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Abstract 

The aim of our work was to better understand misclassification errors in identification of true cases of COVID-19 
and to study the impact of these errors in epidemic curves. We examined publically available time-series data of 
laboratory tests for SARS-CoV-2 viral infection, the causal agent for COVID-19, to try to explore, using a 
Bayesian approach, about the sensitivity and specificity of the PCR-based diagnostic test.  Data originated from 
Alberta, Canada (available on 3/28/2020) and city of Philadelphia, USA (available on 3/31/2020).  Our analysis 
revealed that the data were compatible with near-perfect specificity but it was challenging to gain information 
about sensitivity (prior and posterior largely overlapped).  We applied these insights to uncertainty/bias analysis 
of epidemic curves into jurisdictions under the assumptions of both improving and degrading sensitivity.   If the 
sensitivity improved from 60 to 95%, the observed and adjusted epidemic curves likely fall within the 95% 
confidence intervals of the observed counts.  However, bias in the shape and peak of the epidemic curves can be 
pronounced, if sensitivity either degrades or remains poor in the 60-70% range.  In the extreme scenario, hundreds 
of undiagnosed cases, even among tested, are possible, potentially leading to further unchecked contagion should 
these cases not self-isolate.  The best way to better understand bias in the epidemic curves of COVID-19 due to 
errors in testing is to empirically evaluate misclassification of diagnosis in clinical settings and apply this 
knowledge to adjustment of epidemic curves, a task for which the Bayesian method we presented is well-suited. 
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Introduction 

It is well known that outcome misclassification can bias epidemiologic results, yet is infrequently quantified and 
adjusted for in results.  In the context of infectious disease outbreaks, such as during the COVID-19 pandemic of 
2019-20, false positive diagnoses may lead to a waste of limited resources, such as testing kits, hospital beds, and 
absence of the healthcare workforce. On the other hand, false negative diagnoses contribute to uncontrolled spread 
of contagion, should these cases not self-isolate. In an ongoing epidemic, where test sensitivity (Sn) and 
specificity (Sp) of case ascertainment are fixed, prevalence of the outcome (infection), determines whether false 
positives or negatives dominate. For COVID-19, Goldstein & Burstyn (2020) show that suboptimal test Sn 
despite excellent Sp results in an overestimation of cases in the early stages of an outbreak, and substantial 
underestimation of cases as prevalence increases to levels seen at the time of writing. However, understanding the 
true scope of the pandemic depends on precise insights into accuracy of laboratory tests used for case 
confirmation.  Undiagnosed cases are of particular concern; they arise from untested persons who may or may not 
have symptoms (under-ascertainment) and from errors in testing among those selected for the test (inconclusive 
results).  We focus on misclassified patients only due to errors in tests that were performed: according to the 
World Health Organization’s case definition, these may be deemed ​probable ​ cases when a test result was 
inconclusive (WHO, 2020). Presently, the accuracy of testing for SARS-CoV-2 viral infection, the causal agent 
for COVID-19, is unknown in Canada and the USA, but globally it is reported that Sp exceeds Sn  (COVID-19 
Science Report: Diagnostics 2020, Fang et al. 2020; Ai et al. 2020). 

In a typical scenario, clinical and laboratory validation studies are needed to fully quantify the performance of a 
diagnostic assay (measured through Sn and Sp). However, during a pandemic, limited resources are likely to be 
allocated to testing and managing patients, rather than performing the validation work. After all, imperfect testing 
can still shed a crude light on the scope of the public health emergency. Indeed, counts of observed positive and 
negative tests can be informative about Sn and Sp, because certain combinations of these parameters are far more 
likely to be compatible with data and reasonable assertions about true positive tests. In general, more severe cases 
of disease are expected at the onset of an outbreak (and reflected in tested samples as strong clinical suspicion for 
the test produces higher likelihood of having the disease) but the overall prevalence in the population would 
remain low. Then, as the outbreak progresses with more public awareness and consequently both symptomatic 
and asymptomatic people being tested, the overall prevalence of disease is expected to rapidly increase while the 
severity of the disease at a population level is tempered. It is reasonable to expect, as was indeed reported 
anecdotally early in the COVID-19 outbreak, for laboratory tests to be inaccurate, because the virus itself and its 
unique identifying features exploited in the test are themselves uncertain, and laboratory procedures can contain 
errors ahead of standardization and regulatory approval.  Again, anecdotally, Sn was supposed to be worse than 
Sp, which is congruent with reports of early diagnostic tests from China (Fang et al. 2020; Ai et al. 2020), with 
both Sn and Sp improving as the laboratories around the world rushed to perfect testing (Konrad et al. 2020; US 
FDA 2020; ​Corman ​et al. 2020) to approach performance in tests for similar viruses (e.g. Binsaeed et al. 2011; 
Merckx et al., 2017​)​.  Using publicly available time-series data of laboratory testing results for SARS-CoV-2 and 
our prior knowledge of infectious disease outbreaks, we may be able to gain insights into the true accuracy of the 
diagnostic assay.  

Thus, we pursued two specific aims: (a) to develop a Bayesian method to attempt to learn from publicly available 
time-series of COVID-19 testing about Sn and Sp of the laboratory tests and (b) to conduct a Monte Carlo 
(probabilistic) sensitivity analysis of the impact of the plausible extent of this misclassification on bias in 
epidemic curves. 
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Methods 

Sharing 

Data and methods can be accessed at ​https://github.com/paulgstf/misclass-covid-19-testing​; data are also 
displayed in Appendix A. 

Data 

We digitized data released by the Canadian province of Alberta on 3/28/2020 from their “Figure 6: People tested 
for COVID-19 in Alberta by day” on ​https://covid19stats.alberta.ca/​ under “Laboratory testing” tab.  ​Samples 
(e.g., nasopharyngeal (NP) swab; bronchial wash) undergo ​nucleic acid testing (NAT) that use primers/probes 
targeting ​t​he E (envelope protein) (Corman et al. 2020) ​a​nd RdRp (RNA-dependent RNA polymerase) (qualitative 
detection method developed at ProvLab of Alberta)​ ​genes of the COVID-19 virus.​  ​The data was digitized as 
shown in Table A1 of Appendix A. The relevant data notes are reproduced in full here: 

“Data sources: The Provincial Surveillance Information system (PSI) is a laboratory surveillance system which receives 
positive results for all Notifiable Diseases and diseases under laboratory surveillance from Alberta Precision Labs (APL). The 
system also receives negative results for a subset of organisms such as COVID-19.  …  Disclaimer: The content and format 
of this report are subject to change. Cases are under investigation and numbers may fluctuate as cases are resolved. Data 
included in the interactive data application are up-to-date as of midday of the date of posting.” 

Data from the city of Philadelphia were obtained from 
 ​https://www.phila.gov/programs/coronavirus-disease-2019-covid-19/the-citys-response/monitoring-and-testing/ 
on 03/31/2020.  It was indicated that “test results might take several days to process.”  Most testing is PCR-based 
with samples collected from an NP swab, performed at one of the three labs (State Public Health, Labcorps, 
Quest). In addition, some hospitals perform this test using ‘in-house’ PCR methods.  There is a perception (but no 
empiric data available to us) that Sn is around 0.7 and there are reports of false negatives based on clinical 
features of patients consistent with COVID-19 disease. Issues arise from problems with specimen collection and 
timing of the collection, in addition to test performance characteristics.  The data were digitized as shown in Table 
A2 in Appendix A. 

Bayesian method to infer test sensitivity and specificity 

A brief description of the modeling strategy follows here, with full details in Appendix B.  Both prevalence of 
infection in the testing pool and test sensitivity are modeled as piecewise-linear on a small number of adjacent 
time intervals (here: days; four intervals of equal width, in both examples), with the interval endpoints referred to 
as “knots” (hence there are five knots, in both examples).  The prior distribution for prevalence is constructed by 
specifying lower and upper bounds for prevalence at each knot, with a uniform distribution in between these 
bounds.  The prior distribution of sensitivity is constructed similarly, but with a modification to encourage more 
smoothness in the variation over time (see Appendix B for full details).   The test specificity is considered 
constant over time, with a uniform prior distribution between specified lower and upper bounds. 

With the above specification, a posterior distribution ensues for all the unknown parameters and latent variables 
given the observed data, i.e., given the daily counts of negative and positive test results.  This distribution 
describes knowledge of prevalence, sensitivity, specificity, and the time-series of  the latent Y​t​ , the number of 
truly positive among those tested on the t-th day.   Thus, we learn the posterior distribution of  the Y​t ​time-series, 
giving an adjusted series for the number of true positives in the testing pool, along with an indication of 
uncertainty. 

As discussed at more length in Appendix B, this model formulation neither rules in, nor rules out, learning about 
test sensitivity and specificity from the reported data.  Particularly in a high specificity regime, the problem of 
separating out infection prevalence and test sensitivity is mathematically challenging.  The data directly inform 
only the product of prevalence and sensitivity.  Trying to separate the two can be regarded statistically as an 
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“unidentified” problem  (while mathematicians might speak of an ill-posed inverse problem, or  engineers might 
refer to  a “blind source separation” challenge).  However, some circumstances might be more amenable to some 
degree of separation.    In particular, with piecewise-linear structure for sensitivity and prevalence, strong 
quadratic patterns in the observed data, if present, could be particularly helpful in guiding separation.   On the 
other hand, if little or no separation can be achieved, the analysis will naturally revert back to a sensitivity 
analysis, with the ​a priori ​ uncertainty about test sensitivity and infection prevalence being acknowledged.  

Some of the more reliable PCR-based assays can achieve near-perfect Sp and Sn of around 0.95 (Konrad et al. 
2020; US FDA 2020; ​Corman ​et al. 2020, COVID-19 Science Report: Diagnostics 2020).  However, early in the 
COVID-19 outbreak problems with the sensitivity of the diagnostic test were widely reported owing to specimen 
collection and reagent preparation, but not quantified.  Based on these reports, we posited a lower bound on prior 
Sn of 0.6 and an upper bound of 0.9.  We expected Sp to be high and selected a time-invariant prior uniform 
bounded by 0.95 and 1.​ ​Prevalence of test-positive samples likely changed over time as well -- for example due to 
prioritization of testing based on age, occupation, and morbidity (CDC, 2020) -- but it is difficult to quantify what 
this would be, because it is different from population prevalence of infected yielded by a random sample 
(governed by known population dynamics models).  Consequently, we adopt a flexible data-driven approach by 
allowing prevalence to change within broad ranges (see Appendix B) 

Monte Carlo (probabilistic) uncertainty/bias analysis of epidemic curves 

We next examined how much more we could have learnt from epidemic curves if we knew sensitivity of 
laboratory testing.  To do so, we applied insights into the plausible extent of sensitivity and specificity to 
re-calculate epidemic curves for COVID-19 in Alberta, Canada.  Data on observed counts versus presumed 
incident dates (“date reported to Alberta Health”) was obtained on 3/28/2020 from their “Figure 3: COVID-19 
cases in Alberta by day” posted on ​https://covid19stats.alberta.ca/​ under “Case counts” tab.  The count of cases is 
shown in Table A1 as C​t​

*​ and they are matched to dates t (same as dates of laboratory tests).  We also repeated 
these calculations with data available for City of Philadelphia, under a strong assumption that date of tests is the 
same as date of onset, i.e. Y​t​

*​=C​t​
*​. We removed March 30-31, 2020, counts because of a reported delay of several 

days in laboratory tests. 

For each observed count of incident cases C​t​
*​, we estimated true counts C​t​= C​t​

*​/  under the assumption thatSñ  
specificity is indistinguishable from perfect.  We considered a situation of no time trend in line with above 
findings, as well as sensitivity either improving (realistic best case), or degrading (pessimistic worst case).  We 
simulated various values of   using ​Beta ​ distribution ranging in means from 0.60 to 0.95, with a fixed standardSñ  
deviation of 0.05 (parameters set using ​https://www.desmos.com/calculator/kx83qio7yl​).  It is apparent that 
epidemic curves generated in this manner will have higher counts than the observed curves, and our main interest 
is to illustrate how much the underestimation can bias the depiction.  Our uncertainty/bias analysis only reflects 
systematic errors for illustrative purposes and under the common assumptions (and experience) that they dwarf 
random errors.  Computing code in R (R Core Team, 2019) for the uncertainty analysis is in Appendix C.  
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Results 

Inference about sensitivity and specificity 

In both jurisdictions, there is evidence of non-linearity in the observed proportion of positive tests (Figure A), 
justifying our flexible approach to variation of sensitivity and prevalence that can be manifest by quadratic pattern 
in observed prevalence between knots. The data in both jurisdictions is consistent with the hypothesis that​ the 
number of truly infected is being under-estimated ​, even though observed counts tend to fall within 95% credible 
intervals of posterior distribution of the counts of true positive tests  (Figure B).  The under-diagnosis is more 
pronounced when there are both more positive cases and the prevalence of positive tests is higher, i.e. in 
Philadelphia related to Alberta.  In Philadelphia, the posterior of prevalence was between 5 and 24% (100’s of 
positive tests a day in late March) but in Alberta, the median of the posterior of prevalence  was under 3% (30 to 
50 positive tests a day in late March).  This is not surprising because the number of false negatives is proportional 
to observed cases for the same sensitivity.  The specificity appears to be high enough for the observed prevalence 
to produce negligible numbers of false positives, with false negatives dominating. There was clear evidence of 
shift in posterior distribution of ​specificity ​from uniform to the one centered values of >0.98 (Figure C). In 
Alberta, posterior distribution of Sp was centered on 0.997 (95% credible interval (CrI): 0.993, 0.99995), and in 
Philadelphia it had a posterior median of 0.984 (95%CrI: 0.954, 0.999). Our analysis indicates that under our 
models there is little evidence in time-series of laboratory tests about either the time trend or magnitude of 
sensitivity ​of laboratory tests in either jurisdiction  (Figure D).  Posterior distributions are indistinguishable from 
the priors, such that we are still left with  an impression  that sensitivity of COVID-19 tests can be anywhere 
between 0.6 and 0.9, centered around 0.75.  One can speculate on the departure of the posterior distribution from 
uniform prior given that the  posterior appears concentrated somewhat around the prior mean of 0.75 (more lines 
in Figure D near the mean than the dotted edges that bound the prior).  However, any such signal is weak and 
there is no evidence of a time-trend that was allowed by the model.   
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Figure A: Proportion of observed positive tests in time with 95% confidence intervals; knots between which sensitivity and true prevalence 
were allowed to follow linear trends are indicated by red triangles. 

 
Figure B: Observed count of positive tests for COVID-19 (open diamond) versus posterior distributions of counts, adjusted for 
misclassification (solid circles as means and lines representing 95% credible intervals) 
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Figure C: Histograms of posterior distributions of specificity of laboratory test for COVID-19 

 
Figure D: Posterior distributions of sensitivity of of laboratory test for COVID-19 in time (grey),  posterior mean (red), and boundaries of 
priors (dotted) 
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Uncertainty in epidemic curves due to imperfect testing: Alberta, Canada 

The left-hand side panel of Figure E presents an impact on the epidemic curve of degrading sensitivity that is 
constant in time.   As expected, when misclassification errors increase, uncertainty about epidemic curves also 
increases.  There is an under-estimation of incident cases that is more apparent later in the epidemic when the 
numbers rise. The right-hand panel of Figure E indicates how, as expected, if sensitivity improves over time 
(green lines), then the true epidemic curve is expected to be flatter than the observed.  It also appears that 
observed and true curves may well fall within the range of 95% confidence intervals around the observed counts 
(blue lines).   If sensitivity decreases over time (brown lines), then the true epidemic curve is expected to be 
steeper than the observed.  In either scenario, there can be an under-counting of cases by nearly a factor of two, 
most apparent as the incidence grows, such that on day March 24, 2020 (t=19), there may have been almost 120 
cases vs. 62 observed.  This is alarming, because misdiagnosed patients can spread infection if they have not 
self-isolated (perhaps a negative test results provided a false sense of security) and it is impossible to know who 
they are among thousands of symptomatic persons tested around that time per day (Table A1). 
Figure E: Uncertainty in the epidemic curve of COVID-19 on March 28, 2020 in Alberta, Canada, due to imperfect sensitivity (Sn) with 
standard deviation 5%; assumes specificity 100% 
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Uncertainty in epidemic curves due to imperfect testing: Philadelphia, USA 

The left-hand panel of Figure F presents an impact on the epidemic curve of degrading Sn that is constant in time. 
As in Alberta, when misclassification errors increase, uncertainty about epidemic curves also increases.  It is also 
apparent that the shape of the epidemic curve, especially when counts are high, can be far steeper than that 
inferred assuming perfect testing.  The right-hand panel of Figure F indicates that if sensitivity improves over time 
(green lines), then the true epidemic curve is expected to be practically indistinguishable from the observed one in 
Philadelphia: e.g. it is within random variation of observed counts represented by 95% confidence intervals (blue 
lines).  This is comforting, because this seems to be the most plausible scenario of improvement in time in quality 
of testing (identification of truly infected).  However, if sensitivity decreases over time (brown lines), then the 
under-counting of cases by the hundreds in late March 2020 cannot be ruled out. We again have the same concern 
as for Alberta: misdiagnosed patients can spread infection unimpeded and it is impossible to know who they are 
among the hundreds of symptomatic persons tested in late March 2020 (Table A2). 
Figure F: Uncertainty in the epidemic curve of COVID-19 on March 31, 2020 in Philadelphia, USA, due to imperfect sensitivity (Sn) with 
standard deviation 5%; assumes specificity 100% 

 

In all examined scenarios, in both Alberta and Philadelphia, the lack of sensitivity in testing seems to matter far 
less when the observed counts are low early in the epidemic.  The gap between observed and adjusted counts 
grows as the number of observed cases increases.  This reinforces the importance of early testing, at least with 
respect to describing the time-course of the epidemic, even with imperfect technology (Goldstein & Burstyn, 
2020)​. 
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Discussion 

Given the current uncertainty in the accuracy of the SARS-CoV-2 diagnostic assays, we tried to learn about 
sensitivity and specificity using the time-series of laboratory tests and time trends in time test results.  Although 
we are confident that ​typical specificity exceeds 0.98 ​, ​there is ​very little learning about sensitivity ​ ​from prior to 
posterior.  However, it is important to not generalize this lack of learning about sensitivity, because it can occur 
when stronger priors on prevalence are justified and/or when there are more pronounced trends in prevalence of 
positive tests.  We therefore encourage every jurisdiction with suitable data to attempt to gain insights into 
accuracy of tests using our method: now that the method to do so exists, it is simpler and cheaper than laboratory 
and clinical validation studies.  However, validation studies, with approaches like the one illustrated in Burstyn et 
al. (2009), are still the most reliable means of determining accuracy of a diagnostic test. 

Knowing sensitivity  and specificity is important as demonstrated in uncertainty/bias analysis of impact on 
epidemic curves under some optimistic assumptions of near-perfect specificity  and reasonable range of 
sensitivity.  The observed epidemic curves may bias estimates of the effective reproduction number (R​e​) and 
magnitude of the epidemic (peak) in unpredictable directions. This may also have implications for understanding 
the proportion of the population non-susceptible to COVID-19. As researchers attempt to develop pharmaceutical 
prophylaxis (i.e., a vaccine) combined with a greater number of people recovering from SARS-CoV-2 infection, 
having insight into the herd threshold will be important for resolving current and future outbreaks. Calculations 
such as the basic and effective reproductive number, and the herd threshold depend upon the accuracy of 
surveillance data described in the epidemic curves. 

Limitations of our approach include the dynamic nature of data that changes daily and may not be perfectly 
aligned in time due to batch testing.  There are some discrepancies in the data that should be resolved in time, like 
fewer cases tested positive than there are in epidemic curve in Alberta, ​but the urgency of the current situation 
justifies doing our best with what we have now ​.  We also make some strong ​ad hoc ​assumptions about breakpoints 
in segmented regression of time-trends in sensitivity and prevalence, further assuming that the same breakpoints 
are suitable for trends in both parameters. Although not as much of an issue based on our analysis, we do need to 
consider imperfect specificity, creating false positives, albeint nowhere near the magnitude of false negatives in 
the middle of an outbreak. This results in wasted resources. In ideal circumstances we employ a two stage test: a 
highly sensitive serological assay, that if positive triggers a PCR-based assay. Thus we would require two samples 
per individual: blood and NP swab. Two-stage tests would resolve a lot of uncertainty and speculation over a 
single PCR test combined with signs and symptoms. Indeed, this is the model used for diagnosis of other 
infectious diseases, such as HIV and Hepatitis C. Our work also only focuses on validity of laboratory tests, not 
sensitivity and specificity of the entire process of identification of cases that involves selection for testing via a 
procedure that is designed to induce systemic biases relative to the population. 

Conclusions 

We conclude that it is of paramount importance to validate laboratory tests and to share this knowledge, especially 
as the epidemic matures into its full force.  Insights into ascertainment bias by which people are selected for tests 
and are then used to estimate epidemic curves are likewise important to obtain and quantify.  Quantification of 
these sources of misclassification and bias can lead to adjusted analyses of epidemic curves that can help make 
more appropriate public health policies. 
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Appendix A: Data used in the manuscript 
Table A1: Timeline of counts of positive and negative tests for COVID-19 and cases per onset date in Alberta, Canada ​on 3/28/2020 

Lab report date /date of 
onset for incident case (t) 

test positive (Y ​t​*​)# test negative (n ​t​- Y​t​*​) Observed incident cases of 
COVID-19 (C​t​*​)# 

2020-03-06 1 61 1 
2020-03-07 2 275 0 
2020-03-08 3 440 0 
2020-03-09 6 718 6 
2020-03-10 6 966 9 
2020-03-11 5 961 7 
2020-03-12 2 1144 2 
2020-03-13 8 1419 8 
2020-03-14 19 1591 19 
2020-03-15 9 1784 10 
2020-03-16 20 1306 24 
2020-03-17 8 2137 15 
2020-03-18 27 2860 28 
2020-03-19 31 2774 29 
2020-03-20 31 3392 45 
2020-03-21 26 3539 40 
2020-03-22 29 2613 45 
2020-03-23 36 2713 53 
2020-03-24 50 3131 62 
2020-03-25 51 1842 77 
2020-03-26 31 1121 48 
2020-03-27 11 593 14 
#the number of persons who  tested positive at time t is not the same as number with persons with onset of symptoms at time 
t (used in epidemic curve); the lack of agreement two counts and their totals is due to lag in reporting and investigation of 
date of onset, a situation that is expected in the middle of epidemic at the time of compilation of these data 
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Table A2: Timeline of positive and negative tests for COVID-19 in Philadelphia, USA; obtained from figures published by City of 

Philadelphia on 3/31/2020 

date of test report (t) test positive (Y ​t​*​) test negative (n ​t​- Y​t​*​) 
3/10/2020 1 5 
3/11/2020 0 13 
3/12/2020 1 19 
3/13/2020 2 46 
3/14/2020 6 47 
3/15/2020 1 28 
3/16/2020 7 79 
3/17/2020 15 157 
3/18/2020 8 173 
3/19/2020 30 267 
3/20/2020 32 175 
3/21/2020 50 358 
3/22/2020 51 178 
3/23/2020 72 387 
3/24/2020 104 564 
3/25/2020 164 725 
3/26/2020 176 626 
3/27/2020 192 973 
3/28/2020 122 650 
3/29/2020 153 614 
3/30/2020 101 647 
3/31/2020 27 99 
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Appendix B: Statistical Modeling Details 

Let r​k​ be the infection prevalence in the testing pool on the day corresponding to the k-th of K knots, and let Sn​k 
be the test sensitivity achieved within this pool. Without ambiguity, when we index with t to indicate the t-th of T 
days (as opposed to k for the k-th of K knots), r​t​ and Sn​t​ to be the prevalence and sensitivity achieved via linear 
interpolation from the straddling knots.  Let Sp be the test specificity, assumed to be constant in time. 

A prior for prevalence is specified as a distribution for r​1:K​ with independent uniform components.  The left and 
right endpoints for each component then comprise 2K hyperparameters, though in our applications we reduce this 
to a single hyperparameter, by specifying a common upper-bound while setting zero as a common lower-bound. 

A prior for sensitivity is constructed by taking Sn​k​ = (1-w)Sn​A,k​ + w Sn​B,k​.   Here the prior specification for Sn​A:1:K 
is via independent uniform components with the hyperparameters being the corresponding 2K endpoints.   The 
second component is perfectly linear, so that only (Sn​B,1​ , Sn​B,K​) are stochastic, taken as independently and 
uniformly distributed using the same endpoints as for the corresponding components of Sn​A​.  Thus, when w=0 the 
prior for Sn has the same structure (but different hyperparameters) as the prior for r.  As w increases, however, the 
time trajectories for Sn become smoother. We complete the specification by assigning a prior to w itself, namely 
w ~ Unif(0.5, 0.9).   Thus, we do not arbitrarily dictate the trajectory smoothness ​a priori ​.  Note also that in our 
applications we use common lower and upper bounds for Sn​1:K​, so that only two hyperparameters are needed. 

Having defined a prior for r, Sn, and Sp, we now specify a model for the observed number of positive tests on the 
t-th day, , out of n​t​ tests.   We build this up from a factorization of the formY t

*  

f( ,Y​A,t​ , Y​B,t​ , Y​t​ | r​t​ , Sn​t​, Sp)  =  f( |Y​A,t​ , Y​B,t​ )f(Y​A,t​ , Y​B,t​ | Y​t​ , Sn​t​, Sp) f(Y​t​ | r​t​ ).Y t
* Y t

*  

Here Y​t​ ~ Bin(n​t​ , r​t​) is the true number of day t positives, which is ultimately the parameter of interest.  Whereas 
t-th observed count decomposes  = Y​A,t​ + Y​B,t​, where Y​A,t​ ~ Bin(Y​t​, Sn​t​) is the portion of the observed countY t

*  
arising as true positives, while independently Y​B,t​ ~ Bin(n​t​ - Y​t​, 1-Sp) is the portion arising as false positives.  

The above comprises a complete stochastic generative model.  Hence, Markov chain Monte Carlo​ ​sampling from 
the joint distribution of all latent quantities given all observed quantities is feasible.   The latents include w, 
Sn​A:1:K​, (Sn​B,1​ , Sn​B,K​), Sp, r​1:K, ​Y​1:T, ​Y​A,1:T​ , and Y​B,1:T​.  The observed data are the two series: and n​1:T​.Y *

1:T  

To elaborate on the underidentified nature of the statistical problem, it is simplest to consider the case of Sp=1, in 
which case the observed data are governed by E( )/n​t​ = r​t​ Sn​t​ so that indeed asking the data to completelyY t

*  
distinguish Sn​t​ from r​t​ is impossible, at least in the absence of prior information.   If the piecewise-linear 
assumptions on Sn​t​ and r​t​ are valid, however, then one might anticipate some partial information coming forward. 
Consider a single interval between two knots.  If the data signal on this interval happens to be highly linear, then 
we have a severe paucity of information, as two coefficients describing the composite signal are being asked to 
inform about the four coefficients describing the two constituent signals, albeit with help from the prior bounds on 
the constituent signals.  On the other hand, if the data signal happens to be quadratic, then we still face an 
underidentified situation, but at least now there are three pieces of information from the composite signal to 
partially inform the four descriptors on the constituent quantities. 
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Appendix C: R code for Figures E and F (code to produce panel as .png files is omitted) 

################### 
#march 28, 2020 data from the Province of Alberta, Canada: 2020-03-06 to 2020-03-24: 
#limit to presumably complete data little affected by lag in test results and diagnosis 
#Figure E 
################### 
 
library(plotrix) 
 
#Number of cases observed C* 
cstr<-c(1,0,0, 6,9,7,2,8,19,10,24,15,28,29,45,40,45,53,62) 
 
T<-length(cstr) 
 
#################################################### 
#time-invariant SN (the left-hands side of Figure E) 
#################################################### 
 
#observed epi curve 
days<-rep(1:T) 
 
#95% confidence interval for observed counts under Poisson distribution 
#http://ms.mcmaster.ca/peter/s743/poissonalpha.html 
 
li<-qchisq(0.025, 2*cstr)/2 
ui<-qchisq(0.975, 2*(cstr+1))/2  
plotCI(x=days,y=cstr,li=li,ui=ui, 
col="blue", lwd=5, ylim=c(0,120), xlim=c(1,19), 
ylab="predicted true cases (C)",  
xlab="presumed date of onset (t: March 6-March 24, 2020)") 
 
#used https://www.desmos.com/calculator/kx83qio7yl calculator to select param of beta dist for Sn 
#adjusted epi curves MC sensitivity analysis 
sim=10 #number of MC simulations 
#SN=0.60 
for (i in c(1:sim)){ 
sn=rbeta(T, 57.6,38.4) 
y=cstr/sn 
lines(days, y, col="black") 
rm(y, sn)} 
 
#SN=0.95 
for (i in c(1:sim)){ 
sn=rbeta(T, 18.05,0.95) 
y=cstr/sn 
lines(days, y, col="lightgrey") 
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rm(y, sn)} 
 
#SN=0.85 
for (i in c(1:sim)){ 
sn=rbeta(T, 43.35,7.65) 
y=cstr/sn 
lines(days, y, col="red") 
rm(y, sn)} 
 
#SN=0.75 
for (i in c(1:sim)){ 
sn=rbeta(T, 56.25,18.75) 
y=cstr/sn 
lines(days, y, col="orange") 
rm(y, sn)} 
 
legend(x=1, y=100, legend=c("Observed (C*) and 95%CI", "Sn=95%", "Sn=85%", "Sn=75%", "Sn=60%"),  
col=c("blue", "lightgrey", "red", "orange", "black"), lty=c(1,1,1,1,1), lwd=c(5,1,1,1,1), bg="ivory", bty = "grey") 
abline(h=seq(1,150,10),col="gray", lty=3) 
 
#################################################### 
#time-varying SN (the right-hands side of Figure E) 
#################################################### 
 
#observed epi curve 
days<-rep(1:T) 
sim=20 #number of simulation realizations plotted 
 
#95% confidence interval for observed counts under Poisson distribution 
#http://ms.mcmaster.ca/peter/s743/poissonalpha.html 
 
li<-qchisq(0.025, 2*cstr)/2 
ui<-qchisq(0.975, 2*(cstr+1))/2  
 
plotCI(x=days,y=cstr,li=li,ui=ui, 
col="blue", lwd=5, ylim=c(0,120), xlim=c(1,19), 
ylab="predicted true cases (C)",  
xlab="presumed date of onset (t: March 6-March 24, 2020)") 
 
#adjusted epi curves MC sensitivity analysis 
 
#SN increases 0.60 to 0.75 to .95 
for (i in c(1:sim)){ 
sn1=rbeta(1+T/3, 57.6,38.4) 
sn2=rbeta(T/3, 56.25,18.75) 
sn3=rbeta(T/3, 18.05,0.95) 
sn=c(sn1, sn2, sn3) 
y=cstr/sn 
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lines(days, y, col="green") 
rm(y, sn)} 
 
#SN decreases 0.95 to 0.75 to ..6 
for (i in c(1:sim)){ 
sn1=rbeta(1+T/3, 56.25,18.75) 
sn2=rbeta(T/3, 18.05,0.95) 
sn3=rbeta(T/3, 57.6,38.4) 
 
sn=c(sn1, sn2, sn3) 
y=cstr/sn 
lines(days, y, col="brown") 
rm(y, sn)} 
 
legend(x=1, y=100, legend=c("Observed (C*) and 95%CI", "Sn increases from 60, 75, 95% at break-points",  
"Sn decreases from 95, 75, 60% at break-points", "break-points"),  
col=c("blue", "green", "brown", "black"), lty=c(1,1,1,3), lwd=c(5,1,1,1), bg="ivory", bty = "grey") 
abline(h=seq(1,150,10),col="gray", lty=3) 
abline(v=c(1+T/3, 2*T/3),col="black", lty=3) 
 
#########end of code for Alberta############## 
 
################### 
#march 31, 2020 data from the city of Philadelphia, USA: 2020-03-10 to 2020-03-29: 
#limit to presumably complete data little affected by lag in test results and diagnosis 
#Figure F 
################### 
 
library(plotrix) 
 
#Number of cases observed C* 
cstr<-c(1,0,1,2,6,1,7,15,8,30,32,50,51,72,104,164,176,192,122,153) 
T<-length(cstr) 
 
#################################################### 
#time-invariant SN (the left-hands side of Figure F) 
#################################################### 
 
#observed epi curve 
days<-rep(1:T) 
 
#95% confidence interval for observed counts under Poisson distribution 
#http://ms.mcmaster.ca/peter/s743/poissonalpha.html 
 
li<-qchisq(0.025, 2*cstr)/2 
ui<-qchisq(0.975, 2*(cstr+1))/2  
 
plotCI(x=days,y=cstr,li=li,ui=ui, 
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col="blue", lwd=5, ylim=c(0,400), xlim=c(1,T), 
ylab="predicted true cases (C)",  
xlab="presumed date of onset (t: March 10-March 29, 2020)") 
 
#used https://www.desmos.com/calculator/kx83qio7yl calculator to select param of beta dist for Sn 
#adjusted epi curves MC sensitivity analysis 
sim=10 #number of MC simulations 
#SN=0.60 
for (i in c(1:sim)){ 
sn=rbeta(T, 57.6,38.4) 
y=cstr/sn 
lines(days, y, col="black") 
rm(y, sn)} 
 
#SN=0.95 
for (i in c(1:sim)){ 
sn=rbeta(T, 18.05,0.95) 
y=cstr/sn 
lines(days, y, col="lightgrey") 
rm(y, sn)} 
 
#SN=0.85 
for (i in c(1:sim)){ 
sn=rbeta(T, 43.35,7.65) 
y=cstr/sn 
lines(days, y, col="red") 
rm(y, sn)} 
 
#SN=0.75 
for (i in c(1:sim)){ 
sn=rbeta(T, 56.25,18.75) 
y=cstr/sn 
lines(days, y, col="orange") 
rm(y, sn)} 
 
legend(x=1, y=200, legend=c("Observed (C*) and 95%CI", "Sn=95%", "Sn=85%", "Sn=75%", "Sn=60%"),  
col=c("blue", "lightgrey", "red", "orange", "black"), lty=c(1,1,1,1,1), lwd=c(5,1,1,1,1), bg="ivory", bty = "grey") 
abline(h=seq(1,500,25),col="gray", lty=3) 
 
#################################################### 
#time-varying SN (the right-hands side of Figure F) 
#################################################### 
 
#observed epi curve 
days<-rep(1:T) 
sim=20 #number of simulation realizations plotted 
 
#95% confidence interval for observed counts under Poisson distribution 
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#http://ms.mcmaster.ca/peter/s743/poissonalpha.html 
 
li<-qchisq(0.025, 2*cstr)/2 
ui<-qchisq(0.975, 2*(cstr+1))/2  
 
plotCI(x=days,y=cstr,li=li,ui=ui, 
col="blue", lwd=5, ylim=c(0,400), xlim=c(1,T), 
ylab="predicted true cases (C)",  
xlab="presumed date of onset (t: March 10-March 29, 2020)") 
 
#adjusted epi curves MC sensitivity analysis 
 
#SN increases 0.60 to 0.75 to .95 
for (i in c(1:sim)){ 
sn1=rbeta(7, 57.6,38.4) 
sn2=rbeta(7, 56.25,18.75) 
sn3=rbeta(6, 18.05,0.95) 
sn=c(sn1, sn2, sn3) 
y=cstr/sn 
lines(days, y, col="green") 
rm(y, sn)} 
 
#SN decreases 0.95 to 0.75 to ..6 
for (i in c(1:sim)){ 
sn1=rbeta(7, 56.25,18.75) 
sn2=rbeta(7, 18.05,0.95) 
sn3=rbeta(6, 57.6,38.4) 
sn=c(sn1, sn2, sn3) 
y=cstr/sn 
lines(days, y, col="brown") 
rm(y, sn)} 
 
legend(x=1, y=350, legend=c("Observed (C*) and 95%CI", "Sn increases from 60, 75, 95% at break-points",  
"Sn decreases from 95, 75, 60% at break-points", "break-points"),  
col=c("blue", "green", "brown", "black"), lty=c(1,1,1,3), lwd=c(5,1,1,1), bg="ivory", bty = "grey") 
abline(h=seq(1,400,25),col="gray", lty=3) 
abline(v=c(1+T/3, 2*T/3),col="black", lty=3) 
 
#########end of code for Philadelphia############## 
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