data for lead compound discovery. Our phyloge-
netic analyses of antiinfective activities identified 26 and 21
clades across the two phylogenies with a significant degree of
clustering (i.e., overrepresentation of antiinfective activities,
hereafter referred to as “hot clades”) when considering all spe-
cies or native taxa only, respectively (Fig. 1). These clades con-
tained 40 seed plant families (25 in whole and 15 in part) in the
combined analysis (Fig. 1A) and 21 families (12 in whole and
nine in part) in the native-only analysis (Fig. 1B), respectively.
Furthermore, we found 24 clades (nine in the native-only data)
where antiinfective activities were significantly underrepresented
(hereafter “cold clades”; Fig. 1), which included a total of 27
families (13 in the native-only data), of which 16 (15 in the
native-only data) were represented as a whole and 11 families
(two families in the native-only data) in part (SI Appendix, Tables
S2–S5). It is striking that antiinfective activities appear to be
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underrepresented in the monocotyledons (seven “cold clades”
including 10 families across all species, four “cold clades” with
five families across the native plant species as a whole or in part),
with grasses (Poaceae) and orchids (Orchidaceae) as the most
species-rich families within these “cold clades.” Although rep-
resentatives of both families have been reported to contain
bioactive secondary metabolites, they are relatively poorly stud-
ied considering their exceptional species richness (53–55). In the
analysis of all seed plants on Java, a few “hot” and “cold” clades
were found to be nested within each other, meaning that a “cold
clade” may be found to be nested within a clade where, as a
whole, antiinfective activities were overrepresented (“hot
clade”). Four “cold clades” (clades 12, 13, 15, and 16; SI Ap-
pendix, Fig. S2 and Table S3) were nested inside “hot clades”
(clades 11 and 12; SI Appendix, Fig. S2 and Table S2), while one
“hot clade” (clade 9; SI Appendix, Fig. S2 and Table S2) was
found to be nested within a “cold clade” (clade 8; SI Appendix,
Fig. S2 and Table S3).
The overlap between the two analyses (all vs. native taxa only)

is considerable, with seven “hot clades” and six “cold clades”
being consistently recovered in both analyses, for example
Orchidaceae as a “cold clade” in both the combined and native-
only analysis (clades 2 and 1; see SI Appendix, Figs. S1 and S2
and Tables S2 and S3, respectively). Furthermore, eight “hot
clades” (e.g., clades 11 [Asteraceae] and 13 [Lamiales]; SI Ap-
pendix, Fig. S2 and Table S5) and one “cold clade” (clade 3; SI
Appendix, Fig. S2 and Table S4) were largely congruent in both
analyses. Despite the high degree of overlap between both
analyses, there are also some striking differences. Ten “hot
clades” found in the analysis of the entire flora are not recovered
when considering native taxa only (Fig. 1B), which is attributable

to two possible phenomenona: Either a clade comprises only
introduced taxa or the ratio between bioactive and inactive
species is substantially reduced due to the exclusion of the
nonnative species with antiinfective effects, thus causing the
clade to lose the significant overrepresentation. Indeed, many
nonnative plant species will have likely been introduced specif-
ically because of their use in traditional medicine (56). The “hot
clade” comprising Amaryllidaceae, Asparagaceae, and Liliaceae
(clade 5 in SI Appendix, Fig. S1 and Table S2) is a case in point of
the second scenario. With ca. 90% introduced species in total,
most antiinfective species are excluded in the native-only anal-
ysis. Other “hot clades” like the Asteraceae (clade 11 in SI Ap-
pendix, Figs. S2 and S3 and Tables S2 and S4) remain but are
substantially reduced in size. Here, only 33 of the 131 species in
the “hot clade” remain in the native-only analysis. Over a third of
the species that comprise the new “hot clade” (clade 11 in SI
Appendix, Fig. S3 and Table S4) belong to the following genera:
Blumea, Carpesium, Pluchea, Pterocaulon, and Sphaeranthus. All
of these are native to Java (without any introduced species) and
for over 50% of the species antiinfective effects have been de-
scribed. The genera are widely distributed and relatively rich in
species (ca. 10 to 100 species per genus), which might contribute
to their prevalence in phytochemical and ethnobotanical re-
search. Widespread, species-rich, and herbaceous taxa are often
found to contain bioactive compounds, as larger geographical
and wider ecological ranges potentially allow for more oppor-
tunities for adaptation to different conditions (57–59), as well as
easier access for researchers. In contrast, four additional “hot
clades” are recovered in the native-only data: Menispermaceae
(clade 7), Polygonaceae (clade 8), Molluginaceae (clade 9), and
Cornaceae (clade 10; SI Appendix, Fig. S3 and Table S4). Similar

Table 1. Natural product classes found for the 16,072 metabolites present in Javanese
seed plants

No. of metabolites

Natural product class Antiinfective metabolites Remaining metabolites Sum Antiinfective, %

Acyclic alkaloid 130 (2.6%) 722 (2.6%) 852 15.3
Cyclic alkaloid 463 (9.3%) 1,884 (6.8%) 2,347 19.7
Anthracene 33 (0.7%) 109 (0.4%) 142 23.2
Benzofuran 127 (2.5%) 599 (2.2%) 726 17.5
Coumarine 82 (1.6%) 281 (1.0%) 363 22.6
Fatty acid (ester) 228 (4.6%) 1,828 (6.6%) 2,056 11.1
Flavonoid 296 (6.0%) 1,909 (7.0%) 2,205 13.4
Fluorene 6 (0.1%) 2 (0%) 8 75.0
Isoflavonoid 100 (2.0%) 414 (1.5%) 514 19.5
Lactam 44 (0.9%) 305 (1.1%) 349 12.6
Lacton 420 (8.4%) 2,101 (7.6%) 2,521 16.7
Macrocycle 72 (1.4%) 333 (1.2%) 405 17.8
Peptide 19 (0.4%) 185 (0.7%) 204 9.3
Peptoid 38 (0.8%) 253 (0.9%) 291 13.1
Phenanthrene 59 (1.2%) 288 (1.0%) 347 17.0
Phenolic 681 (13.6%) 3,499 (12.7%) 4,180 16.3
Phenylpropanoid 834 (16.7%) 3,669 (13.3%) 4,503 18.5
Polyacetylene 145 (2.9%) 712 (2.6%) 857 16.9
Polyketide 21 (0.4%) 112 (0.4%) 133 15.8
Quinone 85 (1.7%) 204 (0.7%) 289 29.4
Steroid 122 (2.4%) 871 (3.2%) 993 12.3
Sugar 193 (3.9%) 2,684 (9.8%) 2,877 6.7
Terpene 739 (14.8%) 4,328 (15.7%) 5,067 14.6
Xanthone 51 (1.0%) 165 (0.6%) 216 23.6
No class assigned 15 (0.3%) 55 (0.2%) 70 21.4

For each natural product class, we provide the total number and proportion of all metabolites (in
parentheses) for the 2,859 compounds labeled as antiinfective and the remaining 13,213 metabolites,
respectively. In addition, we calculated the sum and proportion of antiinfective metabolites for each natural
product class. It should be noted that metabolites can be assigned to multiple natural product classes.
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patterns are observed with regard to the “cold clades”: In total,
15 clades disappear and one clade increases in size from the
family Araliaceae (clade 11; SI Appendix, Fig. S2 and Table S3)
to the whole order Apiales (clade 5; SI Appendix, Fig. S3 and
Table S4), when only native taxa are considered. Again, human
preselection may account for the result, as, for example, food
plants are often introduced which commonly lack significant
bioactivity (other than nutritional and flavor/fragrance/color
properties).
The taxonomic analyses (SI Appendix, Fig. S4 and Table S6)

showed that the average ratio of antiinfective species per family
was 26% and 20% for the analyses with all taxa and natives-only,
respectively. When compared with the phylogenetic analyses, we
found a large degree of overlap. Just as in the phylogenetic
analyses, Amaryllidaceae and Asparagaceae lay above the 95%
CIs when all species were considered but fell within the CIs when
only the native species were analyzed. The fourth family in this
clade (clade 5; SI Appendix, Fig. S1 and Table S2), Liliaceae,
however, did not fall above the 95% CI in both analyses. We also
found a few notable differences between the analyses, as a
number of families that are above the 95% CI in the taxonomic
analyses (e.g., Polygonaceae and Rhizophoraceae) do not appear
in “hot clades.” In some cases, the phylogenetic analyses
revealed a more complex pattern of over- and underrepresen-
tation of antiinfective activities than the taxonomic analyses.
Rubiaceae fell below the 95% CI in the taxonomic analyses
(despite having a number of species with documented anti-
infective activities), while in the phylogenetic analyses two small
“hot clades” (clade 14; SI Appendix, Fig. S2 and Table S2 and
clade 17; SI Appendix, Fig. S3 and Table S4) are recovered with
11 and 9 species, respectively. These all belong to the subfamily
Cinchonoidae (tribe Naucleeae), which is characterized by the
occurrence of oxidized indole alkaloids. Thus, the low percent-
age of antiinfective species in the taxonomic analysis is due to the
restriction of antiinfective activities to one subfamily within the
very species-rich Rubiaceae.

In addition, the taxonomic analyses indicate that Fabaceae
have significantly more taxa with antiinfective activities com-
pared to the rest of the flora, corroborating the phylogenetic
analysis of all species, which identified two “hot clades,” covering
over 90% of Fabaceae (230 species; clades 25 and 26; SI Ap-
pendix, Fig. S2 and Table S2). The analysis of the native taxa on
the other hand found three small “hot clades” (clades 16 to 18;
SI Appendix, Fig. S2 and Table S5) with a total of 37 species, with
two-thirds of the family not diverging significantly from the
overall pattern. Given the >19,500 species in this family (60), this
should not come as a surprise, but it highlights how our approach
avoids any bias that focusing on any specific taxonomic level
might introduce, and argues for the importance of a phylogenetic
approach instead of following a strict taxonomic one. Within
Fabaceae, the antiinfective activities might be correlated with the
presence of isoflavonoids. This compound class was not reported
for any of the genera forming the “cold clade,” but was over-
represented in genera of the “hot clade.” Finally, the taxonomic
analyses for families that were represented by only a few species
on Java (usually fewer than four) need to be interpreted with
great caution, as the proportion of bioactive species can quickly
reach extreme values, because of the small sample size. Thus,
these will not be discussed further here.

Spatial Analyses. We modeled the spatial distribution of 1,895
Javanese seed plant species. The relative contribution of the
environmental variables used for the species distribution mod-
eling showed no substantial differences between climatic and soil
variables (SI Appendix, Table S7). The evaluation of the model
(SI Appendix, Table S8) showed a relatively high species richness
error (988.32 ± 306.90), which is mainly due to the data type (few
presence data with randomly generated absences). The speci-
ficity measure shows that absence data are predicted correctly in
almost 50% of the cases (which again reflects the random dis-
tribution of absence data), while 97% of the occurrences are
predicted correctly (sensitivity).

Gymno-
spermae

Magnoliids

MonocotsBasal
Eudicots

Malvids

Rosids

Caryophyllales

Campanulidae

Lamiidae

all seed plant species (introduced and native)  all native seed plant speciesA B

Fig. 1. Phylogenetic patterns of antiinfective activities across the flora of Java. Overrepresentation (“hot clades,” red) and underrepresentation (“cold
clades,” blue) were identified using the presence of known antiinfective activities (black bars at tips) for all seed plant species on Java (A) and the native
species only (B). Details of each “hot” and “cold” clade can be found in SI Appendix, Figs. S2 and S3 and Tables S2–S5.
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Areas with the highest number of species are found in
mountainous regions across Java, and the lowest species richness
can be found in the lowlands of central and west Java (Fig. 2A).
The Shannon index of metabolite diversity shows a pattern very
similar to that of species diversity (Fig. 2C). Indeed, plant di-
versity and metabolite diversity appear to be strongly correlated
across Java (r2 = 0.81; Fig. 2E) and our analyses did not exhibit a
saturation of metabolite diversity with increasing plant diversity,
which is probably due to the limited geographic (only Java) and
taxonomic (only seed plants) extent. If sampling was extended to
continental to global scales or with complete taxonomic sampling
of individual clades, we would expect to observe saturation of the
species richness–metabolite relationship. In addition, metabolite
information was available for only 1,001 of the modeled species,
and it is unlikely that all metabolites occurring in a species will be
known. Classical natural product chemists and pharmaceutical
biologists usually pick only selected compounds (easily separa-
ble, abundant, or bioactive), while modern metabolic profiling
approaches across species (61, 62) are still unable to extract and
detect all metabolites—and are far from identifying more than
half of them.
Several factors have to be kept in mind with regard to the

phylogenetic and spatial patterns of antiinfective activities. First,
convergent evolution may explain irregular patterns (63) ob-
served by some studies (32, 38), in which the distribution of
metabolites or activities does not closely match the phylogeny of
the investigated plant taxa. However, for medicinal chemistry
such events can be of high interest in that they can provide ad-
ditional evidence for a relevant lead (convergence into similar
structures) or even provide the equivalent to scaffold hopping
with functional convergence (convergence onto a target or effect
with different structures). A similar pattern can be caused by
horizontal gene transfers between plants and pathogens (64).

Second, not all metabolites are constitutively expressed but may
be produced as a response to herbivory or other damage, and the
biosynthesis may vary with the developmental stage, organ, or
the abiotic environment (65). Finally, the documentation of
taxonomic and geographic data in natural product research is
often lacking or inconclusive (66), which can hinder effective
bioprospecting (see also Materials and Methods). In a large sur-
vey such as this one, the potential of any single species for its
antibiotic effects remains unpredictable, but for larger clades
statistically supported guidelines can be derived to help re-
searchers in the field and laboratory. Our study provides an
approach to identify geographic areas for maximum levels of
metabolite diversity (ideally also structural and functional), as
well as taxa based on their metabolite prevalence (e.g., anti-
infectives). Furthermore, the search for new lead compounds has
implications for the conservation of natural resources as well as
intellectual property rights and benefit sharing (67). Traditional
medicinal plants are still mainly sourced from natural pop-
ulations, so overexploitation and habitat destruction pose a
major threat to the sustained availability of these resources.
Some of these issues can be addressed with the help of our ap-
proach, in that alternative sources or less threatened habitats
may be identified. This might be extended to biotechnological
analyses, for example of pathways suggested to produce the
valuable compounds (68, 69).

Conclusion
We detected strong phylogenetic and spatial patterns in the
distribution of antiinfective activities across the flora of Java.
Our results indicate that the combination of phylogenetic, spa-
tial, and phytochemical information is a useful tool to guide the
selection of taxa for directing efforts aimed at lead compound
discovery. We suggest two major paths for future lead compound
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Fig. 2. Spatial patterns of seed plants and secondary metabolites on Java. Spatial patterns of all modeled seed plant species (A) and of seed plant species
found in “hot clades” (B) are contrasted with the overall metabolite diversity (C) and the diversity of secondary metabolites of species found in “hot clades”
(D). The latter two are calculated using the Shannon index, which takes the relative abundance of each metabolite into account. Plant species richness and
metabolite diversity are closely correlated across Java (E).
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discovery from natural products. First, species within “hot
clades” without documented antiinfective activities have a high
probability of providing bioactive compounds of a given type.
Importantly, given the sometimes considerable variation of
chemical compounds among closely related species (38), these
species might still provide new compounds or activities. The
Rubiaceae constitute a particularly interesting group for further
analyses, since the family is species-rich, with only a few species
having a documented antiinfective activity (but enough to make
them a “hot clade”). Second, species within “cold clades” (“high
risk–high reward” clades) have an overall low probability for
antiinfectives, but at the same time any compound found has a
higher probability of being new for the screened activity, and
potentially even structurally novel. Both strategies, the exploi-
tation of new sources as well as the discovery of new derivatives
or structurally novel compounds acting as new leads on anti-
infective targets, are urgently needed, and we suggest that this
approach should be extended to other geographical regions and
biological activities.

Materials and Methods
An overview of the data and analysis pipeline can be found in SI Appendix,
Fig. S1.

Taxonomic and Metabolite Information/Bioactivity Profiles. We extracted all
taxonomic information from the Flora of Java volumes 1 through 3 (70), a
systematic account of all extant seed plants on the island of Java. We further
incorporated additional seed plant species described for Java since the
completion of the Flora by downloading available data from the major
collections of plants for the region (i.e., the collections of Naturalis [L, WAG,
and U], the herbarium at the Royal Botanic Gardens, Kew [K], the Australian
National Herbarium [CANB], and the herbarium at the Smithsonian In-
stitution [US]) and identified all species found on Java (between 1960 and
2014) that were not included in the Flora. Finally, we incorporated all seed
plants from available regional checklists (e.g., ref. 71) not otherwise in-
cluded. We then identified all seed plants that were designated as in-
troduced in the Flora of Java to account for the effect of introduced species
on the observed patterns. All taxon names were checked and, where nec-
essary, corrected using the Taxonomic Name Resolution Service (TNRS) v4.0
(72, 73), with the Tropicos database, the Plant List, US Department of Ag-
riculture’s (USDA’s) Plants database, the Global Compositae Checklist, and
the International Legume database as sources. Family classifications follow
the latest account of the Angiosperm Phylogeny Group (APG IV; ref. 74). The
final dataset contained 7,573 seed plant species, 5,392 of which were native
to Java, belonging to 2,352 genera (1,652 native).

Information on natural products, isolated from seed plant species present
on Java, were collected from the KNApSAcK (75) and NPASS (Natural Product
Activity and Species Source) (76) databases, which contain natural sources,
their natural products, and biological activities. The databases were queried
with the names of seed plant species (including their synonyms) on Java for
their metabolites and corresponding activities. For 1,883 and 1,889 species
metabolite information was gained from the KNApSAcK and NPASS data-
base, respectively, with an intercept of 1,776 species. The 10,612 (KNAp-
SAcK) and 9,894 (NPASS) metabolites were first normalized using the
metabolite names, and afterward their chemical structures were compared
to identify duplicate structures stored with different names to gain in total
17,117 unique metabolites. Metabolic pathways accessed via the KEGG
(Kyoto Encyclopedia of Genes and Genomes) database (77–79) were used to
decide whether a metabolite was primary or secondary, and subsequently all
primary metabolites (e.g., pathways from the photosynthesis, carbon me-
tabolism, citrate cycle or fatty acid biosynthesis domains, as well as those
taking part in hormone or nucleic acid synthesis; see SI Appendix, Table S9)
were excluded. The remaining 16,503 secondary metabolites were used to
query the NPASS and KNApSAcK databases again to obtain their biological
activities. For the analyses, we specifically focused on antiinfective activities,
including antifungal, antibacterial, antiparasitic, and antiviral (3,705 me-
tabolites in total). Those were further reduced to only contain those activi-
ties affecting vertebrate pathogens (2,859 metabolites), resulting in 1,640
species (796 native species) with antiinfective activity belonging to 941
genera (501 genera considering only native species). All metabolites were
classified into natural product classes using substructure matching.

Metabolites may group into several classes if they contained the corre-
sponding substructures. For example, a glycosylated steroid was classified as

steroid and sugar-containing. To be classified as terpene, a metabolite had
to match two isoprenoid units as well as possess at least one chain of con-
nected carbons with a multiple of 5 as length. Finally, the proportion of
species with antiinfective effects (metabolites with known activity) was de-
termined for each seed plant family on Java (hereafter referred to as “tax-
onomic analysis”). The overall mean across all families was then used to
calculate the 95% and 99% CIs depending on the number of species per
family (due to the central limit theorem). Thus, seed plant families above or
below the 95% CI contain a higher or lower proportion of species with
antiinfective effects, respectively, than expected given the overall prevalence
across the flora.

Reports on bioactivities of plant extracts or fractions in publications (and
hence databases) need to be treated with great caution, as they may con-
stitute a source of false positive results. Many publications often state a
multitude of unrelated activities, for example from antiviral to antidiabetic
properties, for the same plant extract. Commonly, this is related to a de-
tection of general toxicity (e.g., through redox systemdisturbance) or tanning
properties (e.g., of unspecific polyphenol–protein interactions), or the effects
are only observed at very high concentrations (80, 81). In a chemoinformatic
survey, such false positive effects cannot (yet) easily be separated from
specific effects useful for drug development. Finally, chemo-systematic data
are scattered in the literature and negative results are often not reported or
published, contributing to a potentially substantial bias. Nonactivities can be
of high importance in chemoinformatics, for example in medicinal chemis-
try, and if done properly and performed based on good experimental design
and analyses, they are more valuable than the “pseudopositive” results
described above. Absence or presence of a compound or activity may also
depend on the amount of plant material investigated as well as the ana-
lytical methods (82, 83). This also points toward a more general problem, as
some families are more extensively studied than others, often due to biases
of researchers regarding preferred taxa, geographic regions, or previous
successes, as well as the specific assays that might be done (which are also
biased by general availability or ease of performance). Ideally, comparable
metabolic information for the different species and negative activity data
(the latter would be especially important to distinguish between families
which indeed show less activity and those that are understudied) would
significantly enhance future studies. To date, only 5 to 15% of vascular
plants have been investigated for their natural products (84, 85), often not
in a systematic way, with around 250,000 natural product structures in vir-
tual databases (86).

Phylogenetic Data.We used a dated phylogenetic tree from Smith and Brown
(87), which comprises GenBank sequence data for 79,874 seed plant species
with a backbone provided by Magallón et al. (88). This tree was pruned to
exclude all species not present on Java and outside the taxonomic focus of
this study (i.e., nonseed plants). To assess the impact of introduced taxa, we
generated two phylogenetic trees for further analyses: one including all
seed plant species native to Java and one tree that also included introduced
taxa (discussed above); 3,545 native species (4,305 in total including in-
troduced lineages) were not represented in the tree and were thus excluded
from the phylogenetic analyses. The final trees consisted of 1,847 seed plant
species (native) and 3,268 species (introduced and native), respectively.

We first evaluated the strength of phylogenetic signal of antiinfective
activities across the flora using the D statistic (89) implemented in the R
package caper. D measures the phylogenetic signal of a binary trait by cal-
culating the sum of sister-clade differences. The observed value is then
compared to two distributions: a clumped pattern and a random distribu-
tion of traits. For a given phylogeny and prevalence of the trait (proportion
of tips in character state 1), these serve as reference estimates under a
conserved model of evolution (approximated by Brownian motion, but see
refs. 31 and 89) and a trait that is distributed randomly with respect to the
phylogeny. Second, to identify target clades for bioactivity screening, we
used a phylogenetic clustering approach (nodesig) as implemented in phy-
locom (90). Originally developed as a metric of phylogenetic community
structure, the approach allows us to identify clades where antiinfective ef-
fects are over- or underrepresented. Significance of the observed patterns is
evaluated using a randomization of antiinfective effects across the tips of
the phylogeny.

Spatial Data. To evaluate the spatial patterns of plant species and metabolite
diversity, we downloaded the available occurrence data for seed plants in
Indonesia from the Global Biodiversity Information Facility (91) database
(accessed 3 May 2018). Given that a large number of accessions do not have
coordinate information, we used the approach developed by Gratton et al.
(92) to automatically georeference the collection localities of each record
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(where available). The approach utilizes the information available in the
locality description to find the coordinates of matching administrative units
and/or geographic features (93). In case multiple matches are found, the
midpoint as well as minimum distance between the matches are calculated,
providing an estimate of the potential error associated with the coordinates.
Again, all taxon names were checked using the Taxonomic Name Resolution
Service (72, 73), with the Tropicos database, the Plant List, USDA’s Plants
database, the Global Compositae Checklist, and the International Legume
database as sources. Subsequently, we removed all accessions that were
recorded from cultivated sites (e.g., botanical gardens), as well as those with
large uncertainties (e.g., accessions that only identified Java as the locality
and hence returned coordinates for the center of the island).

We built species-specific distribution models for all Javanese seed plant
species represented by more than four unique localities across Indonesia
(1,895 species) using an ensemble modeling approach as implemented in the
SSDM (94) package in R (95). We employed all 10 algorithms incorporated in
SSDM that are commonly used for species distribution modeling, with
pseudoabsences selected based on the recommendations for each algo-
rithm. Modeling was repeated 10 times with each algorithm using the
k-folds cross-validation method where the data for each species are parti-
tioned into three training sets and one evaluation set. The individual habitat
suitability scores were converted into presence/absence data by applying a
threshold that maximizes the true skill statistic (96) and then stacked to
obtain the species richness data. We used both climate and soil data on a
5 arc-min resolution (approximately 10 km) as environmental predictors.
Bioclimatic variables were downloaded from the Worldclim project (97) and
soil characteristics were obtained from the SoilGrids database (98) and
rescaled to a 5 arc-min resolution (a list of all variables can be found in SI
Appendix). An initial analysis on 100 randomly selected species with all 44
environmental variables was used to select the most relevant variables
(based on their relative importance in the ensemble model), excluding all
variables with a correlation coefficient of >0.7 for the full model run of all
species. In total, 14 environmental variables (including 6 climatic and 8 soil
variables) were selected for the full model run (SI Appendix, Table S10). The
evaluation of the stacked species distribution models is also implemented in
the SSDM package and five evaluation metrics were calculated as described
by Pottier et al. (99): While the species richness error describes the difference

between the predicted and observed species richness, the assemblage kappa
gives the proportion of specific agreement. The number of true negatives is
given by the assemblage specificity, whereas the assemblage sensitivity gives
the true positives. The Jaccard index is a metric describing the similarity and
diversity of communities. Following the ensemble modeling, we then in-
corporated the remaining 1,605 species (with fewer than four unique lo-
calities) as point localities and cropped all maps to our focal region (Java).

To visualize patterns of metabolite diversity, we calculated the Shannon
index (Eq. 1) for each grid cell, where pi is the proportion of metabolite i
(relative to the total number of metabolites), with S being the total number
of unique metabolites found in this grid cell. This index thus takes into ac-
count the relative abundance of each metabolite within a grid cell.

H = −∑
S

i=1
pi · lnpi [1]

Data Availability. The metabolite information (information on natural
products, metabolic pathways, and biological activities), phylogenetic and
distribution data, as well as the environmental data are publicly available (see
above for details). Other data (e.g., taxonomic data and R code) are available
from the corresponding authors upon request.
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