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Abstract

Registration is a core component of many imaging pipelines. In case of clinical scans, with lower 

resolution and sometimes substantial motion artifacts, registration can produce poor results. Visual 

assessment of registration quality in large clinical datasets is inefficient. In this work, we propose 

to automatically assess the quality of registration to an atlas in clinical FLAIR MRI scans of the 

brain. The method consists of automatically segmenting the ventricles of a given scan using a 

neural network, and comparing the segmentation to the atlas’ ventricles propagated to image 

space. We used the proposed method to improve clinical image registration to a general atlas by 

computing multiple registrations - one directly to the general atlas and others via different age-

specific atlases - and then selecting the registration that yielded the highest ventricle overlap. 

Finally, as an example application of the complete pipeline, a voxelwise map of white matter 

hyperintensity burden was computed using only the scans with registration quality above a 
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predefined threshold. Methods were evaluated in a single-site dataset of more than 1000 scans, as 

well as a multi-center dataset comprising 142 clinical scans from 12 sites. The automated ventricle 

segmentation reached a Dice coefficient with manual annotations of 0.89 in the single-site dataset, 

and 0.83 in the multi-center dataset. Registration via age-specific atlases could improve ventricle 

overlap compared to a direct registration to the general atlas (Dice similarity coefficient increase 

up to 0.15). Experiments also showed that selecting scans with the registration quality assessment 

method could improve the quality of average maps of white matter hyperintensity burden, instead 

of using all scans for the computation of the white matter hyperintensity map. In this work, we 

demonstrated the utility of an automated tool for assessing image registration quality in clinical 

scans. This image quality assessment step could ultimately assist in the translation of automated 

neuroimaging pipelines to the clinic.
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1. Introduction

Image registration has proven a fundamental part of many processing pipelines in the 

biomedical imaging field, establishing spatial correspondence between images and enabling 

subsequent group or cohort analyses. However, when using clinical, low resolution brain 

data, image registration can be challenging. E.g. in acute ischemic stroke populations, high-

resolution image acquisition in the acute disease state is not possible due to clinical time 

constraints. Nonetheless, such clinical cohorts offer great amounts of untapped information 

due to the large number of samples available, often in the range of thousands of patients 

(Giese et al., 2017; Courand et al., 2019), which can be utilized to unveil spatial patterns of 

disease burden (Bilello et al., 2016; Schirmer et al., 2019b). Importantly, as clinical images 

have more variability than scans acquired primarily for research, they necessitate quality 

control steps after registration to ensure that no gross errors occurred in the process. 

Quantifying the registration quality, utilizing only intensity-based metrics such as mutual 

information or cross-correlation, is often not enough, and in practice registration quality is 

assessed using manual ventricle segmentations to evaluate the overlap between the patient 

data and the registration target, i.e. brain template or atlas (Ou et al., 2014; Dalca et al., 

2016; Ganzetti et al., 2018).
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Considerable work has been conducted to generate appropriate brain templates for image 

registration, using data from healthy young adults (Dickie et al., 2017) or age appropriate 

cohorts from the general population (Schirmer et al., 2019b). These templates can 

consequently be used for segmentation of brain structures, but often yields unsatisfactory 

results in clinical scans. For instance, outlining of the ventricles in such clinical scans is 

often done manually, or semi-automatically (Hussain et al., 2013; Xia et al., 2004). 

Manually outlining the ventricles is a time intensive step, and hinders quality assessment in 

large scale cohorts. Deep learning techniques have been developed to automatically segment 

structures in clinical quality scans, using for instance U-Net architectures (Schirmer et al., 

2019a; Nikolov et al., 2018; Guerrero et al., 2018). Given enough training data, these 

techniques can reliably generate accurate, fully automated masks of the structures of 

interest. The use of a U-Net architecture has been proposed to generate automated 

segmentations of the lateral ventricles alone (Ghafoorian et al., 2018), and recently of the 

complete ventricular system (Atlason et al., 2019; Shao et al., 2019), showing promising 

results, which can be utilized in automated assessment of image registration quality.

Automated registration quality assessment methods can also be used to improve the 

registration results in atlas selection methods. Multi-atlas segmentation has for instance 

become an increasingly popular segmentation method in neuroimaging pipelines (Iglesias 

and Sabuncu, 2015). One of its simplest implementations is to register several atlases 

pairwise to an image, propagate the labels of the atlases in image space, and choose the final 

label for each voxel using majority voting. Probabilistic label fusion strategies have also 

been proposed, such as Wang et al. (2013) who proposed to exploit the intensity similarity 

between atlases and the target image in the neighborhood of each voxel. Robinson et al. 

(2019) recently proposed a method to perform automated quality control of segmentations of 

cardiovascular data from the UK biobank. The authors registered a set of annotated images 

to a test image with unknown ground truth. The labels were then warped using the 

deformation field from image registration, and the overlap between the warped labels and 

the predicted segmentation was used to estimated the segmentation performance. In other 

words, the segmentation of the image with unknown ground truth is compared to that of a 

multi-atlas segmentation, where smaller difference between segmentations are assumed to 

reflect higher segmentation quality. Instead of using the same set of atlases for multi-atlas 

segmentation, a most appropriate subset of atlases can also be selected. Recently, Antonelli 

et al. (2019) proposed for instance to select subsets of atlases for each target image using a 

genetic selection algorithm, and evaluated their method in cardiac and prostate data. To 

decrease the computation time of multi-atlas segmentation, Dewey et al. (2017) proposed to 

add an intermediary registration step to a template constructed from the set of the considered 

atlases, using for instance multivariate template construction algorithm. Creating robust 

registration methods to map clinical scans to atlases is key to the field of lesion-symptom 

mapping. For example, Biesbroek et al. (2013) studied lesion-symptom mapping with brain 

lesions, such as white matter hyperintensities and lacunes, in relation to cognition.

In this work, we developed a ventricle segmentation deep learning algorithm based on a 3D 

U-Net-like architecture to segment the complete ventricular system in each subject’s fluid-

attenuated inversion recovery (FLAIR) sequence and validated it in a multi-center, clinical 

dataset comprising 12 sites. The ventricle segmentation was then used to assess registration 
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quality by comparing it – using the Dice similarity coefficient – to the ventricles of the atlas 

propagated to the target image space. Over all brain regions, due to its very discriminative 

image intensity values and its relatively large size, the ventricular system presents a feature 

of the brain that is robust to variations in scanners and FLAIR protocols, making it a prime 

candidate for using its segmentation to assess registration quality. This automated 

registration quality assessment method can be used not only to flag or discard erroneous 

registrations, but also to select the best registration. As an example, we proposed to use this 

automated registration quality assessment method to improve registration quality by 

designing a multi-atlas registration (MAR) framework. Instead of directly registering images 

to a single template (general atlas), each image was additionally registered to five different 

atlases corresponding to different age categories, which in turn have been registered to the 

general atlas. The best atlas was then selected using the automated registration quality 

assessment method, and used as a transitional registration step before warping the subject 

image to the common space. Contrary to the above-mentioned multi-atlas segmentation 

methods, the purpose of the proposed MAR method was to improve the results of 

registration to the common space, and not to improve the results of segmentation of brain 

regions in the target image. Finally, we used the proposed MAR framework to create 

voxelwise maps of white matter hyperintensity (WMH) burden in a set of acute ischemic 

stroke patients, where Dice coefficient thresholds were used to control the quality of 

registration. In summary, our main contributions are an algorithm for the segmentation of the 

complete ventricular system in clinical scans, the evaluation of ventricle overlap as 

registration quality metric, and a multi-atlas registration framework to improve registration 

of images to a common space.

2. Material and Methods

2.1. Data

2.1.1. Onsite clinical data—We utilized data of the Genes Affecting Stroke Risk and 

Outcomes Study (GASROS) study (Zhang et al., 2015). Patients (> 18 years old) presenting 

to the Massachusetts General Hospital Emergency Department (ED) between 2003 and 2011 

with symptoms of acute ischemic stroke, were eligible for enrollment. Magnetic resonance 

images were acquired within 48 hours of admission and only patients with confirmed acute 

diffusion-weighted imaging lesions on brain MRI scans were included. 1132 patients 

underwent the standard acute ischemic stroke protocol on a 1.5T Signa scanner (GE Medical 

Systems), including T2-weighted FLAIR imaging (TR 5000ms, minimum TE of 62 to 

116ms, TI 2200ms, FOV 220–240mm). For each patient, WMH were segmented using 

MRIcro software (University of Nottingham School of Psychology, Nottingham, UK; 

www.mricro.com), based on a previously published semi-automated method with high inter-

rater reliability (Chen et al., 2006). Ventricles were manually segmented by a single rater in 

a subset of 300 patients’ FLAIR images using 3D Slicer (Fedorov et al., 2012). Of the 300 

scans, 100 were chosen to uniformly sample the age range in the GASROS cohort, 100 were 

chosen to span the range of WMH disease burden, and the remaining 100 were randomly 

selected. This set was used for network training and validation of the automated ventricle 

segmentation method. In addition, a test set of 100 patients were selected to approximately 

represent the range of ventricular volume in the patient population. Scans were selected with 
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a semi-automated method that estimates ventricular volume using nonlinear registration to 

an atlas. The semi-automated method involved a quality control step to ensure that the range 

was uniformly sampled. These 100 scans were then segmented by a second rater.

2.1.2. Multi-center clinical data—The MRI-GENetics Interface Exploration (MRI-

GENIE) study is a large-scale, international, hospital-based collaborative study of acute 

ischemic stroke patients (Giese et al., 2017), including FLAIR data from 12 sites (7 

European, 5 US based), acquired as part of each hospital’s clinical acute ischemic stroke 

protocol. For each acquisition site, 12 patients were selected (Schirmer et al., 2019a) and 

underwent manual ventricle segmentations. Two of the patients displayed substantial motion 

artifacts, and were excluded from our analysis, forming a total set of N=142 scans with 

manual brain and ventricle segmentation. This set was used as an additional test set for the 

evaluation of the ventricle segmentation algorithm and the proposed MAR framework.

2.1.3. ADNI data—Part of the data used in the preparation of this article were also 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD).

2.1.4. Brain atlases—Using 130 healthy controls from ADNI3 dataset (Jack Jr et al., 

2008) (Field strength 3T; 3D FLAIR; TE 119; TR 4800; TI 1650; 1.2x1x1mm3; see 

Appendix B for list of subject IDs), we created five FLAIR atlases, each corresponding to a 

different age category: under 70 years old (N=6 subjects), between 70 and 75 (N=22), 

between 75 and 80 (N=31), between 80 and 85 (N=39), and above 85 (N=32). The atlases 

were created using ANTs multivariate template construction algorithm with default 

parameters (Avants et al., 2011). Similarly, a general atlas was created by averaging the five 

age-specific atlases, also using using ANTs multivariate template construction algorithm 

with default parameters (Avants et al., 2011). All atlases were manually skull stripped and 

registered to MNI space. The resulting image resolution was 1mm3 and the image size 

182x218x182 voxels. Ventricles were manually segmented in the general atlas. Each of the 

five age-specific atlases was diffeomorphically registered to the general atlas, to allow the 

propagation of the ventricle segmentation to age-specific atlases, and to warp the images to 

the general atlas space in the MAR framework. To assess which atlases were most similar to 

the general atlas, we computed the mean squared intensity difference between the age-

specific atlases and the general atlas.

2.2. Automated ventricle segmentation

Image intensities were rescaled so that the 1st percentile of intensity values (without 

masking) is equal to 0 and the 99th percentile is equal to 1. The full 3D images were passed 

as input to a deep learning model. Prior to ventricle segmentation, each FLAIR image 

underwent brain extraction using a dedicated U-Net based deep learning method (Schirmer 
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et al., 2019a) developed and validated in clinical scans. The resulting brain mask was also 

given as input to the model. While test data had varying voxel dimensions, training data 

consisted only of images with image size of 256x256 voxels in axial (inplane) direction, and 

less than 32 voxels in through plane direction. All images were then padded in z to have 32 

slices. During inference, we resized images to 256x256x32 voxels using linear interpolation, 

predicted the corresponding ventricle maps, and resized these maps to the original image 

resolution.

We used a 3D U-Net-like architecture (Figure 1), based on two up-/down-sampling layers. 

Each convolution layer had a kernel size of 3x3x3 with ReLu activations, and we utilized 

2x2x2 Max-Pooling for downsampling. To accelerate convergence without overloading the 

GPU memory, we added a Batch Normalization layer (Ioffe and Szegedy, 2015) after the 

features maps with the lowest resolution (5th convolution layer). Additionally, to improve 

generalization, we added a Dropout layer (Srivastava et al., 2014) before the last 

convolution. The parameters of the network were optimized with the Adadelta optimizer 

(Zeiler, 2012). To improve generalisation, we also trained the algorithm with online data 

augmentation using random translations < 50 voxels, 3D rotations of maximum 0.2 radian 

and flipping according to the coronal plane. The intensity of the ventricles and of the sulci 

were also separately randomized for data augmentation. To artificially increase the intensity 

of the ventricles, we used the annotations and randomly added to the ventricles intensities a 

maximum of 2µ, with µ the mean intensity of the FLAIR scans after percentile 

normalization. To artificially modify the intensity of the sulci, we randomly added between 

−2µ and 2µ to regions of the images with an intensity value lower than 0.25 after percentile 

normalization. The algorithm was implemented using the publicly available Keras 2.2.0 

library (Chollet et al., 2015) with TensorFlow 1.10 as backend (Abadi et al., 2016).

The network’s outputs were binarized at a threshold of 0.5. To improve the segmentation, in 

the ventricle binary maps, we removed small connected components with a volume smaller 

than a manually determined threshold of 5 voxels.

2.3. Registration quality assessment

All pairwise registrations from image to atlas were performed using ANTs SyN nonlinear 

diffeomorphic registration algorithm with default parameters (Avants et al., 2011). Inverse 

registrations were computed to allow the propagation of atlases’ ventricle segmentations to 

image space. The quality of the registration Tx,a of an image x to an atlas a can be assessed 

by measuring the overlap between the ventricles segmented by the CNN in image space 

(VCNN ) and the ventricles of the atlas a (Va) propagated to image space V x, a = Tx, a
−1 (V a). 

We denote this registration quality metric as Qx,a = D(VCNN, Vx,a), where D is the Dice 

similarity coefficient.

Other more conventional metrics – that measure e.g. image similarity – could be used 

instead to assess registration quality. We assessed this based on the cross-correlation (CC), 

i.e. the registration metric itself (ANTS SyN (Avants et al., 2008; Sarvaiya et al., 2009; de 

Groot et al., 2013)) between the registered image x and each atlas a such that Qx,a = Tx,a(x) 

★ a, where ★ denotes the cross-correlation operation. Prior to the computation of the cross-
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correlation, images were rescaled in [0, 1] using their minimum and maximum intensity 

values.

2.4. Multi-Atlas Registration

Each scan was registered pairwise to each atlas in A = a1, …, a5, g, where ai are the age-

specific atlases and the g is the general atlas. For a given scan, the best atlas b was then 

selected based on the registration quality metric Q, so that

b = argmax
a ∈ A

Qx, a, (1)

with, for the ventricle overlap quality metric, Qx,a = D(VCNN, Vx,a,g), where 

V x, a, g = Tx, a
−1 Ta, g

−1 (V g). If the best atlas was not the general atlas, the scan uses the 

intermediate registration target b and is then warped to the general atlas using the 

deformation field of the registration of the intermediary atlas to the general atlas (Figure 2).

3. Experiments

3.1. Ventricle Segmentation

The ventricle segmentation algorithm was optimized using the training/validation set, which 

was randomly split into 240 training scans and 60 validation scans to monitor over-fitting. 

The algorithm was then evaluated on the test set of 100 scans. The experiments with the 

MAR framework were conducted using the complete GASROS dataset excluding the 300 

scans used to optimized the ventricle segmentation algorithm and 41 scans with strong 

motion artifacts, but excluding the 100 scans of the test set for ventricle segmentation, hence 

resulting in 791 scans.

We assessed the automatic segmentation of the ventricular system in the FLAIR sequences 

based on 11 different metrics. These metrics included the Dice similarity coefficient (Dice), 

Jaccard index (Jaccard), true positive rate (TPR), mutual information (MI), Cohen’s kappa 

(KAP), intraclass correlation coefficient (ICC), volumetric similarity (VS), adjusted Rand 

index (ARI), probabilistic distance (PBD), detection error rate (DER) and outline error rate 

(OER). VS was computed as the absolute volume difference divided by the sum of both 

volumes. ARI is Rand index corrected for chance. Rand index measures similarity between 

clusters. PDB measures the distance between fuzzy segmentations. DER measures the 

disagreement in detecting the same regions, namely the sum of the volumes of regions 

detected in only one of both segmentations. OER measures the disagreement in outlining of 

the regions, namely the difference between union and intersection of regions detected in 

both segmentations. A detailed description of the metrics is given elsewhere (Taha and 

Hanbury, 2015; Wack et al., 2012).

PBD, DER, and OER are a measure of dissimilarity, where smaller values represent better 

agreement. As DER and OER are bounded metrics, we rescaled them between 0 and 1, and 

reported 1-DER and 1-OER. In case of PBD (not bounded), we reported 1/(1+PBD). 

Subsequently, all similarity metrics are bound between 0 and 1, where 1 indicates a perfect 

segmentation. Results are visualized as radar plots.2
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3.2. Evaluation of the multi-atlas registration framework

We compared the proposed multi-atlas registration method to a direct registration to the 

general atlas and quantified the gain in registration performance by the difference ∆b,g = 

Qx,b − Qx,g, where Q represents the Dice coefficient of ventricle overlap. We computed 

Wilcoxon tests on all subjects, in order to evaluate the efficacy of the proposed MAR 

framework. Additionally, we investigated the effect of utilizing different registration quality 

assessment metrics and the dependency of age and ventricle volume on the selection of the 

best atlas.

3.3. Spatial maps of WMH burden

Utilizing the manual WMH segmentations from GASROS, we generated an average 

voxelwise map of WMH burden in template space. After using the MAR framework, we 

selected subjects for which registration quality was above a threshold T. Using three 

different thresholds T = 0, 0.6, and 0.9, we visually assessed the quality of WMH maps 

constructed.

4. Results

4.1. Ventricle segmentation

The results of evaluating the automated ventricle segmentation (see Figure 3) show good 

agreement between the manual and automated ventricle segmentations, with Dice 

coefficients of 0.89 for the single-site GASROS dataset and 0.83 for the multi-site MRI-

GENIE dataset. Results of the ventricle segmentation for the MRI-GENIE data set, stratified 

by site, are shown in Appendix A.

4.2. Multi-atlas registration

4.2.1. Atlas creation—Figure 4 shows the age-specific atlases created from the healthy 

controls from the ADNI dataset. Computing the mean squared intensity difference between 

the age-specific atlases and the general atlas revealed that atlas 75–80 was the closest to the 

general atlas, and atlas 80–85 was the most dissimilar.

4.2.2. Gain in registration performance—The gain in registration performance ∆b,g 

is shown for each dataset in Figure 5 and Appendix E. We observed age-dependent 

improvements with increases of ventricle overlap by up to 0.15 Dice points. Wilcoxon tests 

showed that the proposed MAR method reached a significantly higher registration quality – 

measured as ventricle overlap – than that of the direct registration to the general atlas (Figure 

6) in N=430 GASROS subjects (54%) and 93 MRI-GENIE subjects (65%). However, when 

using cross-correlation instead of ventricles overlap for intermediary atlas selection, the 

proposed MAR method did not reach a significantly higher registration quality than that of 

the direct registration to the general atlas (Figure 6; Appendix C and Appendix D). As 

expected, younger patients with lower ventricle volume were assigned to atlases of younger 

categories (Figure 7).

2Github link - https://github.com/marconardin/spider-plotting
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4.2.3. Manual versus automated ventricle segmentation—To assess the validity 

of using the CNN results as reference for the registration, we evaluated the difference of 

results for the MAR framework in each dataset when using manually versus automatically 

segmented ventricles and found no large difference (Figure 8 and Table 1).

4.2.4. Spatial WMH maps of WMH burden—Figure 9 shows that increasing the 

threshold of registration quality (rejecting more subjects) reduces, e.g., the erroneous 

extension of the WMH into the CSF compartments of the brain.

5. Discussion

In this paper, we demonstrated the use of a ventricle segmentation algorithm using clinical 

FLAIR sequences, for automated registration quality assessment, and validated the proposed 

quality assessment metric in a multi-atlas registration (MAR) framework.

The registration quality assessment method compared the ventricles of a subject, segmented 

with a machine learning algorithm, to the ventricles of the atlas, propagated to subject space. 

A ventricle segmentation algorithm that is robust to variations in scanners, sites and image 

resolutions is consequently a keypoint of its applicability. Here, we demonstrated that the 

proposed algorithm performed well in a multi-site scenario, while being trained with data 

from a single site. While, as expected, the algorithm reached a higher performance for the 

dataset it was optimized on (GASROS), the performance dropped by less than 6 percentage 

points of Dice coefficient when used on multi-site data. Importantly, the segmentation 

method generalized well to the other, multi-site data by designing appropriate data 

augmentation procedures, and without employing advanced transfer learning algorithms. 

Using manually or automatically segmented ventricles using the proposed deep learning 

algorithm, led to similar results with the MAR framework in each dataset (8 and 1), with a 

difference in mean gain in Dice coefficient of 0.001 in GASROS dataset, and 0.004 in the 

MRI-GENIE dataset. The largest differences were that: (1) when using the automated 

segmentation, more scans were assigned to atlas of age range 70–75 instead of atlas under 

70 or the general atlas, and (2) when using the manual segmentation, more scans were 

assigned to atlas of age range above 85 instead of the general atlas.

Klein et al. (2009) showed that for multiple registration algorithms (including ANTS) the 

registration error of the ventricles correlates with registration errors in other regions. 

Manually annotated landmarks describing brain structures in the atlas could help to monitor 

more globally the registration quality than using the ventricles alone. However, 

automatically detecting such landmarks in clinical data remains a difficult task, and might 

lead to more erroneous cases, in contrast to segmenting a large, reliable structure, such as the 

ventricles. However, our framework can be extended to use multiple segmentations such as 

grey and white matter segmentations in the future.

We used the automated registration quality assessment method to design a multi-atlas 

registration (MAR) framework for improving registration quality. Instead of being directly 

and only registered to a general atlas, scans were first registered to atlases corresponding to 

several age categories. The best of these atlases was then chosen using the registration 
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quality assessment method, and registration to the selected atlas was used as an intermediary 

registration step. In our dataset, using the MAR framework with ventricle overlap 

significantly improved the registration quality. Patients were often assigned to an 

intermediate atlas that was closer to their chronological age. However, we observed a shift, 

where, on average, subjects were matched to age-specific atlases of an older age category 

than their chronological age. This most probably resulted from the specific cohort in our 

analyses: all subjects had a prior acute ischemic event, which may reflect brains with 

increased biological age. This is further supported by studies which suggested that biological 

age, in contrast to chronological age, can play a key role in susceptibility to disease (Wang et 

al., 2019). This suggests also that selecting the age-specific atlas using the patient’s 

chronological age would be a suboptimal strategy.

We further observed a positive correlation between ventricle volumes and the age category 

of the atlas the scans were assigned to. This relationship was expected, considering that age 

is positively correlated with ventricles volume in the general population (Walhovd et al., 

2011), which can also be seen on the age-specific atlases themselves (Figure 4). The age-

specific atlases also showed expected behavior of increased WMH volume and cortical 

atrophy with increasing age (Earnest et al., 1979). In all experiments, only a few scans were 

assigned to the atlases of age category 75–80 and 80–85. Computing the mean squared 

intensity difference between the age-specific atlases and the general atlas revealed that atlas 

75–80 was the closest to the general atlas, and atlas 80–85 was the most dissimilar. 

Consequently, scans most similar to atlas 75–80 were more likely to be assigned to the 

general atlas instead.

Other researchers have successfully used age-specific atlases (Sanchez et al., 2012; Fillmore 

et al., 2015; Liang et al., 2015; Schirmer et al., 2019b,a). Liang et al. (2015) proposed to 

construct age-specific templates, and observed an improvement for hippocampi 

segmentation. And Fillmore et al. Fillmore et al. (2015) observed an improvement in 

segmentation of white matter, gray matter and cerebrospinal fluid using an age-appropriate 

brain template. It is often impossible to find a single atlas, which works best for studies 

across the entire lifespan. Instead, using multiple age-specific atlases allows a more accurate 

description of the lifespan and can improve registration quality. In this article, we utilized 

five age groups, which already demonstrated improvement in overall registration quality. By 

using even more atlases, i.e. additional or smaller spaced age groups, could lead to further 

improvements. Intermediary registration to a template has also been used to accelerate multi-

atlas segmentation (Dewey et al., 2017), or to improve registration from one image modality 

to another. For instance, Parthasarathy et al. (2011) used a full-volume ultrasound image as 

intermediary image for the registration of live-3D ultrasound to MRI. Later, Roy et al. 

(2014) used an synthesized CT image as intermediary image for the registration from MRI 

to CT. Groupwise registration (Joshi et al., 2004; Fletcher et al., 2009) could be another 

strategy to register all scans of a dataset to the same space. No template image needs to be 

selected in advance, and transformation fields are estimated simultaneously for all scans. 

One of the main disadvantages of groupwise registration is that the initial common space is 

estimated as the mean of all scans in the dataset. This mean image can be fuzzy and not 

provide enough guidance for the iterative optimization process (Wu et al., 2010). Aligning 

the images to the MNI template instead of only aligning them to the general atlas created 
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from ADNI healthy controls might be of interest, for example, to compare with other 

datasets already registered to the MNI template. For this purpose, a registration step to MNI 

template could be added as a last step of the MAR framework, after the registration to the 

general atlas. The general atlas would then need to be registered to the MNI template. This 

approach would guarantee a smoother and more controlled transformation than registering 

the age-specific atlases directly to the MNI template, and would provide a more precise 

monitoring of potential registration errors: ventricle overlap could be computed both when 

registering to the general atlas and when subsequently registering the MNI template, and 

errors in the pipeline could be more easily identified.

The proposed MAR framework using ventricle overlap could be categorized as a feature-

based registration method. Segmentations in feature-based registration methods have already 

been used as initialization (Vemuri et al., 2003), or have been optimized jointly with an 

intensity similarity metric for registration (Yezzi et al., 2003; Pohl et al., 2006; Chen et al., 

2010). More recently, Balakrishnan et al. (2019) proposed to use a deep learning registration 

approach where segmentations of anatomical structures can be used as auxiliary data during 

the optimization. This would allow to include the ventricle segmentation in the optimization 

of the registration, instead of the proposed MAR framework. However, to date, utilizing 

auxiliary data for registration has not been tested in clinical scans, which are known to be 

substantially more challenging to segment and register. With the presented ventricle 

segmentation, and the segmentation of other structures and the entire brain, the extension of 

such approaches to clinical scans becomes more feasible and is of key interest for future 

studies. In Appendix Appendix G, we compared a registration method in which ventricle 

segmentation was added as auxiliary objective with equal weight during registration to the 

proposed MAR and, as expected, obtained higher ventricles overlap. However, by utilizing 

the ventricle segmentation for registration, we cannot utilize it anymore for objectively 

assessing registration quality. Additionally, Balakrishnan et al. (2019) have done similar 

experiments with brain registration and observed that when using the overlap of a single 

structure as auxiliary objective, the overlap of the other brain structures stayed either the 

same or even decreased when using larger weight for the auxiliary objective. In addition to, 

or instead of, using the ventricles to assess registration quality, it might also be interesting to 

inspect subcortical structures on T1-weighted MRI sequence, and attempt to exploit features 

based on the intensity difference between white and gray matter in, for example, the basal 

ganglia.

In our application, we demonstrated that it becomes feasible to automatically select only 

scans with high registration quality, leading to more globally accurate – but also possibly 

more noisy as computed from a smaller set – maps of WMH burden. Using automated 

assessment of registration quality to compute more accurate spatial patterns of disease could 

further help to relate spatial information to global phenotypes such as stroke severity or 

hypertension. For instance research has been done on how WMH distribution differs 

between patients with lobar intracerebral hemorrhage and healthy elderly (Zhu et al., 2012), 

or on differences between deep and periventricular WMH in relation to stroke (Buyck et al., 

2009). However, discarding scans with a lower registration quality might also introduce a 

bias if the quality of the registration is related to one of the studied determinants or 
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outcomes. Alternatively, a more rigorous quality control procedure might also be triggered 

for those scans.

There are limitations to this study. Our proposed method requires reliable automated 

segmentation of a key structure in the image, which can subsequently serves as a reference. 

This can be challenging with smaller structures in the image. Here, we focused on the 

ventricular system, which represents a structure that is relatively easy to segment 

consistently across subjects. While such a discriminative structure might not appear in every 

body part or with every imaging modality, further methodological advances in image 

segmentation will improve the generalizability of the proposed framework. Examples of 

structures that are suited to the proposed method could be large blood vessels in magnetic 

resonance angiography, or fetus in fetal MRI. The premise of our registration quality 

assessment lies in ventricles being visible on the clinical images. In particular in stroke 

cases, mass effects can alter the appearance of the ventricles, sometimes rendering the lateral 

ventricles invisible in the image. Additionally, the posterior horns of the ventricles may be 

masked due to the low resolution of the acquired clinical scans. If ventricles cannot be 

identified on the image, our proposed metrics may indicate insufficient registration quality. 

However, this assessment can be used to flag this subset of the registered scans as potentially 

erroneous, which can then be manually assessed by an expert rater rather than being 

completely rejected from the analysis. If the registration is erroneous, the third and fourth 

ventricles in particular are less likely to overlap with the atlas, reducing the probability of 

high dice for incorrect registration. We observed some outliers with low ventricle overlap 

between the automated and manual ventricle segmentation. The majority of these outliers – 

for instance 2 out of 100 scans in GASROS dataset – were scans with substantial motion 

artifacts, where the segmentation of ventricles was challenging even for human raters. Such 

scans are usually excluded from most neuroimaging pipelines. In addition, in some sites of 

the MRI-GENIE dataset, sulci were sometimes misclassified as ventricles. Another 

limitation is that the proposed MAR framework also multiplies the computation time by the 

number of atlases used: in our case, the registration is six times longer. However, each 

registration can be run in parallel, and in cases where immediate results are not necessary, 

this approach can help improve registration quality. Additionally, with the recent 

development of deep-learning based registration frameworks (Balakrishnan et al., 2019), 

time concerns may become negligible.

Instead of using segmentation to perform automated quality control of registration, Robinson 

et al. (2019) proposed to use registration to perform quality control of segmentation. This 

assumes that the registration is more robust to the variations present in the dataset than the 

segmentation. Using segmentation to perform automated quality control of registration 

assumes the opposite. Whether segmentation or registration can be considered more robust 

depends on the region of interest, imaging modality, and image resolution. The full 

ventricular system in the brain has a complex shape with substantial inter-subject variability 

due to, for example, brain atrophy and/or pathological processes. This makes the registration 

difficult when the shape of subject’s ventricles deviate from the expected ventricle shape. 

Conversely, image intensity on FLAIR-weighted MRI is a substantially more discriminative 

feature than shape. The high contrast between intensities inside and outside the ventricles is 

present in all subjects, scanner and FLAIR protocols. Segmentation of the ventricular system 
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can therefore be expected to be more robust than registration. In contrast the structures 

composing the heart, as seen on MRI, have a simple ovoid shape with similar image 

intensities, making registration approaches more reliable as a reference. The other key aspect 

is that registration of clinical scans to templates is difficult and remains an open research 

question. Registration could potentially be more reliable if we had a more homogeneous, 

high-resolution dataset such a the UK-biobank, as Robinson et al. (2019) used in their 

analyses.

Strengths of our work include segmentation of the four ventricles in clinical scans evaluated 

in multi-center data and more than 1000 scans. We introduced a multi-atlas registration 

framework based on this segmentation algorithm, and employed it to compute more accurate 

maps of WMH burden.

No single registration tool, or set of registration parameters, will perform best on all types of 

image qualities or sequences. By implementing an automated registration assessment step in 

large scale image analyses, it becomes feasible to test multiple registration pipelines and 

select the registration with the best performance. This can increase the number successful 

registrations, and potentially increase the sample size of a study without the need for time 

intensive manual quality assessment.

In this work, we demonstrated the utility of an automated tool for assessing image 

registration quality in clinical scans. Importantly, in addition to extracting an additional 

phenotype from clinical scans – namely the ventricle volume – this image quality 

assessment step can be implemented in large-scale, automated processing pipelines of 

clinical MRI data, increasing the utility of such pipelines and offering improved quality of 

subsequent analysis, ultimately assisting in the translation of such pipelines to the clinic.
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Appendix A.: Ventricle segmentation results for the 12 sites of MRI-GENIE. 

The reported metrics are Dice coefficient (Dice), Jaccard index (Jaccard), 

true positive rate (TPR), volumetric similarity (VS), Mutual information (MI), 

Adjusted Rand Index (ARI), intraclass correlation coefficient (ICC), 

probabilistic distance (PBD), Cohen’s kappa (KAP), Detection Error Rate 

(DER) and Outline Error Rate (OER).
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Appendix B.: List of ADNI 3 IDs used for the computation of the age-

specific atlases.

Appendix C.: Gain in registration performance by using the proposed multi-

atlas registration method with ventricles overlap instead of the more 

standard cross-correlation for atlas selection. Left: GASROS. Right: MRI-

GENIE. The registration quality with the proposed multi-atlas registration 

method Qx,b is in green; the registration quality with the proposed multi-

atlas registration method using cross-correlation instead ventricle Dice to 

select the best atlas Qx,bcc is in pink; the overlay of both is purple. ∆b,bcc 

= Qx,b Qx,bcc, the gain in registration quality by using the proposed multi-

atlas registration method with ventricles overlap instead of cross-

correlation for the selection of the intermediary atlas is in blue.

Appendix D.: Gain in registration performance ∆b,bcc = Qx,b − Qx,bcc. 

Sample size is indicated in brackets.

GASROS MRI-GENIE

Mean gain dice 0.011 (791) 0.014 (142)

Mean gain dice when improvement 0.018 (468) 0.021 (98)
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Appendix E.: Gain in registration performance ∆b,g. Sample size is 

indicated in brackets.

GASROS MRI-GENIE

Mean gain dice 0.012 (791) 0.014 (142)

Mean gain dice when improvement 0.022 (430) 0.022 (93)

Under70 0.038 (128) 0.033 (26)

70–75 0.014 (275) 0.019 (59)

75–80 0.006 (9) 0.0005 (1)

80–85 0.14 (1) ‘(0)’

Above 85 0.019 (17) 0.008 (7)

Appendix F.: Dice score of ventricle overlap with direct registration to the 

general atlas (x-axis) vers registration with the proposed multi-atlas 

framework (y-axis) in GASROS and MRI-GENIE datasets.

Appendix G.: Comparison of registration to the general atlas in which 

ventricle segmentation was added as auxiliary objective with equal weight 

during registration (GR – guided registration – left) to the proposed MAR 

(right). The value on the y-axis is the overlap between ventricles of the 

general atlas propagated to subject space and the ventricles segmented in 

Dubost et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subject space. **** indicates a p-value lower than 0.0001 for the Wilcoxon 

test
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Highlights:

• A deep learning network to segment the full ventricular system in clinical 

MRI.

• Automated assessment of registration quality using ventricle overlap.

• A multi-atlas registration framework using age-specific atlases.

• Evaluation on 935 clinical scans including multi-center data of 12 sites.

• The proposed registration quality metric can be used to refine maps of lesion 

burden.
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Figure 1: Architecture of the deep learning ventricle segmentation algorithm.
The architecture is similar to that of a shallow 3D U-Net (Ronneberger et al., 2015) with 

only 104 feature maps to allow the processing of the full 3D images.
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Figure 2: Principle of the proposed MAR framework.
For each subject, the input image was first registered to each of the atlases a ∈ A, which had 

been previously registered to the general atlas. The ventricles segmented on the general atlas 

Vg are then propagated first to each atlas a, and then to the subject’s image space. The 

propagated ventricles Vx,a,g were subsequently compared to VCNN, the subject’s ventricles 

segmented using the proposed automatic algorithm. Finally, the atlas maximizing the 

registration quality was selected for the intermediary registration step.

Dubost et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Comparison of automated and manual ventricle segmentations in A) GASROS 
(N=100; left) and B) MRI-GENIE (N=142; right).
The reported metrics are Dice coefficient (Dice), Jaccard index (Jaccard), true positive rate 

(TPR), volumetric similarity (VS), Mutual information (MI), Adjusted Rand Index (ARI), 

intraclass correlation coefficient (ICC), probabilistic distance (PBD), Cohen’s kappa (KAP), 

Detection Error Rate (DER) and Outline Error Rate (OER). The solid line is based on the 

median of each measure, while the ribbon represents the interquartile range.
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Figure 4: 
Age-specific atlases and the general atlas registered to MNI space.
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Figure 5: Gain in registration performance measured as ventricle overlap by using the proposed 
MAR method in comparison to a direct pairwise registration to the general atlas g for each 
dataset (Left: GASROS; Right: MRI-GENIE).
A/C: registration quality histograms using either direct registration to the general atlas (pink) 

or the MAR (green; improvement of registration quality). The overlap of both methods is 

shown in purple. B/D: Gain in registration quality ∆b,g. Scatterplots are also available in 

Appendix Appendix F.
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Figure 6: Comparison of the proposed MAR with a direct registration to the general atlas.
Instead of the proposed selection strategy for the intermediary atlas (ventricle Dice), we also 

experimented using the more standard selection criterion: cross-correlation (CC), computed 

after the elastic registration and normalization of intensity values. **** indicates a p-value 

lower than 0.0001 for the Wilcoxon test, and n.s. Indicates a non significant difference.
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Figure 7: Effect of age and ventricle volume on the selection of the atlases using ventricle overlap 
as registration quality metric.
Violin plots show the distribution of the subjects’ age – and ventricle volume – according to 

the best atlas the subjects were assigned to in the MAR framework. A vertical line indicates 

that only n=1 subject has been assigned to the template.
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Figure 8: Comparison of multi-atlas registration using automated (blue) and manual (orange) 
segmentation of the ventricles in subject space.
The number of scans assigned to each atlas is indicated on the right of each plot for both 

automated and manual ventricle segmentations.
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Figure 9: White matter hyperintensity (WMH) burden overlayed with the general atlas.
Rows correspond to different thresholds T for the quality of the registration measure Q used 

to create WMH maps: from top to bottom: Q ≥ 0 (all images = 791 images), Q > 0.6 (748 

images), and Q > 0.9 (83 images). The columns correspond to two different brain slices in 

the axial plane. On the left of each column is the full image and on the right a zoomed in 

version of the region highlighted in pink. Red arrows indicate regions with a visible 

improvement in WMH maps.
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