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Abstract

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated 

amino acid sequences, making it difficult to recognize features that promote their dynamic 

behavior, “fuzzy” interactions and target specificity. We screened a large set of random 30-mer 

peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive 

and negative sequences. ADpred identifies known acidic ADs within transcription factors and 

accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs 

contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs 

often have a biased amino acid composition. ADs likely use a binding mechanism similar to 

avidity where a minimum number of weak dynamic interactions are required between activator 

and target to generate biologically relevant affinity and in vivo function. This mechanism explains 

the basis for fuzzy binding observed between acidic ADs and targets.
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eTOC blurb:

Erijman et al used a large set of synthetic transcription activation domains (ADs) to develop a deep 

learning predictor for acidic AD function. Using this predictor, they identify sequence features that 

specify function in natural ADs and how these properties lead to a mechanism for dynamic 

molecular recognition and function.

Introduction

Transcription activators stimulate transcription in response to signaling pathways controlling 

processes such as development, growth and stress response (Levine et al., 2014; Spitz and 

Furlong, 2012). Misregulation of activators or mutations within them leads to many human 

diseases and syndromes (Bradner et al., 2017). Each activator contains one or more 

transcription activation domain (AD) that usually targets coactivators – complexes that 

contact the basal transcription machinery and/or have chromatin modifying activity (Erkina 

et al., 2016; Hahn and Young, 2011). AD-coactivator binding initiates a series of events 

leading to productive transcription initiation, elongation and reinitiation, in part through 

direct recruitment of factors to gene regulatory regions (Ptashne and Gann, 1997). There are 

hundreds of cellular activators with distinct ADs, but many target a small number of 

coactivators including Mediator, TFIID, Swi/Snf, SAGA, NuA4 and p300. Broadly acting 

ADs can target several of these coactivators, allowing them to act on a large set of genes 

with different coactivator requirements. ADs have also been implicated in promoting the 
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formation of intracellular condensates at enhancers, triggering the recruitment of a large 

dynamic network of coactivators and other factors responsible for gene activation (Boija et 

al., 2018; Cho et al., 2018; Chong et al., 2018; Shrinivas et al., 2019).

Early work demonstrated that: (i) eukaryotic activators are modular, with separable DNA 

binding and activation domains (Brent and Ptashne, 1985), (ii) ADs have biased low 

complexity sequences that are enriched in certain residues, and that the primary sequence of 

the AD is not critical (Cress and Triezenberg, 1991; Hope and Struhl, 1986; Hope et al., 

1988; Jackson et al., 1996; Ma and Ptashne, 1987b, 1987a), (iii) that most ADs are 

intrinsically disordered (Brzovic et al., 2011; Currie et al., 2017; Hope et al., 1988; Kussie et 

al., 1996; Sugase et al., 2007; Uesugi et al., 1997) and, (iv) although specific AD targets are 

not always conserved, at least some ADs can work across a broad spectrum of eukaryotes 

(Fischer et al., 1988; Ma et al., 1988; Sadowski et al., 1988; Struhl, 1988). These properties 

suggested that activator function does not involve precise molecular complementarity with 

their targets but leaves open the important question of how any of the above properties 

translate into a molecular mechanism (Sigler, 1988).

In many systems apart from transcription, molecular recognition by intrinsically disordered 

protein regions (IDRs) is mediated by short linear motifs, 3-10 residue sequence motifs 

found in otherwise unrelated proteins (Ba et al., 2012; Das et al., 2012). In contrast, AD 

function is encoded by a wide range of seemingly unrelated sequences. For example, while 

AD sequences can be moderately conserved in closely related orthologs (Pacheco et al., 

2018), no common sequence motif has been found when comparing ADs from different 

transcription factors. Small to moderate-scale screens for ADs using random sequences of 

varying length found that ~1% of these sequences encoded AD function, showing that no 

special sequence or structure is required for function (Abedi et al., 2001; Erkine et al., 2002; 

Ma and Ptashne, 1987b; Ravarani et al., 2018; Ruden et al., 1991). Other high throughput 

approaches, including screening for the function of transcription factor protein fragments 

and large-scale mutagenesis of a natural AD, also failed to find conserved sequence motifs 

(Arnold et al., 2018; Staller et al., 2018). Taken together, sequence features that correlate 

with AD function include intrinsic disorder, the presence of acidic, hydrophobic, and 

aromatic residues, low sequence complexity, net negative charge (or lack of positive charge) 

and, in some cases, alpha helix propensity.

Structural and molecular analysis showed that one prominent class of activators, the acidic 

ADs, can recognize coactivators using a dynamic “fuzzy” protein-protein interface. For 

example, the yeast activator Gcn4 contains tandem ADs that bind four structured domains in 

the Mediator subunit Med15 (Brzovic et al., 2011; Tuttle et al., 2018; Warfield et al., 2014). 

Structural analysis showed that the individual AD-Med15 interactions are dynamic, and that 

the two factors appear to interact via a cloud of hydrophobicity rather than through 

sequence-specific interactions. This binding mechanism does not require a unique sequence 

motif for AD function. Because of this, it has been difficult to predict sequences with AD 

function and to understand which features promote their dynamic binding properties and 

specificity. For example, how does biased sequence lead to specificity in molecular 

interactions, how specific are these sequences in the proteome, and is this class of activators 

representative of most activators? Understanding these fundamental properties of ADs is 
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essential toward progress in determining the molecular basis of AD specificity for certain 

coactivators, dissecting mechanisms used in gene activation, and in predicting the 

consequences of naturally occurring mutations on AD function.

In this work, we used a high throughput approach in yeast to screen over a million synthetic 

peptide sequences and found large numbers of AD-positive and AD-negative sequences. We 

analyzed the resulting sequence sets using logistic regression and also developed a deep 

neural network predictor of AD function, termed ADpred. The combination of these two 

approaches allowed us to identify sequence features that specify AD function in natural 

transcription factors and, importantly, to relate these properties to a mechanism for 

molecular recognition and function of acidic ADs.

Results

A high-throughput screen for synthetic activation domains

To identify features encoding AD function, we isolated many synthetic ADs using a high 

throughput approach. We reasoned that gathering large sets of polypeptides with and without 

AD function would allow computational identification of physical properties, sequence 

motifs, and other features associated with ADs. Well-characterized natural ADs range from 

about 10 to ≥ 100 residues in length, but many are shorter than 30 residues. We created 

libraries containing 30 randomized amino acids attached to the N-terminal linker region and 

DNA-binding domain of yeast Gcn4 (residues 132-281) (Fig 1A). Prior work showed that 

this Gcn4 derivative has no inherent AD function and that it can accept a wide variety of 

natural and synthetic ADs, permitting activation of yeast Gcn4-dependent genes (Pacheco et 

al., 2018; Warfield et al., 2014). We varied the ratio of the four DNA bases separately at 

codon positions 1, 2, and 3 (LaBean and Kauffman, 1993), to avoid over or 

underrepresentation of amino acids with large or small numbers of codons (e.g., leucine and 

tryptophan). We made two libraries that either (1) slightly biased the randomized coding 

sequences toward residues normally enriched in IDRs (Uversky, 2013) or (2) encoded a 

roughly equal representation of all amino acids (Fig S1A). Each library was separately 

screened for AD function and the results presented below are derived from pooling 

sequences in both libraries. Analysis of the individual libraries yielded similar results (STAR 

Methods).

The individual libraries were transformed into a yeast reporter strain lacking wild type (WT) 

Gcn4 and containing a Gcn4-dependent promoter driving GFP expression. Approximately 

25 million yeast transformants were obtained, and ~3.6 million contained uninterrupted 

ORFs fused to Gcn4. To enrich for functional ADs, we grew cells overnight in synthetic 

media lacking histidine and containing 3-amino triazole (3-AT), a competitive inhibitor of 

the yeast His3 protein. HIS3 transcription is stimulated by Gcn4, and only cells containing 

functional Gcn4 produce enough His3 protein to efficiently grow under these conditions 

(Hope and Struhl, 1986). After selection in 3-AT, we sorted cells by their GFP levels using 

fluorescence-activated cell sorting (FACS). The distribution of fluorescence intensities 

shows that a subpopulation of cells expressed GFP at levels near those of cells with WT 

Gcn4 (Fig 1B). FACS was used to split these GFP-expressing cells into four bins of 

increasing fluorescence. We predicted that cells with the highest GFP levels (bin 4) should 
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contain the strongest ADs. DNA was extracted from cells in the individual GFP-expressing 

bins, and sequenced. Only sequences containing a complete 30-residue ORF were analyzed. 

Single point mutations and other sequencing-related artifacts were minimized by clustering 

similar sequences, allowing for up to 6 mismatches per sequence to be included in the same 

cluster. The most frequent sequence in the cluster was used as the cluster representative. The 

AD-negative set contains peptide sequences from the background library (before 3-AT 

selection and FACS screening) but with all AD-positive sequences identified in bins 1-4 

removed. The AD-positive set consists of sequences found in bins 2-4. Sequences found 

only in bin 1 were omitted as they likely contain some false positives. As a result, analysis of 

the combined libraries gave ~37,000 unique AD-positive sequences and ~1x106 AD-

negative sequences (Table S1).

Most functional ADs were not found in a single bin but were distributed among several bins, 

with the distribution presumably reflecting AD strength. To check the accuracy of our 

FACS-based screening, we first assigned an AD enrichment score to each AD-positive 

sequence. This score measures the weighted enrichment of a 30-mer sequence in bins 1 to 4 

with respect to its number of occurrences in the library prior to 3-AT and FACS screening 

(STAR Methods). Next, we selected 18 AD-positive sequences with a wide range of 

enrichment scores and measured GFP expression in the reporter strain by fluorescence assay. 

We found that the calculated AD enrichment score correlates well with the mean GFP 

fluorescence induced by individual AD candidates, validating our activator screen (Fig 1C; 

Pearson correlation R = 0.79).

Amino acid composition and specific dipeptide sequences are important predictors of AD 
function

We first compared sequences from the AD-positive and negative sets by calculating a log-

odds score for each sequence based on its amino acid composition. This score measures the 

similarity of amino acid composition in any individual sequence compared with the AD-

positive and AD-negative sequence sets (STAR Methods). We found that individual 

sequences in the positive and negative sets have distinct but overlapping amino acid 

compositions (Fig 2A). This finding is consistent with earlier results showing that 

intrinsically disordered protein regions and ADs generally contain low complexity 

sequences that are biased towards certain amino acids.

To quantify the contribution of amino acid composition to AD function, we tested how well 

composition alone predicts function. We fit a logistic regression model for AD prediction 

that used only the relative amino acid frequencies (between 0 and 1) in each positive or 

negative sequence. The model was trained with 90% of the AD-positive and AD-negative 

data and tested with 10% held out data. Surprisingly, composition alone is a very strong 

predictor of function with an area under the precision-recall curve (AUPRC) score of 0.934 

± 0.002 (accuracy of predictions: 0.883 ± 0.003), compared with a maximum possible 

AUPRC of 1.0 for perfect predictions and 0.5 for random predictions. The logistic 

regression coefficients from this model show the bias towards specific residues in AD-

positive sequences (Fig 2B). Consistent with results from prior analysis of natural and 

synthetic AD sequences (Cress and Triezenberg, 1991; Hope et al., 1988; Ma and Ptashne, 
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1987b; Pacheco et al., 2018; Ravarani et al., 2018) the regression coefficients showed that 

ADs identified in our screen are depleted of positively charged residues (R, H, K), and 

enriched for negatively charged (D,E), hydrophobic and aromatic residues, particularly F 

and W.

While no unique sequence or short linear motif has been recognized as conserved in natural 

ADs, it is possible that combinations of short heterogeneous sequence motifs contribute to 

AD function. To explore this possibility, we developed a regression model that utilizes the 

frequencies of all 400 possible dipeptide sequences. The resulting logistic regression 

coefficients from this analysis show the bias towards specific dipeptides that are enriched or 

depleted in the synthetic ADs (Fig 2C). Using dipeptide frequency instead of amino acid 

composition improved model performance to an AUPRC score of 0.942 ± 0.002 (accuracy 

of prediction: 0.891± 0.004). Some dipeptides are clearly enriched in ADs such as D or E 

followed by a hydrophobic residue, especially F or W (log p-values from likelihood ratio 

tests are shown inside the boxes in Fig 2C). The reverse dipeptides (e.g., W followed by D or 

E) show a negligible impact on the model performance (STAR Methods). Importantly, we 

also found that certain dipeptides are strongly depleted in ADs, such as an aliphatic followed 

by a positive or polar residue, proline, or glycine (e.g. L-P), whereas the same was not true 

for the reverse dipeptides (Fig 2C). This analysis suggests that dipeptide sequences 

contribute to AD function over and above the contribution from their amino acid 

composition.

To confirm that dipeptide sequences contribute to AD function, we swapped individual 

dipeptide coefficients in the regression model (e.g., the DW coefficient was swapped with all 

other coefficients in 400 separate models) and used the new models to predict AD function 

(Fig S1B). We found that replacing the DW coefficient (labeled Fwd) with every other 

coefficient in this matrix decreases average model performance significantly, while replacing 

the WD coefficient (labeled Rev) has no appreciable effect on average model performance. 

Fig S1B also shows that replacing coefficients for six similar dipeptides (EW, EV, DV, DL, 

DF, and DY) also decreased model performance while replacement of the reverse peptide 

coefficients does not. We also compared the performance of our regression model with a 

previously proposed universal 9 amino acid AD sequence motif (Piskacek et al., 2007) 

(https://www.med.muni.cz/9aaTAD/). Both the regular and the more stringent 9aa sequence 

pattern did not perform well with our experimental data, achieving accuracies of 0.57 and 

0.60, respectively.

A deep learning model for AD prediction

To discover complex features that can contribute to AD function in an unbiased, agnostic 

fashion and to improve the accuracy of AD predictions, we trained a deep-learning neural 

network model that does not require prior knowledge of features contributing to AD function 

(Schmidhuber, 2015). For example, this approach does not impose a limit on either the size 

or the position of the functional AD sequence within the 30-mer. The model inputs are the 

30-residue sequences from each peptide in the positive and negative sets (20 values per 

position in one-hot encoding), predicted secondary structure (three values per position) and 

predicted disorder (one value) (Fig 3A). A series of 29 filters were used for data convolution 
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that allowed us to model associations between residues at distant and variable positions. The 

resulting data is analyzed using a dense neural network with two soft-sign layers and the 

final output node yielding the probability of the input sequence to possess AD function. 

During training, the weights of the filters and other neural network connections are 

optimized, correcting for an imbalance of positives and negatives by subsampling the same 

number of negatives down to the same number of positives before each training epoch.

Fig 3B, C compares the performance of the best deep learning and regression models. The 

best deep learning model, termed ADpred, uses only amino acid sequence and predicted 

secondary structure and shows great improvement in performance over the dipeptide 

regression model with an AUPRC score of 0.975 ± 0.001 (accuracy 0.932 ± 0.001). We 

found that secondary structure but not disorder predictions modestly improved model 

performance (Fig 3C). The striking improvement in performance of the deep learning 

models over regression approaches suggests the existence of important features associated 

with AD function in addition to bias in amino acid composition and dipeptides sequences.

To evaluate the contribution of peptide charge for AD prediction using the deep learning 

model, we compared average charge per residue versus ADpred probabilities for both AD 

positive and negative sequences (Fig 3D). This analysis showed that extreme positive or 

negative charge correlates well with predictions, but many peptides cannot be accurately 

predicted by charge alone. For example, while we found few ADs with net positive charge, a 

large number of negatively charged peptides do not have AD function. This is consistent 

with the conclusions above that other features, in addition to amino acid composition, make 

important functional contributions.

ADpred identifies sequence features important for AD function

To identify the sequence features used by ADpred to predict function and to test the utility of 

ADpred on natural activators, we first evaluated its performance on the Gcn4 central AD 

(cAD) where thousands of variants have been tested for in vivo function (Jackson et al., 

1996; Staller et al., 2018; Warfield et al., 2014). We performed in silico saturation 

mutagenesis of residues 108-137 of the cAD, changing every residue to every other amino 

acid. We fed the resulting set of peptides to ADpred to predict AD probability with the 

results shown as a heat map in Fig 4A. Remarkably, the in silico predictions of this single-

residue mutagenesis showed excellent correspondence with results from an analogous in 

vivo study (Warfield et al., 2014) with a Pearson correlation of R=0.82 (Fig 4B, left). We 

also used ADpred to predict function for thousands of Gcn4 variants used in a high 

throughput functional screen, most containing multiple mutations within the cAD (Staller et 

al., 2018) (Fig 4B, right). Again, there was good correspondence between prediction and 

published in vivo results with Pearson correlation R=0.57.

From this combined analysis, the importance of the three Gcn4 residues that make direct 

contact with Med15 (W120, L123 and F124; labeled in red in Fig 4A) are clearly apparent 

as well as the lesser but noticeable impact of three other hydrophobic residues (F108, Y110 

and L113; labeled in green) that have been observed in vivo (Jackson et al., 1996; Staller et 

al., 2018). Furthermore, our model predicts that insertion of positively charged residues are 

most likely to have a deleterious impact on function when positioned near the key 
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hydrophobic residues, that insertions of additional hydrophobic residues generally increase 

function, and that no single negatively charged residue is important, in agreement with 

earlier in vivo studies (Jackson et al., 1996; Staller et al., 2018; Warfield et al., 2014). Using 

the same in silico mutagenesis approach, we predicted important residues within yeast ADs 

from Ino2 and Gal4 (Fig S2). Again, we observe an excellent correspondence between in 
silico predictions and experimental results (Pacheco et al., 2018; Tuttle et al., 2019), 

showing that the deep learning model is an accurate predictor of acidic AD function.

ADs generally contain clusters of hydrophobic residues rather than specific 
sequence motifs—For additional insight into sequence features that lead to the high 

performance of the deep learning model, we analyzed the ADpred results using Integrated 
Gradients (Ancona et al., 2018; Sundararajan et al., 2017), an algorithm that identifies 

positive and negative features that contribute to a high prediction score. The results from 

analysis of four representative yeast ADs is shown in Fig 4C, with the results presented as 

sequence logos. Fig S3 shows the Integrated Gradient analysis of 20 high-scoring synthetic 

peptides from the high throughput screen (analysis of AD-negative peptides returns empty 

logos). In contrast to earlier predictions, e.g., (Piskacek et al., 2007; Warfield et al., 2014), 

we found no evidence for ADs to contain defined sequence motifs of three or more residues. 

Rather, a common feature is clusters of hydrophobic residues in the background of an acidic 

polypeptide. Recognition of this feature is likely a primary reason that ADpred performs 

better than predictions based on amino acid composition alone. Many strong natural ADs 

and the top scoring synthetic peptides have multiple occurrences of this simple sequence 

pattern. In sequences with properly biased amino acid composition, the probability that this 

pattern occurs multiple times increases with the length of the peptide and probably 

contributes to AD strength.

Recognition of acidic ADs within eukaryotic transcription factors—We next used 

ADpred to analyze yeast, Drosophila, human and viral transcription factors for which in vivo 
AD function has already been mapped (Fig 5). For this analysis, we used an ADpred 
probability of ≥ 0.8 as a high confidence threshold. In the figure, blue peaks show AD 

predictions, yellow boxes indicate experimentally validated AD function, and structured 

domains are indicated by grey boxes. In many yeast factors (Gcn4, Met4, Ino2, Rap1, Gal4, 

Rtg3), our model predicts AD function coincident with known ADs (Fig 5A). One exception 

is the Gcn4 N-terminal AD, where optimal AD function requires a combination of four short 

hydrophobic clusters scattered throughout the 100 amino acid long N-terminal region 

(Jackson et al., 1996; Tuttle et al., 2018). None of these four short clusters can act as an AD 

on their own but they require the others for in vivo function. Within this region, ADpred 
predicts function, but with a probability <0.8. It seems likely that our model does not give a 

high probability to this long AD because it was trained on ADs of ≤30 residues. Another 

exception is Hap4 where the three highest probability scores lie outside of a previously 

mapped AD region (see below).

Examination of Drosophila transcription factors readily identified three ADs (MTF-1, 

CG14451, BTEB2) that were identified using a prior high throughput screen (Arnold et al., 

2018) (Fig 5B). In contrast, ADpred did not identify ADs in two other Drosophila factors 
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from the same screen (HLH3B in Fig 5B and SAGE-not shown). One possibility is that 

these two factors contain ADs of a different class compared with the ADs analyzed here. 

Well characterized ADs in the human and viral factors p53, E2F1, MyoD, Hif2α, and VP16 

were clearly recognized (Fig 5C). However, the ADs from SP1 are interesting exceptions. 

SP1 contains two Q-rich ADs that are both required for maximum function (Courey and 

Tjian, 1988) and SP1 does not function as an activator in the yeast system (Ponticelli et al., 

1995). Neither of these Q-rich ADs are recognized by ADpred, confirming that they are in a 

different class from the acidic ADs examined here. In human c-Myc, ADpred does not 

recognize the conserved Myc box 2 region, thought to be involved in transcription 

activation. However, another region (residues 88-119) recently shown to directly bind TBP 

and to be important for Myc function (Wei et al., 2019) is identified by ADpred with a high 

probability score. Finally, it is apparent from Fig 5 that peptides with predicted AD function 

are not exclusive to disordered regions. For example, Gal4, HLH3B, HIF2α, VP16 and the 

transcription repressor ETV6 all have peptide sequences with AD potential that are 

contained within regions of known or predicted 3D structure.

Since ADpred identified several sequences with high confidence of AD function in regions 

outside of mapped ADs (Fig 5), we tested whether these are false positives. An alternative 

explanation is that these peptides have strong potential for AD function but are not 

positioned in the proper context to function in their natural setting; e.g. are in structured 

regions or are otherwise inaccessible to the transcription machinery. 30-residue segments 

containing several predicted yeast and Drosophila ADs (indicated by red triangles in Fig 5) 

were fused to the Gcn4 DNA binding domain. Function was assayed in vivo by treating cells 

with sulfometuron methyl (SM) for 90 min to simulate amino acid starvation and to induce 

synthesis of Gcn4, followed by RNA quantitation using RT qPCR (Fig 6A, Table S2). When 

assayed at the Gcn4-dependent HIS4 gene, a predicted AD from Gal4 (Gal4_A) (Ma and 

Ptashne, 1987a) and three from Hap4 (Hap4_A,B,C), produced 3.7- to 8.6-fold higher 

transcription compared with SM-treated cells lacking Gcn4 (labeled “vector” in Fig 6A). At 

HIS4, we used activation of transcription by >3-fold for scoring AD+ function (dashed lines 

in Fig 6). Our results show that these predicted ADs do not inherently lack activity but can 

function as ADs in an appropriate context. We also tested ADpred predictions for several 

Drosophila factors in the yeast system. Consistent with our predictions, the ADs from 

MTF-1, CG14451 and BTEB2 all showed in vivo AD function, while the regions previously 

identified as ADs in vivo but not by ADpred, showed no AD function in yeast (HLH3B and 

SAGE).

Length dependence of natural and synthetic ADs—Our synthetic AD screen used 

randomized sequences of 30 residues and ADpred uses a sliding window of 30 residues to 

analyze sequences for AD function. However, our approach did not require the ADs to be a 

specific length or at a particular position within the 30-mer. For example, if some ADs are 

10-residues long, a 30-mer might contain one or more ADs. For this reason, deep learning is 

a powerful way of pinpointing the AD sequences without any a priori knowledge of the AD 

position within the 30-mer, nor how long, or how many ADs might be contained in any one 

30-mer.
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We used several methods to estimate AD length. First, we counted the number of 

consecutive 30-residue windows that give a high confidence ADpred score (≥0.8). This 

criterion is used for analysis of yeast, Drosophila and human proteomes and transcription 

factors sets shown below. Second, we used saturation mutagenesis (e.g., Fig 4A) to identify 

residues predicted to be functionally important. Third, we chopped proteins containing 

predicted ADs into segments of different lengths and computationally inserted these fc-mers 

into a randomized neutral background that contained only the residues S,T,N,Q,A,G that are 

neither strongly enriched or depleted in ADs (Fig 2B; Fig S4). For Gcn4, this analysis 

identified two overlapping ADs, each 2226 residues long, that are a combination of 

hydrophobic residue clusters in the N and C-terminal ADs. In contrast, yeast factor Tog1, 

with an uncharacterized AD, is predicted to contain a short 8-residue sequence that defines 

its core AD.

Fourth, we used a combination of computational and functional approaches to gauge how 

accurately ADpred predicts the function of very short peptide sequences. We randomized 

sequences of 1-40 residues in length (all amino acids had an equal chance of being in the 

insert) and computationally inserted these peptides into the middle of a neutral 60-mer 

containing only the residues S,T,N,Q,A,G. 10,000 randomized insert sequences of each 

length, plus the constant flanking sequence, were analyzed by ADpred. As expected, the 

fraction of predicted ADs was zero for sequences shorter than 6 residues but rose quickly for 

longer sequences (Fig 6B). We tested a few of the short insert sequences for in vivo function 

and found that the 7-mer and 8-mer sequences activated HIS4 transcription less than 3-fold, 

while both 9-mers activated 4.5-fold. From our combined results, we conclude that ADpred 
recognizes ADs of variable length with practical length limits of ADs ≥9 to ≤30 residues in 

length. This minimum length requirement fits with our published analysis of natural ADs, 

where AD function is often spread out over 15-30 residues.

ADpred can overrule strong amino acid composition bias

As demonstrated above, amino acid sequence composition is perhaps the most important 

factor determining the probability of AD function, but other features also make important 

contributions. Given that a model using only sequence composition as a feature reaches 

quite high accuracies, we asked whether the ADpred predictions are dominated by sequence 

composition. We selected sequences from our libraries containing a wide range of log-odds 

scores for amino acid composition (labeled A to E in Fig 6C). For each selected sequence, 

we generated a set of 10,000 randomly permuted 30-mer peptides and then sorted them 

using ADpred. From this set, we selected one or two pairs of sequences with identical amino 

acid composition but with high and low ADpred scores (AD+ or AD−). Upon testing these 

pairs of 30-mers for function at HIS4 and using activation of transcription by ≥3-fold for 

scoring AD+ function, all predictions were confirmed except for one of two sequences tested 

with +10 log-odds score (Fig 6C). In this exception to our prediction, sequence E2+ has a 

sequence composition extremely biased toward AD function but only shows 2.6-fold 

activation. Combined, our results demonstrate that ADpred can correctly predict function 

with high accuracy even if the sequence composition is strongly biased toward non-AD 

sequences and vice versa.
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We used the Integrated Gradients algorithm to examine the scrambled peptide sequences 

with variable amino acid composition used in Fig 6C (Fig S5). This analysis showed that 

peptides confidently predicted to have AD function but, with unfavorable amino acid 

composition, had separately clustered the favorable and unfavorable residues away from 

each other. For example, AD+ peptides with compositions labeled A and B had positively 

charged residues segregated to the N-terminus while the acidic and aromatic residues were 

positioned in the C-terminus. This further validates our conclusion that short clusters of 

hydrophobic residues in the background of an acidic polypeptide are important for function 

and that ADpred recognizes functional sequences of less than 30-residues long.

We also tested many of the above peptides for activation of yeast ARG3 transcription (Fig 

S6A). ARG3 is transcribed at ~7-fold lower rate compared to HIS4, and transcription of 

ARG3 is regulated by Gcn4 and two repressors. Our prior studies using AD derivatives at 

both promoters showed that HIS4 is generally more permissive for AD function, perhaps 

because of the more complex regulation and coactivator requirements at ARG3 (Pacheco et 

al., 2018; Tuttle et al., 2018). Because WT Gcn4 shows lower levels of activation at ARG3 
compared with HIS4 (5.5-fold vs 14-fold), we set a threshold of 2-fold activation for scoring 

AD function (Fig S6A). Of the four AD predictions for yeast proteins outside of previously 

mapped ADs, only one activated ARG3 >2-fold (Hap4A), but all Drosophila proteins 

examined and 15 of 18 synthetic sequences tested behaved as expected. Thus, our predictor 

performs well but is less accurate on a promoter with more stringent AD requirements (77% 

accuracy at ARG3 compared to 93% at HIS4. Nevertheless, there is a high correlation of 

experimental vs. predicted values at both HIS4 and ARG3 with R=0.85 and 0.67 

respectively (Fig S6B).

Acidic ADs are enriched in yeast but not in Drosophila or human transcription factors

To further explore properties of natural ADs, we applied the deep learning model to the 

entire yeast, Drosophila and human proteomes. We characterized protein regions as AD-

containing (ADpred probability ≥0.8) and by the length of the predicted AD region. We 

compared predictions within the proteome to predictions on a subset of 132 yeast 

transcription factors, some of which are known activators, and to sets of 754 Drosophila and 

1043 human transcription factors (Bateman et al., 2018; Stampfel et al., 2015; Vaquerizas et 

al., 2009) (Fig 7A, Table S3). We observed a modest but clear enrichment of 20-30 residue 

long acidic ADs in yeast transcription factors (p <0.01). In contrast, we found no enrichment 

of acidic ADs in the set of Drosophila or human transcription factors. While this latter result 

seems surprising, it may indicate that metazoan transcription factors most often use a 

different type of AD. The result that acidic AD-type peptides exist in non-transcription 

factors is also in agreement with our findings above that not all peptides with inherent AD 

function are in a context that allows them to function as activators.

ADs show higher helical propensity and less disorder than surrounding sequences from in 
silico analysis.

Finally, we explored whether sequences within the proteome having predicted AD function 

are enriched for disorder or secondary structure elements. For this analysis we used a cutoff 

of ADs ≥15 residues in length. Our analysis examined the 25, 50 and 75th percentiles of the 
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predicted helical propensity or disorder within 50 residues N and C-terminal to the predicted 

AD. To compare properties of the ADs, which are of variable length, we plotted the average 

score for helical and disordered content at the five central residues of the identified ADs 

independent of their length and represented this score graphically in a 5-residue window. 

The predicted ADs from a total of 71 yeast transcription factors have, on average, lower 

disorder and higher helical propensity compared to the surrounding sequence (Fig 7B). 

Consistent with prior expectations, our analysis suggests that many natural ADs are peptides 

with alpha helical propensity located within disordered regions. We found this same pattern 

whether analyzing the entire yeast proteome, the subset of nuclear proteins, or only yeast 

transcription factors (Fig S7). We therefore suggest that the observed pattern of helicity and 

disorder might be some inherent property of the acidic “AD-type peptides” and their normal 

protein environment, whether or not they are transcription factors.

Discussion

Since their discovery and initial characterization, the nature of transcription activation 

domains has been enigmatic (Ptashne and Gann, 1990; Sigler, 1988; Struhl, 1987). Nearly 

all characterized ADs are intrinsically disordered, have no obvious common sequence motif 

and yet the function of some activators is conserved from yeast to humans. Together, these 

and other properties suggested that the function of activators does not require precise 

molecular interactions of ADs with their targets. In agreement with this conclusion, 

structural studies showed that one class of activators, the acidic ADs, can interact with their 

targets via a dynamic fuzzy interface. (Brzovic et al., 2011; Tuttle et al., 2018). This prior 

work has left unanswered several important questions including: i) What sequence properties 

of the activator promote this molecular recognition mechanism? ii) How many transcription 

factors use this mechanism? iii) Can these sequence features be recognized computationally 

and how common are these features in transcription factors? and iv) Is this molecular 

recognition mechanism used outside of the transcription system? In this work, we generated 

large sets of synthetic activators and non-activators and, in combination with two machine 

learning approaches, developed an accurate predictor of acidic AD function (ADpred; 
https://adpred.fredhutch.org). Working backwards from the predictors allowed us to identify, 

in a systematic way, properties and sequence features driving AD function and to relate these 

properties to a molecular recognition mechanism.

Randomized libraries have been screened for AD function in earlier work (Abedi et al., 

2001; Erkine et al., 2002; Ma and Ptashne, 1987b; Ravarani et al., 2018). However, our new 

approach identified ~60-fold higher numbers of ADs and a much larger number of non-ADs, 

an important starting point for systematic analysis of functional properties. For example, a 

prior machine learning approach used 926 synthetic AD variants that gave an AD prediction 

AUROC score of 0.773 (in comparison to our AUROC of 0.977; Table S4) and attributed 

different relative importance to some of the features described here (Ravarani et al., 2018).

As inferred from earlier studies, we found a striking difference in amino acid composition 

between the AD-containing and non-AD sequences. A logistic regression approach based 

solely on amino acid composition was surprisingly accurate (AUPRC 0.934), showing that 

composition is the most important feature in determining the probability of function. 
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Regression allowed us to quantify the contribution of residue type to predicted function, and 

this was consistent with earlier work: ADs are generally depleted of positively charged 

residues and enriched for acidic, hydrophobic and especially aromatic residues. Importantly, 

this approach also allowed us to examine the contributions of simple sequence motifs. Our 

analysis showed that functional ADs are enriched for specific dipeptides and depleted of 

others. One of these dipeptides, DW, had been identified earlier (Ravarani et al., 2018). This 

is in agreement with a prior proposal that one function of acidic residues in ADs is to 

promote solvent exposure of hydrophobic residues that are involved in direct molecular 

interactions (Staller et al., 2018).

To improve performance and to enable analysis on a proteome-wide scale, we developed a 

deep neural network for AD prediction. Deep learning allows predictions of function 

without a priori knowledge about which patterns or properties might be important for the 

prediction. For example, identification of ADs with this approach is independent of the 

number, position, or length of ADs contained within any of the 30-mers. This approach gave 

a striking improvement in the accuracy of AD prediction compared to the logistic regression 

model (AUPRC 0.975 compared to 0.934). ADpred, performs well, even with sequences that 

show extreme bias in amino acid composition against AD function. Including features 

representing predicted disorder did not increase performance. This is not surprising, since it 

is unlikely that a sequence in our library of 30-mers would by chance fold by itself.

Analysis of sequence features that contribute to ADpred performance showed that ADs 

contain clusters of hydrophobic residues in the background of an acidic polypeptide and that 

the strongest ADs contain multiple examples of this feature. This feature is found in both 

natural and synthetic ADs and seems a key general feature corresponding to function. Earlier 

it was noted that the Gcn4 N-terminal AD requires a combination of four such clusters 

spread out over ~ 100 residues (Jackson et al., 1996; Tuttle et al., 2018). However, until our 

new analysis, it was unclear whether this feature generally contributed to the function of 

shorter ADs (e.g., in the 15-20 residue range) or whether AD function is primarily encoded 

by combinations of more sequence-specific motifs (Piskacek et al., 2007; Warfield et al., 

2014).

We suggest that these hydrophobic clusters function to increase the effective affinity of the 

AD peptides for their coactivator targets using a mechanism similar to avidity or allovalency 

– whereby a receptor dynamically interacts with multiple binding sites on a single ligand, 

effectively inhibiting the dissociation of the two molecules (Locasale, 2008; Olsen et al., 

2017). In other words, there are a minimum number of weak dynamic interactions required 

between activator and target to generate biologically relevant affinity and in vivo function. 

This mechanism fits nicely with the dynamic and fuzzy binding of acidic activators to 

Med15, and presumably other coactivator targets, as well as the finding that AD-coactivator 

binding is driven in part by a favorable entropy change (Pacheco et al., 2018; Tuttle et al., 

2018). Importantly, our results explain the known length-dependence of function for ADs 

and the relationship of amino acid composition to function – the probability of multiple 

acidic-hydrophobic clusters is highest in peptides with appropriate amino acid composition. 

Our results that functional ADs are ≥9 residues in length are also in agreement with this 

mechanism.
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These new results, combined with earlier work, show that functional acidic ADs (1) consist 

of a disordered polypeptide with biased amino acid composition, (2) typically contain 

multiple clusters of hydrophobic residues in the background of an acidic polypeptide, (3) are 

enriched for specific short dipeptide sequences and depleted of others, (4) have less disorder 

and more helical propensity than surrounding sequences that facilitate the presentation of 

their hydrophobic residues to interacting partners and (5) are typically of length ≥9 residues. 

Taken together, our characterization fits with a fuzzy-binding mechanism where the 

interactions take place in a dynamic environment resembling a hydrophobic cloud rather 

than combinations of sequence-specific interactions.

Tests of our optimized model showed that it can accurately identify acidic ADs and pinpoint 

functionally important residues within transcription factors. For example, in silico 
mutagenesis of the Gcn4 cAD to every possible residue and predicting the effect on AD 

probability gave results remarkably consistent with extensive experimental analysis. ADpred 
also recognized well-characterized ADs within other yeast, Drosophila and human factors. 

However, several findings showed that sequences with potential AD function are not 

exclusive to transcription activators. First, we found predicted ADs within regions not 

known to function as ADs including some structured protein regions. Second, while we 

found that these AD-like peptides are modestly enriched in yeast transcription factors 

compared to the proteome, they are not enriched in Drosophila or human transcription 

factors. This may indicate that acidic ADs are not as common among human transcription 

factors compared with yeast factors and provides a path for characterization of these other 

AD types. In combination, our results demonstrate that AD function requires that the peptide 

be located in the proper protein context and that not all proteins having an acidic AD-type 

sequence will work as activators. Recognition of these “false-positives” when screening the 

proteome will require additional information. For example, ADpred was trained on short 

random sequences, which are likely to be disordered. Identification of true ADs in 

transcription factors will likely be more accurate if only disordered regions are considered. It 

is important to note that our screen used a TATA-containing inducible promoter. Earlier 

studies showed that enhancers, the DNA targets of activators, can have specificity for a 

certain promoter type and that coactivator requirements can vary dependent on the gene 

regulatory region (Butler and Kadonaga, 2001; Haberle et al., 2019).

Some yeast acidic activators, such as Gal4, work in all eukaryotes, and the ADs we have 

isolated here have similar properties and are likely of this class. In contrast, some higher 

eukaryotic cell-type specific activators bind particular coactivator targets using a sequence-

specific and conventional protein-protein interface that likely have different sequence 

requirements, e.g., (De Guzman et al., 2006). It will be of great interest in future work to 

repeat the screen using promoters with different coactivator requirements and promoter 

sequence elements to determine whether this setup changes the sequence features necessary 

for transcription activation. It will also be of interest to test how predictions of AD function 

correlate with the ability to form condensates – a property associated with at least some ADs 

(Hahn, 2018).
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STAR Methods

Resource Availability

Lead contact and materials availability: Further information and requests for 

resources and reagents should be directed to and will be fulfilled by the Lead Contact, 

Steven Hahn (shahn@fredhutch.org).

Experimental Model and Subject Details—S. cerevisiae reporter strain SHY1018 

(From Steven Petesch, Fred Hutch) was derived from strain BY4705 (Brachmann et al., 

1998) and contained a deletion of the GCN4 gene, was reverted to HIS3+ (required for 3-AT 

selection) and contained a synthetic ARG3-CYC1 promoter driving eGFP expression 

integrated into a gene desert region of Chromosome I with the following genotype: 

matαade2Δ::hisG leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63 ura3Δ0 gcn4Δ::KanMX, Ch I integrated 
URA3::ARG3-CYC1p-eGFP. Strain SHY823 was used for RTqPCR assays in tests of 

synthetic and natural AD-Gcn4 derivatives with genotype: matαade2Δ::hisG his3Δ200 
leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63 ura3Δ0 gcn4Δ::KanMx

Method Details

Design of the randomized libraries—For the first library, we computed the ratio of A, 

C, G, and T needed at each codon position to obtain a roughly equal probability for 

encoding each of the 20 amino acids and a minimal probability for a stop codons within our 

random 90-mer nucleotide sequence. In a custom python script, we minimized an objective 

function using the “basin hopping” algorithm (Wales et al.) implemented in the Python 

scientific library scipy (Oliphant, 2007). The objective function is the Euclidean distance 

from equal representation of all 20 amino acids (Pr(aa)=0.05) and an absence of stop codons 

(Pr(stop)=0). The goal for the second library was to obtain amino acid target probabilities 

equal to the average observed in disordered regions. We used the same Python script to 

compute the optimal ratios of A, C, G, and T to minimize the Euclidean distance with target 

and predicted probabilities.

Oligonucleotides containing 30 repeats of the randomized codons (see below) were ordered 

from Integrated DNA Technologies (Coralville, IA). Each of the three codon positions 

contains a defined ratio of A/C/G/T to generate the desired bias. The oligonucleotides were 

extended in a PCR reaction to add 40 bp identity on each end to plasmid pLH365 (see 

below). This plasmid was derived from the ARS CEN LEU2 vector pRS315 and contains 1 

Kb upstream DNA and the coding sequence for Gcn4 residues 132-281. This upstream DNA 

contains all known Gcn4 promoter and translational regulatory elements. The plasmid was 

digested with SbfI and NotI and 4 μg of linearized vector, and 12 μg of the PCR products 

was transformed to electrocompetent yeast strain SHY1018 so that in vivo homologous 

recombination inserted the randomized 30-mers into the N-terminus of Gcn4 (Benatuil et al., 

2010). Ten transformations were run in parallel to produce a library of ~2x107 clones.

FACS analysis, library DNA isolation and DNA sequencing—Cells containing the 

two libraries were separately screened by FACS. Prior to FACS analysis, 10 ml (~108 cells) 

of the glycerol stock were diluted into 250 ml glucose complete media without leucine and 
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grown to saturation, then diluted to OD600=0.3 in synthetic complete media (Donczew et al., 

2020) containing 3 mM 3-Amino Triazole but without leucine, uracil and histidine and. 

After 14-19 hours, cells were washed and diluted in double distilled water to ~107/ml and 

FACS sorted in a FacsAriaII instrument. A threshold of RU of fluorescence was set on the 

upper extreme of the negative sample. Cells with higher values of fluorescence than the 

threshold were sorted into 4 different gates and ~ 0.5-1 x107 cells were collected. Sorted 

cells were collected by centrifugation for 1 min and resuspended in 1-5ml of synthetic 

complete glucose media without leucine. Cells were grown overnight, then diluted to OD600 

= 0.3 in 25 ml and grown overnight. 20 ml cells were harvested by centrifugation, washed 

with 10 ml H2O and resuspended in 4 ml TE buffer. 2.5 ml Zr-SiO2 beads were added and 

the suspension shaken 7X in a mini Bead Beater (Biospec products) for 3 minutes at 

maximum speed with 5 min rests on ice between shaking cycles. Once cell lysis reached 

70-90%, the supernatant was transferred to a 15 ml falcon tube with 4 ml of Phenol/CHCl3 

mixture, vortexed for 30 seconds and centrifuged at 4200 rpm for 15 minutes. The 

supernatant was transferred into microcentrifuge tubes and centrifuged at maximum speed 

for 10 minutes. The aqueous phase was transferred to new tubes and extracted with an equal 

volume of chloroform. The organic layer was extracted with an equal volume of water and 

the two aqueous fractions were combined and ethanol precipitated and treated with RNAseA 

to generate the plasmid DNA libraries. 2 μl of the DNA libraries (2-19 x 10−7 M plasmid 

DNA) was amplified for sequencing in a reaction with 20 nM forward and reverse primers, 

0.2 mM dNTPs and 0.04 U/μl of Phusion enzyme in a 50 μl reaction. DNA from FACS-

sorted bins 1-4 were barcoded using Illumina nextera i7 barcodes. The PCR product was 

purified with AMPure beads (1.8 μl beads/ml PCR product) according to manufacturer 

instructions and eluted in 50 μl TE. The DNA concentration was measured with a picogreen 

assay and DNA sequencing was performed on an Illumina HiSeq instrument. After FACS 

analysis and DNA sequencing, sequences from both libraries were combined into a single 

dataset to increase the number of samples.

Data processing for machine learning—All procedures are implemented in custom 

python and bash scripts. Reads 1 and 2 from paired-end sequencing were paired with 

FLASH (Magoc and Salzberg, 2011). We filtered out sequences longer than 90 base pairs, 

with sequencing quality PHRED score less than 30 for a given base, with frameshifts, or 

without start or stop codons. Paired nucleotide sequences were translated to amino acids. 

Sequence clustering (Edgar, 2010) was applied to minimize redundancy in the libraries (with 

minimum sequence identity of 80% per cluster). Each cluster was represented by its most 

frequent member sequence. Each such sequence is included in the final reduced dataset and 

the total number of reads in bins 1 to 4 and background correspond to the sum of reads of all 

members of the cluster. For an initial experimental validation, an activator enrichment score 

was calculated for each sequence in the final dataset as the summation of the number of 

reads in each bin, multiplied by coefficients (coeffbin) that correspond to the mean value of 

fluorescence of each bin (see section below):

Score =
∑bin = 1

4 readsbin × coeffbin
readsneg
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Here, readsneg stands for the number of reads in the AD-negative set, which comprises all 

reads from the unsorted background library minus any AD sequences found in FACS bins 1 

to 4.

Machine learning analysis—The redundancy-filtered set of sequences with read counts 

in bins 1 to 4 and background were split into positive (AD-positive) and negative (AD-

negative) sets. The AD-negative set contains all sequences in the background library except 

those found within FACS bins 1 to 4. The positive set contains all sequences with at least 

one read in total in bins 2 to 4. Omitting sequences that were only found in bin 1 improved 

model performance, presumably by eliminating false positives. Charges were computed for 

each sequence as the summation of amino acid frequencies multiplied by a coefficient where 

(E,D=−1; K,R=1 and H=0.5).

For Fig 2A, we compared the sequence composition between the positive and negative sets 

by computing the log-odds score for each sequence and plotting its distribution for the two 

libraries. The log odds score for each sequence was calculated as the sum of the log 

enrichments of each of the 20 amino acids in the sequences, where enrichment is the ratio of 

amino acid frequencies in the AD-positive versus the AD-negative sequence sets. Positive 

scores indicate an amino acid composition similar to the AD-positive set while negative 

scores indicate a composition similar to the AD-negative set. Denoting with aai the i’th 

amino acid in the sequence, with ϕaai
+  the averaged frequency of the amino acid aai in the 

positive set and with ϕaai
−  the frequency in the negative set, the log odds score of a 

polypeptide sequence is:

log − odds score = ∑
aa = 1

20
log(ϕaa+

ϕaa− ) . ϕaa

In Fig 2B, we trained a logistic regression model with L2 regularization (λ = 3.9 10−3 was 

chosen from a grid of 40 default values provided in LogisticRegressionCV function from 

scikit-learn package) to predict whether a sequence is AD-positive or AD-negative. The 

model was evaluated using 5-fold cross-validation. This required optimizing 21 parameters, 

one for each amino acid frequency in the sequence and one offset. For Fig 3, we trained a 

logistic regression model to predict AD function using the 400-dimensional dipeptides 

composition instead of the 20-dimensional single amino acid composition.

To assess the importance of specific dipeptides for AD function, we performed 400 

likelihood ratio tests, each comparing the full model with models lacking one dipeptide 

feature. Dipeptides with significance p-values below 0.001 are indicated in Fig 3 by their 

base 10 logarithm. We also built alternative AD score distributions by flipping the 

coefficients of a dipeptide to every other dipeptide and measuring the performance of these 

models in the test and validation datasets (Fig S1A). We repeated this for all dipeptides, or 

the specific dipeptides shown, and compared the distribution visually with boxplots.

The deep neural network for ADpred (Fig 4A) was implemented using Keras 2.1.6 (Chollet, 

2015) with a TensorFlow (tensorflow.org) backend. Briefly, the input was composed of 
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sequence and secondary structure (H, E and –, for Helix, β-sheet and random coil from 

PSIPRED 4.0.1) in a one-hot encoded matrix of dimension 30 by 23. This input was fed into 

a model made up of a convolutional layer, two dense layers and the output dense layer. The 

convolution layer had 29 filters with filter size 6x23, the first hidden dense layer had 100 

neurons and the second hidden layer had 30 neurons. Each layer had a softplus activity 

(log(1 + ex)). The hidden layers were regularized with L2 regularization (λ=0.001) and 

dropout (P=0.5) layers. The final output layer had a single neuron with a sigmoid activation 

function and was used to compute the final probability for AD function prediction.

The model was trained with the ADAM optimizer (Kingma and Ba, 2014) using the binary 

cross entropy loss function, and the model’s performance was analyzed using AUPRC (area 

under a precision-recall curve), which corrects for skewed class sizes and is a common 

metric used in classification tasks. Each epoch was split into 250 batches. At the beginning 

of each epoch, we randomly drew an equal number of positive and negative samples from 

the original data set. Hyperparameters (batch size, number of epochs, optimization 

algorithm, learning rate and momentum, weight initialization, activation functions, drop out 

probabilities and convolutional filter properties) were optimized with GridSearchCV method 

from scikit-learn. Briefly, for each combination of features (amino acid sequence, secondary 

structure and disorder), the complete dataset was split into 10 parts. 8 were used to train the 

models, 1 to optimize the hyperparameters and 1 to test the model. This was repeated 10 

times for each hyperparameter setting, randomly initializing the weights of the network. 

Each of the 10 parts was used for testing and each part for validation exactly one time. At 

each of these 10 iterations, average precision and recall and standard deviation of the mean 

were measured on the test set (for the 10 random initializations). Fig 4B shows the results of 

applying such procedure. To train ADpred, each hyperparameter was fixed to the mean of 

the optimum over its 10 values (detailed in the previous paragraph). Then the complete set 

was split again into 1 part as a test set and 9 parts for training. The best model over 100 

random initialization of the weights was chosen based on its AUPRC score on the test set.

For Fig 5A, all residues of a cAD 30mer were mutated to all other 19 amino acids and 

ADpred probability was computed. In Fig 5B the same approach was applied to cAD 

derivatives, and ADpred results were compared to experimental results (Tuttle et al., 2018).

To search for AD-regions in full protein sequences, we rolled a 30-residue long window over 

the entire sequences and assigned the score to the residue in the middle (the 16th position in 

the 30mer). Ordered domains were obtained from HHpred (Zimmermann et al., 2018) and 

the d2p2.pro webserver (Oates et al.).

Analysis of ADpred dependence on amino acid composition—To experimentally 

test ADpred and to demonstrate that the model captures more than the amino acid 

composition of input sequences, we designed 30-mers with the same amino acid 

composition (and hence log-odds scores, Fig 2A) but in the opposite extremes of the scale of 

ADpred probabilities. We picked sequences from low to high log-odds scores (A to E in Fig 

6A) and permuted the order of amino acids in each of these sequences 10,000 times. We 

sorted each library of 10,000 sequences by their ADpred probabilities. We then selected 
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peptides with high and low prediction scores and tested them for in vivo function by fusion 

to the Gcn4 DNA binding domain and analysis by RT qPCR.

Proteome analysis for ADs—To search for ADs in full length yeast protein sequences, a 

window of 30 residues was scanned along all annotated protein sequences in yeast (data 

from Saccharomyces Genome Database). and the ADpred probability for the window was 

assigned to the central amino acid in the window (the 16th). We calculated p-values for the 

enrichment of ADs in the set of transcription factors compared to the yeast proteome with 

the hypergeometric test as follows. The summed lengths M of all proteins in the proteome 

corresponds to the population size, and the summed length N of all transcription factor 

sequences corresponds to the “labeled” part of the population. Sites with five or more 

contiguous residues with a score ≥0.8 correspond to the samples drawn. Suppose there are m 
such sites, n of which lie within transcription factors. The p-value for the hypergeometric 

test is the probability to obtain k or more sites within the transcription factors.

The enrichment is computed as

enrichment = n/m
N/M

and the p-value corresponds to:

p − value = ∑
i = n

N N
i

M − N
m − i

M
m

We used the implementation as survival function in scipy.stats.hypergeom. Disorder and 

secondary structure predictions were calculated with PSIPRED 4.0.1 (Cuff and Barton, 

2000) and lUPred 1.0 (Dosztányi, 2017).

K-mer analysis of protein sequences—In our first approach to examine the length 

requirements of ADs (Fig S4), we searched for protein regions that have the highest impact 

on the ADpred score. For each protein of interest, we extracted all overlapping k-mers of a 

fixed length k, for k = 1 to 30. These k-mers were computationally inserted into neutral N-

terminal C-terminal 30 residue flanking sequences that showed negligible ADpred scores of 

around 0. For each length class k, the k-mer with the maximum ADpred score was identified 

and plotted together with its ADpred score (Fig S4). The sequences used for the adapters are 

TNSANAANASASSQAGQQATQNQNTAQQNG (N-terminal) and 

GNGNQNQTTSTSNASANANSGSQGTGSSSQ (C-terminal).

Analysis of AD length requirements—In our second approach to examine the length 

requirements of ADs (Fig 6B), sequences of varying lengths, from 1 to 40 residues long, 

were simulated from a random uniform distribution with equal probability for all 20 amino 

acids (Pr(aa)=0.05). For each length, 10,000 sequences were sampled and computationally 

inserted between the constant “C” and “N” terminal 30-mer flanking sequences, neutral to 
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ADpred, used in the above k-mer analysis. The number of sequences with ADpred score 

≥0.8 from the 10,000 sampled sequences are reported and plotted as bar plot in Fig 6B.

Test of the 9aa TAD motif—Occurrences of the 9aa motif for both the higher and lower 

stringency versions of the motif (Piskacek et al., 2007) were searched using the re python 

library for regular expressions (Prosite syntax): [MDENQSTYG]{KRHCGP}[ILVFWM]
{KRHCGP}{CGP}{KRHCGP}[ILVFWM][ILVFWMAY]{KRHC} and 

[MDENQSTYCPGA]X[ILVFWMAY]{KRHCGP}{CGP}{CGP}[ILVFWMAY]XX)

ADpred web server—Protein sequences can be analyzed using ADpred at the website: 

https://adpred.fredhutch.org.

Randomized oligonucleotide sequences—Shown below are the two oligonucleotide 

oligonucleotides used for generation of randomized 30-mers fused to the N-terminus of the 

Gcn4 linker and DNA binding region.

Oligo 1: optimized for equal ratios: 5’ - 

CAATTTGTCTGCGGCCGCAAATAAATTAAATACAAATAAAATGTCTGCA [(ratio 1)

(ratio 2)(ratio 3)]30 GGCGACAATGACATTCCTGCAGGCACTGACGATG– 3’

A,C,G,T ratios at the three codon positions were: ratio 1 (0.295, 0.230, 0.248, 0.227), ratio 2 

(0.323, 0.258, 0.245, 0.174), ratio 3 (0.000, 0.286, 0.424, 0.289)

Oligo 2: optimized for disordered enriched regions: 5’ - 

CAATTTGTCTGCGGCCGCAAATAAATTAAATACAAATAAAATGTCTGCA [(ratio 1)

(ratio 2)(ratio 3)]30 GGCGACAATGACATTCCTGCAGGCACTGACGATG– 3’

A,C,G,T ratios at the three codon positions were: ratio 1 (0.312, 0.084, 0.406, 0.198), ratio 2 

(0.372, 0.158, 0.177, 0.293), ratio 3 (0.254, 0.241, 0.265, 0.241)

These oligos were PCR amplified with the following primers to insert 40 bp identity on each 

end with pLH365:

HomoRec_pLH365_AD-Gcn4_LongF:

ccctatactatcattaattaaatcattattattactaaagttttgtttaccaatttgtctGCGGCCGCaaataaattaaatacaaataaaa

tgtctgc

HomoRec_pLH365_AD-Gcn4_LongR:

ggtaccagagaaacttcttcagtggattcaattgccttatcagccaatgaaacatcgtcagtgcctgcaggaatgtcattgtcgcc

Randomized oligos were amplified using 20 ng PAGE-purified DNA, 400 nM HomoRec 

amplification oligos, 0.2 mM dNTPs, 1X Phusion buffer, and 1.3 U Phusion polymerase (NE 

Biolabs) and the cycling program: 95 deg 60 sec, (95 deg 30 sec, 60 deg 60 sec, 75 deg 90 

sec) X35, 72 deg 4 min. PCR products were purified on AMPure XP beads (Beckman 

Coulter). The vector plasmid, pLH365, was prepared by digestion with SbfI and NotI, and 

purified on AMPure XP beads. The concentration of pLH365 with the randomized oligo 
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insert in the DNA preparation was calculated by qPCR using primers: fwd 

(cctttctgtcaaattatccagg) and rev (ccgcagacaaattggtaaac). 4 μg linearized pLH365 (6.1 nM 

final) and 12 μg PCR product (56 nM final) were co-transformed by electroporation 

(Benatuil et al., 2010) to yeast strain SHY1018 (see below). For each randomized oligo 

construct, ten transformations were performed in parallel to create a library of ~2x107 

clones. Transformed cells were grown to saturation in glucose complete media without 

leucine (1-3 days), re-diluted to OD600 = 0.3 and grown to OD600 ~1-1.5. Glycerol was 

added to 20% final and cells frozen in liquid nitrogen and stored at −80C in 10 ml aliquots.

pLH365 vector sequence.: Shown is the relevant promoter and coding sequence of pLH365 

into which the randomized 30-mers and the 30 residue test sequences were cloned. (nnn)30 

indicates the site of oligo insertions. The Gcn4 coding sequence is capitalized and encodes: 

MSA-(nnn)30 – Gcn4 (125-281)-3xFlag. Not1 and Sbf1 restriction sites are shown in blue. 

The coding sequence for 3xFlag is magenta.

ttatccaggtttactcgccaataaaaatttccctatactatcattaattaaatcattattattactaaagttttgtttaccaatttgtctgcggccg

caaataaattaaatacaaataaaATGTCTGCA(nnn) 

30GGCGACAATGACATTCCTGCAGGCACTGACGATGTTTCATTGGCTGATAAGGCA

ATTGAATCCACTGAAGAAGTTTCTCTGGTACCATCCAATCTGGAAGTCTCGACAAC

TTCATTCTTACCCACTCCTGTTCTAGAAGATGCTAAACTGACTCAAACAAGAAAGG

TTAAGAAACCAAATTCAGTCGTTAAGAAGTCACATCATGTTGGAAAGGATGACGA

ATCGAGACTGGATCATCTAGGTGTTGTTGCTTACAACCGCAAACAGCGTTCGATTC

CACTTTCTCCAATTGTGCCCGAATCCAGTGATCCTGCTGCTCTAAAACGTGCTAGA

AACACTGAAGCCGCCAGGCGTTCTCGTGCGAGAAAGTTGCAAAGAATGAAACAA

CTTGAAGACAAGGTTGAAGAATTGCTTTCGAAAAATTATCACTTGGAAAATGAGG

TTGCCAGATTAAAGAAATTAGTTGGCGAACGCATGGACTACAAAGACCATGACGG

TGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAAtga

RNA isolation—Cell cultures were grown in duplicate at 30° C to OD600 0.5 – 0.8 in 2% 

dextrose synthetic medium lacking leucine, isoleucine, and valine. Cells were treated with 

0.5 μg/ml SM for 90 minutes to induce amino acid starvation. Following induction, cells 

from a 10 ml culture were collected by centrifugation and washed with 5 ml sterile water. 

The pellets were resuspended in 0.4 ml TES (10 mM Tris pH 7.5, 10 mM EDTA, 0.5% 

SDS) then mixed thoroughly with 0.4 ml acid phenol (Ambion, AM9722), and incubated for 

1 hour at 65°, 1200 rpm in a Thermomixer R (Eppendorf). Phases were separated by 

centrifugation for 15 minutes at 4°, and the aqueous phase was transferred to fresh tubes and 

extracted again with 0.4 ml acid phenol followed by 0.3 ml chloroform. RNA was 

precipitated from a volume of 100 – 200 μl aqueous solution using 1/10 volume 3 M sodium 

acetate and 3 volumes ethanol and collected by centrifugation for 15 minutes at 4°. The 

RNA pellets were washed with 1 ml 80% ethanol, dried in a SpeedVac concentrator, and 

solubilized in 50 – 100 μl nuclease-free water (Ambion, AM9937). RNAs were stored at 

−80°.
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Quantification and Statistical Analysis

RT qPCR and quantification—RNA concentrations were determined using a NanoDrop 

spectrophotometer (ThermoFisher), and 15 μg RNA from each sample was treated with 

RiboPure DNAsel (ThermoFisher, AM1926). The Transcriptor First Strand cDNA Synthesis 

Kit (Roche, 04897030001) was used to generate cDNA from 1.1 μg DNA-free RNA. 

Anchored oligo(dT)18 was annealed to mRNA for 10 minutes at 65°, then extended by 

Transcriptor RT for 1 hour at 50° before inactivation at 85° for 5 minutes. cDNAs were 

stored at −20°.

Gene-specific qPCR was performed in triplicate using primers near the 3’ end of the genes. 

Five microliter reactions containing Power SYBR Green PCR Mater Mix (ABI, 4367659) 

were assembled in 384-well plates (ABI, 4309849), and run on a QuantStudio 5 Real-Time 

PCR System (ABI). Relative amounts of DNA were calculated using a standard curve 

generated from serial dilutions of purified yeast genomic DNA from 10 – 0.001 ng. The 

detected quantities of ARG3 and HIS4 mRNAs were normalized to ACT1 mRNA to 

determine RNA expression levels.

Primer Sequence

ACT1-FP1 TGGATTCCGGTGATGGTGTT

ACT1-RP1 TCAAAATGGCGTGAGGTAGAGA

F-RT-ARG3 TCGCATGTCTGAAATTCGGTAT

R-RT-ARG3 CATCGACAATATCGGAATCCATT

HIS4-FP1 GCACTGCCATTTTACCAAGTACTG

HIS4-RP1 CTTGGTGGAGATGCAAACACA

Enrichment score analysis—Values of fluorescence used to delimit the gates for sorting 

cells during selection with FACS were used to compute the activator enrichment score. The 

relative fluorescence units (RFU) correspond to the ratio of the mean fluorescence unit (FU) 

of bin X over binl (e.g. av.bin1 = (120+400) /2 = 260; av. bin2: (640+400)/2=520. Then 

520/260=2).

bins lower upper RFU

1 120 400 1.000

2 400 640 2.000

3 640 1000 3.154

4 1010 7500 4.577

Data and Code availability—Raw DNA sequence data generated during this study has 

been deposited at NCBI Sequence Read Archive (SRA) with accession number 

SAMN14330228. Custom code and algorithms can be found at: https://github.com/aerijman/

ADpred_publication.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• A deep learning model for AD prediction was derived from a large set of 

synthetic ADs

• The predictor (ADpred) identifies sequence features important for acidic AD 

function

• AD sequence features explain the basis for the fuzzy binding mechanism of 

acidic ADs

• Acidic ADs are enriched in yeast but not in Drosophila or human 

transcription factors
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Figure 1. 
Experimental design and validation. A) Schematic of the high throughput screen for ADs. 

Cells containing a GFP reporter driven by a synthetic Gcn4-dependent promoter were 

transformed with libraries of random 30-mers fused to the N-terminus of the Gcn4 DNA 

binding domain. Cells with Gcn4-AD function were enriched by growth in 3-AT followed 

by FACS. DNA from the libraries before 3-AT selection and FACS (background library) and 

from the four GFP-containing bins were sequenced. The AD-negative set was created by 

removing sequences found in bins 1-4 from the background library. TES: ADH1 terminator; 
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pA: poly-A site. B) Plots show the number of cells vs relative fluorescence intensities from 

FACS analysis of cultures with WT Gcn4, the enriched library, and no Gcn4. Vertical lines 

show gates used for binning AD-containing cells. C) Experimental validation of enrichment 

scores on 18 AD sequences versus GFP expression in the reporter strain. Individual clones 

were assayed by FACS and the mean fluorescence of the cell population is shown. See Table 

S1 and Fig S1.
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Figure 2. 
Properties of synthetic ADs. A) Distribution of log-odds scores for sequences from the AD-

positive (blue) and AD-negative (orange) sets. B) Coefficients of amino acid frequencies 

derived from a logistic regression model for AD probability. Blue = positive charge; red = 

negative charge; green = hydrophobic/aromatic, cyan = polar and yellow = others. C) 
Dipeptide sequences contribute to AD function. Heatmap of coefficients from a logistic 

regression model using only dipeptide frequencies. The first amino acid in the dipeptide is 
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on the Y-axis. Log10 p-values are shown where p <0.001. p-values are from likelihood ratio 

tests using all 400 dipeptide regression coefficients versus all but one. See Fig S1.
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Figure 3. 
Convolutional deep neural network architecture and performance. A) Input for each 

sequence consists of the 30 amino acid peptide sequence and its predicted sequence features 

(secondary structure and/or intrinsic disorder). A convolutional layer learns patterns 

characteristic of ADs independent of their precise position in the AD sequence. The 

flattened outcome of the convolution is used as an input for a dense two-layer-network with 

100 and 30 neurons respectively. The output layer gives the probability of AD function for 

the input sequence. B) Analysis of model performance. The precision-recall curve compares 
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the performance of the linear regression model utilizing dipeptide frequencies and the best 

deep learning model (ADpred) utilizing amino acid sequence and secondary structure 

predictions. (C) Comparison of several regression and deep learning models evaluated with 

10-fold cross validation, with the lines corresponding to standard error of the mean. dis. = 

disorder predictions; seq. = peptide sequence; ss = secondary structure prediction (statistics 

from Table S4). D) Correlation between predictions of the deep learning model and the 

average charge per residue of the 30mers. Dotted line represents peptide with neutral 

average charge.
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Figure 4. 
Performance of ADpred on yeast activators. A) ADpred predictions for all possible single 

amino acid mutations of the Gcn4 central AD (cAD). An increase in ADpred score is darker 

red, decreases are lighter red or blue. Wild type cAD ADpred score is indicated in the 

colorbar. Residues important for Gcn4 function identified in prior work are colored red and 

green in the Gcn4 sequence below the heat map. B) (Left) The AD activity of cAD 

derivatives measured in (Warfield et al., 2014) shows a high correlation with ADpred 
predictions (R=0.82). ADpred probabilities were transformed from (0,1) to (−∞,∞) by the 
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logit function. (Right) Comparison of ADpred predictions with a large set of yeast Gcn4 

derivatives (Staller et al., 2018). Experimental data plotted as raw activity values measured 

under amino acid starvation conditions. Colors represent the density of points from low 

density in blue to high density in red. The white line shows a K nearest neighbor regression 

analysis (where Y is predicted by local interpolation of values from the K nearest neighbors 

on X, using kNeighborsRegressor function from scikit-learn package) (R=0.57). C) 
Predicted importance of individual residues for ADpred scores identified using the 

Integrated Gradients algorithm (Ancona et al., 2018; Sundararajan et al., 2017). Residue 

contributions in four selected yeast ADs are shown as sequence logos (positive upwards, 

negative downwards) Residue colors are the same as in Fig 2B. See Figs S2, S3.
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Figure 5. 
Performance of the deep learning model on selected (A) yeast, (B) Drosophila, (C) human 

and viral transcription factors. Known AD-containing regions are yellow, known structured 

regions grey, and ADpred scores blue. Red triangles show predicted AD+ sequences that test 

positive for AD function in vivo; dark blue triangles show predicted AD− sequences without 

AD function (see Fig 6). The TBP-binding peptide in c-Myc (Wei et al., 2019) is indicated. 

Published data on ADs is from the following sources: (Arnold et al., 2018; Fields and Jang, 

1990; Helin et al., 1993; Kuras and Thomas, 1995; Leuther and Johnston, 1992; Ma and S3. 
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Ptashne, 1987a; Pacheco et al., 2018; Pascal and Tjian, 1991; Raycroft et al., 1990; Regier et 

al., 1993; Rothermel et al., 1997; Schwank et al., 1995; Wei et al., 2019; Weintraub et al., 

1991).
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Figure 6. 
In vivo tests of ADpred predictions of natural and synthetic ADs. RT qPCR quantitation of 

mRNA from the yeast HIS4 gene, normalized to ACT1 mRNA. Dotted lines indicate 3-fold 

activation above cells lacking Gcn4 (vector). Cells contained the indicated AD sequence 

(Table S2) fused to the Gcn4 DBD in vector pLH365 and were induced with SM for 90 min 

before mRNA quantitation. Grey bars = no SM added, all others have SM; Black bars = 

control Gcn4 derivatives: WT Gcn4 and the Gcn4 cAD. Red bars = sequences predicted to 

have high probability of AD function; blue bars = low probability of AD function. A) Tests 
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of yeast and putative Drosophila ADs from Fig 5. B) Length dependence of AD function. 

Right graph shows the number of predicted ADs recovered from 10,000 randomized 

sequences of the indicated lengths. Left panel shows RT qPCR analysis of predicted ADs. 

The first number of the sequence name indicates the length of the synthetic AD (e.g., 9_188 

is an insert of 9 amino acids). C) Arrows point to regions where selected AD-positive 

sequences were randomized and used to search for one or two pairs of sequences with the 

same amino acid composition but either high (+) or low (−) ADpred scores. Left plot shows 

RT qPCR analysis of these randomized sequences. Sequence pairs with identical log-odds 

scores are labeled A-E as in the log-odds histogram followed by 1 or 2; e.g., A1+/A1−, 

A2+/A2−, etc. See Table S2, Figs S4, S5, S6.
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Figure 7. 
Properties of predicted AD regions. A) Tests for enrichment of predicted ADs in sets of 

yeast, Drosophila, and human transcription factors (Table S3) compared to the complete 

proteomes plotted against the minimum length threshold for calling an AD. The enrichment 

p-values from a Fisher test are shown below. B) Predicted disorder and helicity in and 

around predicted ADs from a set of 71 yeast transcription factors with ADs ≥15 residues 

long (Table S3). To compare properties of the ADs, which are of variable length, the average 

score for helical and disordered content at the five central residues of the ADs were 
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calculated and shown graphically in a 5-residue window. Black thick line: median values; 

Grey: values between the 25th and 75th percentile. Results are shown for a cutoff of ADs 15 

or greater residues in length where 71 ADs meeting this criterion were found in the set of 

132 yeast factors. See Table S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

3-Amino 1,2,4-Triazole Sigma-Aldrich A-8056

Sulfomeutron methyl Sigma-Aldrich 34224

Deposited Data

Raw DNA sequencing data of AD-positive 
and negative data sets

NCBI Sequence Read Archive 
(SRA)

SAMN14330228

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae strain SHY1018 Steven Petesch (FredHutch) mat alpha ade2::hisG leu2 delta 0 lys2 delta 0 met15 
delta 0 trp1 delta 63 ura3 delta 0 gcn4 delta::KanMX, 
Ch I integrated URA3::ARG3-CYC1p-eGFP

Oligonucleotides

DNA oligonucleotides Integrated DNA technologies Sequences given in Table S2; STAR Methods

nextera i7 barcodes Illumina UDP0001-UDP0096

Recombinant DNA

plasmid pLH365 Linda Warfield (FredHutch) ARS CEN LEU2 + 1 Kb upstream DNA and the 
coding sequence for S cerevisiae Gcn4 residues 
132-281. Relevant sequence in STAR Methods.

Software and Algorithms

Custom code and algorithms Ariel Erijman https://github.com/aerijman/ADpred_publication

Logistic Regression algorithm https://scikit-learn.org/ LogisticRegressionCV function

Neural Network algorithm (Chollet, 2015) Keras 2.1.6

Neural Network algorithm tensorflow.org Tensorflow

Neural Network algorithm (Kingma and Ba, 2014) ADAM optimizer

Neural Network algorithm https://scikit-learn.org/ GridSearchCV method

Protein homology detection (Zimmerman et al, 2018) HHpred

Disordered Protein Predictions (Dosztányi, 2017) IUPred 1.0

Statistical Analysis SciPy.org scipy.stats.hypergeom

Secondary Structure Prediction (Cuff and Barton, 2000) PSIPRED 4.0.1

Other

AMPure XP beads Beckman Coulter A63881

KOD extreme Polymerase emdmillipore 71975

Phusion polymerase New England BioLabs M0530S

RiboPure DNAseI ThermoFisher AM1926

Transcriptor First Strand cDNA Synthesis Kit Roche 04897030001

Power SYBR Green PCR Mater Mix ABI/ThermoFisher 4367659

Zirconia beads, 0.5 mm Research Products International 9834
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