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Abstract

Candida species, including C. albicans in particular, can cause superficial or invasive disease, often 

in patients with known acquired immunodeficiencies or iatrogenic conditions. The molecular and 

cellular basis of these infections in patients with such risk factors remained largely elusive, until 

the study of inborn errors of immunity clarified the basis of the corresponding inherited and 

“idiopathic” infections. Superficial candidiasis, also known as chronic mucocutaneous candidiasis 

(CMC), can be caused by inborn errors of IL-17 immunity. Invasive candidiasis can be caused by 

inborn errors of CARD9 immunity. In this chapter, we review both groups of inborn errors of 

immunity, and discuss the contribution of these studies to the deciphering of the critical 

mechanisms of anti-Candida immunity in patients with other conditions.

Introduction

The genus Candida, which contains about 200 different species, belongs to the phylum 

Ascomycota. Candida spp. are the most common cause of fungal infection in humans1–2, but 

only a few species (approximately 20) can cause disease. Candida albicans, C. glabrata, C. 
tropicalis, C. parapsilosis, and C. krusei account for about 90% of these diseases, and their 

prevalence depends on the geographic location, patient populations, and clinical settings3. C. 
albicans remains the major cause of invasive candidiasis, but C. glabrata (in northern 

Europe, USA, Canada) and C. parapsilosis (in southern Europe, Asia, Latin America) have 

emerged as important or even major pathogens4–7. Candida spp. have been reported to be the 

fourth most common nosocomial pathogen in the bloodstream, or at least within the top ten 

of such pathogens1, 8. These Candida spp. are resident commensal yeasts in the oro-

gastrointestinal and genitourinary tracts in healthy individuals. However, they can also act as 

pathogens in humans, causing superficial infections of the skin, scalp, nails, or oral and 
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genital mucosae, or invasive, often life-threatening, systemic infections (candidemia) that 

may be disseminated to internal organs (leading to meningoencephalitis, brain abscesses, 

endophthalmitis, endocarditis, peritonitis, osteomyelitis, intra-abdominal abscesses, lung 

infections, etc.)9–11. The infections they cause are a serious public health problem, with 

mortality often exceeding 40% (partly due to late diagnosis, the late initiation of antifungal 

therapies, and the emergence of resistance to antifungal drugs), and substantial costs 

associated with patient care and long hospital stays11–18.

Various risk factors, iatrogenic or acquired, are known, such as HIV infection, mainly 

associated with oro-pharyngeal candidiasis19. Invasive candidiasis is mostly associated with 

organ transplantation, hemodialysis, parenteral nutrition, intravenous catheters, abdominal 

surgery, extensive burns, long-term stay in intensive care units, or the administration of 

broad-spectrum antibiotics or of immunosuppressive agents such as chemotherapy1, 20. In 

this context, invasive candidiasis is an increasing problem in elderly patients, with 

significantly higher mortality rates as compared to younger patients21–22. Neonates are also 

at risk of invasive forms of candidiasis, such as the central nervous system (CNS) 

candidiasis reported in low-birth weight or preterm neonates23–26. These fungal diseases 

frequently strike individuals with many risk factors. As a result, their pathogenesis remains 

poorly understood at the molecular and cellular levels. The study of primary 

immunodeficiencies (PID) with “syndromic” candidiasis, whether superficial or invasive, 

and, more recently, that of inborn errors of immunity in otherwise healthy patients with 

“isolated” candidiasis, whether superficial or invasive, has progressively shed light on the 

mechanisms conferring protective immunity to Candida spp.27–36. The elucidation of the 

pathogenesis of these fungal diseases in patients with inherited immunodeficiencies (ID) has 

important clinical implications for the patients and their families, with the possibility of 

genetic diagnoses and counseling, but should also facilitate the development of novel 

prophylactic or curative treatments with a rational basis, for PID patients and patients with 

other more common conditions (e.g. acquired ID). Research into the genetic basis of 

Candida diseases is important, given the high mortality associated with Candida diseases, 

despite the availability of antifungal drugs, and the increasing frequency of antifungal drug-

resistant strains37.

Chronic mucocutaneous candidiasis and inborn errors of IL-17 immunity

Mucocutaneous candidiasis is characterized by Candida spp. infections of the nails, skin, 

scalp, and/or oral and genital mucosae35, 38–43. Mucosal candidiasis, such as oral thrush, is 

relatively frequent in individuals on steroid or antibiotic treatments. Up to 75% of women 

present at least one episode of vulvovaginal candidiasis during their lifetime, and recurrent 

(> 1 episode) vulvovaginal candidiasis has been estimated to have a global annual 

prevalence of 3,871 per 100,000 women44. Chronic mucocutaneous candidiasis (CMC) is 

characterized by severe, persistent or recurrent (relapse upon discontinuation of treatment) 

disease43. CMC, present as severe oropharyngeal candidiasis, is very common in AIDS 

patients19, 45. Similarly, in the context of PID, CMC is frequent in patients with broad T-cell 

defects, such as combined or severe combined immunodeficiencies (CID or SCID, 

respectively)30–31, 46–47. This inherited form of CMC, usually referred to as CMC disease 

(CMCD), is rare, affecting approximately one in every 50,000 individuals. The CMC in 
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affected patients is syndromic, as it is associated with many other clinical manifestations, 

mostly infectious and/or autoimmune. Syndromic CMC is also common in some PIDs 

without major global apparent T-cell deficiencies, albeit with milder clinical features. These 

PIDs include autosomal dominant (AD) STAT1 gain-of-function (GOF), a complex and 

heterogeneous PID in which CMC is one of the first features observed and is common to 

most patients, and often severe33–34, 48–53. It is frequently associated with other infectious 

diseases, typically mucocutaneous bacterial, viral, or fungal diseases, and less frequently 

with invasive infectious diseases, autoimmune manifestations, and oro-esophageal squamous 

cell carcinoma28, 30, 34–35, 43, 49–51, 53–54. Another such PID is hyper-IgE syndrome (HIES), 

another complex PID characterized by severe skin and pulmonary staphylococcal disease, 

severe eczema, high serum IgE levels, and some developmental abnormalities48, 55. It may 

be AD due to heterozygous dominant negative mutations of the gene encoding the 

transcription factor STAT356–57, or autosomal recessive (AR) due to biallelic loss-of-

function (LOF) mutations of the gene encoding another transcription factor, Zinc Finger 

Protein (ZNF)34158–59. About 80% of patients develop oral thrush, onychomycosis, and/or 

vaginal candidiasis. CMC is also frequent and the only infectious disease common to most 

patients with AR autoimmune polyendocrine syndrome type 1 (APS-1, also called 

APECED, autoimmune polyendocrinopathycandidiasis-ectodermal dystrophy). This 

syndrome is characterized by multi-organ autoimmunity due to bi-allelic mutations of the 

gene encoding the transcription factor AIRE60–62. Other PIDs in which CMC is milder or 

less frequent (25% to 35%) include AR ROR / T deficiency, characterized by disseminated 

BCG-diseases63, AR IL-12p40 and IL-12R 1 deficiencies, characterized by a selective 

predisposition to mycobacterial and Salmonella diseases64–65, and AR CARD9 deficiency, 

generally characterized by invasive fungal diseases32, 66–68. A final group of patients 

displays early CMCD in an otherwise healthy context, with the exception of mucocutaneous 

staphylococcal disease in some patients. This condition is often referred to as isolated 

CMCD (see below).

Investigations of the molecular and cellular bases of PID with syndromic CMCD suggested 

that IL-17A/F-mediated immunity might protect against mucocutaneous candidiasis and that 

CMCD might result from inborn errors of IL-17A/F immunity34–35, 69–71. Indeed, all of 

them are characterized by impaired IL-17A/F immunity, due to abnormally low levels of 

circulating IL-17A/F-producing T (Th17) cells, or to the presence of autoantibodies directed 

against IL-17 cytokines. Indeed, patients with AD STAT1 GOF have very low proportions of 

Th17 cells, both ex vivo or and after differentiation in vitro50, 53–54, 72–74. This Th17 cell 

deficiency may result from enhanced/overt STAT1 signaling downstream from the STAT3-

dependent IL-6, IL-21, and IL-23 cytokines, which is critical for the development and 

maintenance of Th17 cells70–71, 75, enhanced STAT1 signaling downstream from IFN-α/β, 

IFN-γ, and IL-27, which has been shown to inhibit the development of Th17 cells via 

STAT176–78, or both these mechanisms53, 79. Patients with AD HIES also have very low 

proportions of ex vivo and in vitro-differentiated Th17 cells80–83, due to an impairment of 

STAT3-dependent signaling downstream from IL-6R, IL-21R, and IL-23R70. Similarly, 

patients with AR HIES and ZNF341 deficiency also have abnormally low proportions of ex 
vivo and in vitro-differentiated Th17 cells, due to the disruption of ZNF341-dependent 

STAT3 transcription and activity55, 58–59. As expected, patients with AR deficiencies of 
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ROR / T, a master transcription factor of Th17 cells84–87, also have barely detectable levels 

of Th17 cells63, and patients with IL-12p40 and IL-12R 1 deficiencies, in whom the 

production of and response to IL-23 and IL-12 are abolished, also have low levels of 

circulating Th17 cells74, 83. Most, but not all of the tested patients with deficiencies of 

CARD9, an adaptor transducing signals downstream from C-type lectin receptors following 

the recognition of fungal cell wall components, have low circulating levels of Th17 cells, 

probably due an impairment of the induction of pro-Th17 cytokines (e.g. IL-6, IL-23) by 

phagocytes after activation by fungal ligands32, 66–67, 88 (Figure). Finally, APS1 patients, 

who suffer from multiple autoimmune endocrinopathies due to LOF mutations of the gene 

encoding AIRE, a transcription factor involved in the removal of self-reactive T cells89–90, 

frequently harbor high levels of antibodies against various self-antigens91, including 

neutralizing autoantibodies directed against cytokines such as IFN-α and IFN-ω62, 92 in 

particular, but also against Th17 cytokines, such as IL-17A, IL-17F, and IL-2269, 93–94. 

These studies have paved the way for the identification of inborn errors of IL-17-mediated 

immunity conferring CMC in otherwise healthy individuals, or in individuals with 

mucocutaneous Staphylococcus aureus infections33–35.

A candidate approach identified AD IL-17F and AR IL-17RA deficiencies, each in a single 

family, in 2011, as the first genetic etiologies of isolated CMCD28, 95. Indeed, a 

heterozygous private missense variation of IL17F, predicted to be deleterious, was identified 

in five relatives from an Argentinian multiplex family with early-onset CMC. The index 

patient had also had recurrent upper respiratory tract infections, asthma, and recurrent 

episodes of furunculosis since infancy. In these patients, the proportions of ex vivo IL-17A- 

and IL-22-producing T cells were within the control ranges, but IL-17F levels were not 

evaluated. The mutation was shown to impair the binding of IL-17F to its receptor, which 

consists of IL-17RA/IL-17RC, on the surface of control fibroblasts. Studies with control 

fibroblasts and keratinocytes revealed an impairment of the responses to mutant IL-17F 

homodimers, but also of that to heterodimers containing the mutant protein (IL-17A/mutant 

IL-17F, wild type IL-17F/mutant IL-17F), showing that the mutant IL-17F was hypomorphic 

and exerted a dominant-negative effect on IL-17A- or wild-type IL-17F-mediated 

responses95. A second family of Tunisian-German origin has since been reported, in which a 

woman and her son carrying a heterozygous mutation of IL17F both presented CMC with an 

onset in early childhood, with no other infectious phenotype; the causal effect of the variant 

in this family has yet to be characterized96. In parallel, AR complete IL-17RA was reported 

in a patient born to consanguineous Moroccan parents. This patient suffered from early-

onset CMC and cutaneous S. aureus infection, and was homozygous for a nonsense mutation 

affecting the extracellular part of IL-17RA. Additional homozygous nonsense, missense, 

frameshift, splice site, and large deletion mutations have since been found in a total of 23 

patients with AR IL-17RA deficiency, from 13 unrelated kindreds originating from 

Morocco, Turkey, Japan, Saudi Arabia, Algeria, Argentina, and Sri Lanka28, 97–98. All 

patients displayed early-onset CMC. About 70% of these patients also presented 

staphylococcal skin diseases, and 40% developed recurrent bacterial infections of the 

respiratory tract28, 95, 97–98. AR complete IL-17RC deficiency was subsequently identified 

by whole-exome sequencing in three unrelated patients with early-onset CMC in the absence 

of any other infectious phenotype, including staphylococcal disease in particular; these 
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patients were born to consanguineous families originating from Turkey and Argentina99. AR 

ACT1 deficiency is the fourth genetic defect responsible for isolated CMCD. It was 

identified in two siblings, born to consanguineous Algerian parents, with early-onset CMC 

and recurrent skin and scalp S. aureus disease. Both patients were found to carry a 

homozygous missense mutation of TRAF3IP2 encoding ACT1, which is a key downstream 

adapter in the IL-17 response pathway100–102. The fibroblasts of all IL-17RA-, IL-17RC-, 

and ACT1-deficient patients failed to respond to IL-17A and IL-17F homodimers and 

heterodimers95, 97–99, 103. In addition, IL-17RA-and ACT1-deficient PBMCs, unlike PBMCs 

from patients with AR IL-17RC deficiency, failed to respond to IL17E/IL-2598, 103, which 

signals through IL-17RA/IL-17RB in an ACT1 dependent manner104. An AD deficiency of 

JNK1, a component of the MAPK signaling pathway105–106, was recently identified in a 

multiplex family originating from France with syndromic CMCD, in which three individuals 

from three generations presented early-onset CMC, mucocutaneous S. aureus infections, and 

a complex connective tissue disorder107. In vitro studies showed that the private MAPK8 
c.311+1G>A identified in the three patients was a loss-of-expression variant. JNK1 is 

involved in various signaling pathways, including the IL-17 pathway in particular108–110. 

Accordingly, the fibroblasts of heterozygous patients displayed impaired cellular responses 

to IL-17A and IL-17F. JNK1 also acts downstream from TGFβ1, which has been shown to 

participate in human Th17 differentiation in vitro84, 111–112. The proportions of ex vivo and 

in vitro-differentiated Th17 cells were indeed low for these patients. This study reported a 

fifth genetic disorder in the IL-17 response pathway, underlying AD CMCD by 

haploinsufficiency, with impaired cellular responses to IL-17A/F and impaired IL-17A/F 

production (Figure). Altogether, these five human genetic disorders demonstrate the 

essential role of IL-17A- and IL-17F-mediated immunity in mucocutaneous protection 

against Candida and, to a lesser extent, as found in IL-17RA-, ACT1- and JNK1-deficient 

patients, against disease caused by S. aureus. They also suggest that IL-17A- and IL-17F-

dependent immunity is otherwise redundant for protection against fungi other than Candida, 

bacteria other than S. aureus, viruses, or even against invasive candidiasis or staphylococcal 

disease.

Invasive candidiasis and inborn errors of CARD9 immunity

Invasive candidiasis (IC) is defined as infections of the bloodstream (candidemia) or deep-

seated infections caused by Candida spp. and it ranks among the most frequent healthcare-

associated bloodstream infections1, 113. Unlike CMC, patients with broad T-cell disorders 

are not particularly prone to IC. Furthermore, very few patients with CMC display IC, and 

vice versa. This suggests that T-cell dependent immunity is not essential for protection 

against IC and that different mechanisms are involved in immunity to superficial and 

invasive candidiasis. In IC, phagocytes, neutrophils in particular, but probably also, to a 

lesser extent, based on mouse studies, monocytes, macrophages and dendritic cells, are 

essential for protective immunity11. Indeed, IC is classically described in patients with 

acquired profound qualitative or quantitative disorders of neutrophils and monocytes/

macrophages8. IC is relatively rare among patients with PID, and has been reported only 

occasionally in this context. Patients with severe congenital neutropenia (SCN), and 

mutations of ELA2, HAX1, or other genes, may develop syndromic IC. For example, IC was 

reported in 2% (n=486) of the patients from the French SCN registry30. A few patients with 
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AR leukocyte adhesion disorder type-1 (LAD-1), due to CD18 deficiency resulting from 

biallelic mutations of ITGB2 and leading to the impaired endothelial adhesion and 

transmigration of neutrophils into infected tissues, may display IC114–116. In both cases, IC 

probably results from impaired neutrophil accumulation at the site of infection. Some 

patients with complete AR myeloperoxidase (MPO) deficiency and concomitant diabetes or 

with X-linked or AR chronic granulomatous disease (CGD) caused by mutations of genes 

encoding NADPH oxidase subunits and impaired oxidative burst-dependent Candida killing 

by phagocytes may also display syndromic IC117–118. Cases of deep-seated organ 

candidiasis have been reported in CGD patients, with central nervous system (CNS), soft 

tissue, lymph node, or liver diseases, and enhanced susceptibility to C. lusitaniae, a Candida 
spp. rarely disease-causing in non-CGD patients119–121. Finally, in a large international 

study of patients with STAT1 GOF (n=274), 3.6% were reported to have syndromic IC50.

Since its discovery in 2009, in a large multiplex consanguineous family from Iran with CMC 

and possible brain disease caused by Candida spp.66, CARD9 (C-type lectin receptor 

adaptor caspase recruitment domain-containing protein 9) deficiency has emerged as the 

only known inborn error of immunity conferring a selective susceptibility to fungal diseases 

in otherwise healthy individuals, with no other infectious or noninfectious 

manifestations32, 36, 122. Over 70% of patients with CARD9 deficiency have developed IC, 

with a strong tropism for the CNS. Indeed, about 80% of patients with probable or proven IC 

have CNS diseases, such as meningoencephalitis, brain abscesses, masses mimicking 

metastasis, or a combination of these manifestations32, 66, 68, 123–130. Strikingly, these 

patients present no concomitant diseases of the kidney, liver, or spleen, as typically seen in 

CARD9-expressing infected patients, probably as a result of CARD9-independent 

mechanisms of protective immunity131. Gastrointestinal tract, bone, eye, intra-abdominal 

organ (liver and mesenteric LNs), or mucocutaneous surface involvement may also occur, as 

some patients have been reported to have severe colitis, osteomyelitis, endophthalmitis, 

intra-abdominal candidiasis, or CMC66–68, 125, 127–128, 132–134. The onset of invasive disease 

is particularly variable, with a substantial proportion of CARD9-deficient patients presenting 

with IC as adults, with a mean age of 21.9 years (median age: 17.5 years; range [3.5–58.0 

years]). CARD9-deficient patients with CMC and/or IC have been identified in nine 

countries around the world (Algeria, Morocco, Iran, Turkey, Pakistan, Canada, Italy, El 

Salvador, and South Korea), and one patient was of mixed European origin. Of all Candida 
spp., C. albicans is the most frequently involved in infections. It has been detected in 93% of 

patients, the other Candida spp. detected, C. glabrata and C. dubliniensis, each being found 

in a single patient32.

CARD9, which is part of the CARD9/BCL10/MALT1 (CBM) complex, is mainly expressed 

in phagocytic cells, and transduces signals downstream from C-type lectin receptors (CLRs), 

including Dectin-1 (CLEC7A), Dectin-2 (CLEC6A), Dectin-3 (CLEC4D), and Mincle 

(CLEC4E), which are specific for β-glucans (Dectin-1), α-mannans (Dectin-2 and 

Dectin-3), and glycolipids (Mincle) from the fungal cell walls135–136. In humans, upon 

receptor stimulation and SYK activation, the CBM complex activates the NF-κB, MAPK, 

and ERK pathways, thereby stimulating the transcription of genes encoding pro-

inflammatory cytokines and chemokines, such as IL-2, IL-10, IL-12, tumor necrosis factor 
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(TNF)-α, pro-Th17 cytokines (IL-1β, IL-6, IL-23), granulocyte-macrophage colony-

stimulating factor (GMCSF), and CXCL1 or CXCL2137.

CARD9-deficient patients have no overt immunological phenotype: they have normal 

leukocyte counts; when tested, T-cell proliferation in response to mitogen or antigens is 

mostly normal, and the phagocyte oxidative burst, tested in vitro in the dihydrorhodamine 

(DHR) assay, is also normal. However, high eosinophil counts, high serum IgE levels, or 

both, have been observed in several CARD9-deficient patients, and the reasons for this 

remain unknown32. CSF samples were analyzed in some patients and revealed 

hyperproteinorrhachia, and hypoglycorrhachia and pleocytosis, mostly with mononuclear 

cells (lymphocytes and/or monocytes) and eosinophils, but, remarkably, no neutrophils128 

(by contrast to patients with Candida meningitis wild-type for CARD9, for whom 

neutrophils generally predominate in the CSF128). IL-17-mediated immunity was evaluated 

in about half the CARD9-deficient patients (with candidiasis or other fungal diseases), and 

was impaired in two-thirds of those tested, with no clear correlation between impaired or 

normal IL-17 immunity and the presence or absence of CMC32. PBMCs, monocytes, and in 
vitro monocyte-derived macrophages or DCs tested in vitro upon stimulation with heat-

killed C. albicans displayed impaired responses in terms of pro-inflammatory cytokine or 

chemokine production32. A selective defect of the killing of unopsonized (but not 

opsonized) C. albicans yeasts but not hyphae by neutrophils has been reported in vitro and 

has been suggested to contribute to Candida CNS disease, due to the lower levels of 

opsonization in the CNS32. However, a lack of neutrophil recruitment to infection sites (e.g. 

CNS), consistent with the absence of neutrophils from the CSF fluids of CARD9-deficient 

patients with Candida CNS infections, contrasting with their blood neutrophil counts within 

the normal range, appears to be the major CARD9-dependent mechanism underlying IC in 

these patients27, 122, 128. Recently, based on Card9−/− mouse studies, abnormally low levels 

of IL-1β-dependent CXCL1 production by microglial cells following stimulation with the 

fungal toxin candidalysin were proposed as an explanation for the defective recruitment of 

neutrophils to the Candida-infected CNS, and impaired CNS Candida clearance128, 138.

Conclusion

The investigation of patients with PID and syndromic CMC or IC, or of otherwise healthy 

patients with CMC or IC provides us with a unique opportunity to elucidate the molecular 

and cellular bases of these diseases and to gain insight into the pathophysiological 

mechanisms underlying them. The knowledge gained in the context of PID can be applied to 

other settings, such as hematological malignancies or AIDS, for example. The spectrum of 

inborn errors underlying CMC and, to a lesser extent, IC, is expanding and has already 

provided important insight into the role of specific immune pathways in anti-Candida host 

defense. Indeed, IL-17-mediated immunity has emerged over the last 10 years as crucial 

against CMC and, to a lesser extent, mucocutaneous S. aureus diseases. However, it seems to 

be redundant against IC, invasive staphylococcal diseases, and other common microbes 

(including fungi and bacteria). Inherited CARD9 deficiency is a genetic etiology of CMC 

and IC. Remarkably, Candida diseases can occur at any age, from early childhood to late 

adulthood. The adult onset seen in several CARD9-deficient patients is an uncommon 

feature of inborn errors of immunity and should lead clinicians to consider CARD9 
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deficiency in adults presenting with unexplained Candida diseases. Next-generation 

sequencing in patients with CMC or IC without inborn errors of the IL-17 pathway or 

CARD9 will probably reveal new genetic defects that may further elucidate the pathogenesis 

of Candida infections in patients with inborn errors of IL-17 immunity or CARD9. The 

comprehensive genetic dissection of Candida diseases (in patients with syndromic PID or in 

otherwise healthy individuals) should shed new light on the molecular and cellular 

mechanisms conferring protective immunity to Candida spp., and should pave the way for 

more rational therapies based on a better understanding of the underlying pathophysiological 

mechanisms. The clinical implications extend well beyond patients with fungal diseases due 

to inborn errors of immunity, to patients with fungal diseases due to other causes.
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Figure. Inborn errors of IL-17 immunity in patients with isolated or syndromic CMCD.
Schematic representation of IL-17A/F immunity and cooperation between cells recognizing 

C. albicans and responding to IL-17A/F (phagocytes and epithelial cells), and cells 

producing IL-17A/F (T and innate lymphocytes). Human IL-17A/F immunity is crucial for 

protective mucocutaneous immunity against C. albicans. Proteins for which mutations in the 

corresponding genes underlie CMCD are shown in blue or red. Monoallelic LOF mutations 

of IL17F and of MAPK8, and bi-allelic LOF mutations of IL17RA, IL17RC and ACT1 
impair IL-17A and IL-17F immunity (via IL-17RA/IL-17RC). Bi-allelic LOF mutations of 

IL12RB1, RORC, ZNF341, monoallelic LOF mutations of STAT3 and monoallelic GOF 

mutations of STAT1 impair IL-17A/F production. Mutations of IL17F, IL17RA, IL17RC 
and ACT1 underlie isolated CMCD (blue), whereas mutations of IL12RB1, STAT1, STAT3, 

ZNF341 and RORC underlie syndromic CMCD (in red).
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