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sclerosis (ALS): an interplay between
genetics and environment
Sarah Schram, Jeffrey A. Loeb* and Fei Song*

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease affecting the neuromuscular system. While there have been a
number of important genetic discoveries, there are no therapeutics capable of stopping its insidious progression. Lessons
from clinical histories reveal that ALS can start focally at a single limb, but then segmentally spread up and down the spinal
cord as well as in the motor cortex and cortex of frontal and temporal lobes until respiratory muscles fail. With or without a
clear genetic etiology, often there is no explanation as to why it starts in one region of the body versus another. Similarly,
once the disease starts the mechanisms by which the neurodegenerative process spreads are not known. Here, we
summarize recent work in animal models that support the hypothesis that critical environmental contributions, such as a
nerve injury, can initiate the disease process. We also propose that pathological axoglial signaling by the glial growth factor
neuregulin-1 leads to the slow propagation of neuroinflammation resulting in neurodegeneration up and down the spinal
cord and that locally applied drugs that block neuregulin-1 signaling could slow or halt the spread of disease.

Keywords: Nerve injury-mediated neuroinflammation, Neuronal-glial communication through glial growth factor neuregulin,
Inhibition of neuregulin-mediated inflammation

Introduction
Amyotrophic lateral sclerosis (ALS) is a neurodegenera-
tive disease characterized by spreading paralysis which
can originate in any part of the body. The disease is
poorly understood with no effective therapeutics and an
average survival time of less than 5 years according to
the ALS association. Given the wide variations in genetic
links and variable clinical presentations even with the
same genetic mutations, environmental contributions
are likely to be very important in ALS [1]. Veterans and
athletes have been shown to be at an increased risk of
developing the disease, suggesting injury may act as an
environmental trigger [2–4]. Here, we discuss potential
mechanisms that contribute to disease progression, the

possibility of injury as an instigating event, and the po-
tential role of the growth factor neuregulin in disease
spread.

Environmental contributions
It has long been suggested that environmental factors
such as lead, pesticides, trauma, and physical activity can
act as triggers for ALS [5]. Population studies show that
the disease is 2–3 times more common in varsity and
professional athletes and veterans, even without combat
experience [2–4, 6–8]. In fact, heightened physical activ-
ity in general appears to be correlated with a greater risk
of disease [4, 9]. One potential explanation is that focal
nerve injury could trigger disease onset in a specific
limb. Head trauma may also play a role based on both
animal and patient studies [10, 11]. Despite the multiple
case studies and larger epidemiological studies suggest-
ing a link, other studies have shown conflicting results
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[12, 13]. This indicates that any role injury may play is
complicated and probably includes a mosaic of other
predispositions including genetic susceptibility, gender,
age, type, and location of injury. Furthermore, a study in
Denmark, showed that timing of the injury (more than 5
years prior to diagnosis) and age of injury (before age
55) is crucial for the degree of increased risk and may
explain some confounding results in prior studies [14].
Unfortunately, without the availability of definite bio-
markers, the contribution of injury remains challenging
to prove.

Animal models combining nerve injury with
genetics
Animal models have been useful in investigating the ef-
fects of injury on disease development and progression in
ALS models. A study by Sharp and colleagues demon-
strated that in the mutant superoxide dismutase 1
(SOD1)-expressing mouse, a sciatic nerve crush induced
changes in fatigue-resistance characteristics and muscle
fiber type in the extensor digitorum longus muscle prema-
turely at times when deficits are not normally seen. This
injury also increased motor neuron loss in the ventral
horn of the spinal cord [15]. Another study showed simi-
lar findings following facial motor neuron damage [16].
The mutant SOD1-expressing rat has also been used

in similar experiments. Unlike mice, rats with SOD1
mutations have shown variability in the site of symptom
onset. Whereas mice consistently present with initial
lower limb weakness, rats can present with lower limb
or upper limb involvement [17]. A recent study by
Schram et al. [18] investigated the effects of a sciatic
nerve crush on disease progression and inflammation in
the SOD1 rat. A single, unilateral crush lesion of the sci-
atic nerve at 10 weeks of age, prior to disease onset, has-
tened functional decline and shortened survival
compared to uninjured SOD1 littermates [18]. Whereas
control animals regained full motor function within a
few weeks following injury, the SOD1 rats never recov-
ered and developed weakness on the contralateral leg
well before other, non-injured SOD1 rats. This suggests
that the single nerve injury initiated an earlier disease
onset and promoted the local spread of disease. Quanti-
tative histological studies on the spinal cord at different
time points coinciding with decreases in motor function
demonstrated a markedly increased and prolonged
microglial inflammatory response followed by earlier
and more pronounced astrocytic recruitment in the
SOD1 animal versus controls (Fig. 1). This localized, in-
creased inflammatory response was associated with a
significant reduction in motor neuron synaptic connect-
ivity that could explain how the heightened, injury-
induced inflammatory response leads to earlier motor
neuron degeneration [18].

Some of these effects may be mediated by activity, as
another study showed hyperstimulation of the phrenic
nerve via implanted electrode in the SOD1 rat showed
more rapid motor neuron loss, denervation of the dia-
phragm muscle, and decreased life span [19]. Interest-
ingly, this stimulation also led to spread of disease-
associated weakness to the forelimbs, altering disease
progression from that typically seen in SOD1 rodents. In
contrast, other studies show a paradoxical effect, where
a tibial nerve crush injury in an SOD1 rat at the L5
spinal nerve or distal sciatic nerve led to an increase in
motor neuron survival in a subset of motor neurons fol-
lowing disease onset [20, 21]. However, these studies
showed no effect on time to disease onset, duration, or
survival.

Fig. 1 Time course of injury-induced functional, inflammatory, and
neuronal changes in the SOD1 rat. This figure summarizes the
longitudinal effects of mutant SOD1 protein both on motor function
and cellular pathophysiology after a single sciatic nerve injury. While
WT animals recovered fully from the injury within 5 weeks, they had
only mild microgliosis/astrocytosis in the acute recovery stage. In
contrast, injured SOD1 animals failed to recover and showed increased
and sustained microgliosis followed by a premature astrocytic
recruitment and neuronal synaptic loss. This model combines an
environmental insult with a genetic defect that can help elucidate the
functional and physiological effects of ALS disease onset and
progression that could be used to develop targeted therapeutics
(taken from [18] with the permission)
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Inflammatory response to injury as a driver of
neurodegeneration
The normal injury response is composed of a series of
tightly regulated cellular and molecular processes involv-
ing numerous signaling cascades designed to aid recovery
[22]. Additionally, the degree and duration of the injury
response can vary based on severity and location. In gen-
eral, there are two phases of injury recovery, acute and
chronic, and each is associated with changes in gene tran-
scription and translation in a variety of cell types. As part
of the injury repair process, microglia are thought to strip
synaptic connections, as observed in the above nerve in-
jury model in SOD1 rats [18]. Microglia are also known to
modify synaptic circuits during development, and more
recent studies show a similar process in adult neurogen-
esis [23, 24]. As part of this experience-dependent modifi-
cation system, there is extensive contact between
microglial processes and synapses. It has been proposed
that this contact leads to synaptic rewiring and removal
following traumatic events, such as stroke or axonal dam-
age, in which microglial contact increases and synaptic ac-
tivity decreases [25–27]. Furthermore, microglia express
C1q, a major component of the complement system and
inducer of phagocytosis. C1q-tagged synapses have been
described in the brain and suggested to be a mechanism
for synaptic removal [28, 29].
In ALS, microglia appear to play a highly dynamic

role as their phenotypic expression changes as the
disease progresses. Microglia secrete neuroprotective
factors such as IL-10 in pre-symptomatic stages, then
adopt a more detrimental state as disease onset oc-
curs and secrete activators associated with inflamma-
tion and cell death [30–32]. In vitro studies of
primary microglia isolated from neonatal SOD1 mice
show an increased response to LPS in terms of cell
surface protein expression and changes in size/morph-
ology [33]. Relatedly, microglia collected from the
spinal cord of the SOD1 (G93A) rats at three differ-
ent points in disease progression (presymptomatic,
symptom onset, and end-stage) show different activa-
tion patterns, suggesting an active role in disease pro-
gression [34]. Microglia carrying mutations are also
shown to exacerbate and speed up disease progres-
sion, while WT microglia promote survival [35–37].
This may be due to heightened inflammatory activity
of mutant microglia as well as a pathological response
to the presence of misfolded protein [38–40].
Consistently, co-cultures of microglia with motor neu-

rons have shown that microglia can directly lead to
motor neuron death and require nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signal-
ing [40]. Together, these studies highlight a crucial role
of microglial-dependent inflammation in disease onset
and progression and highlight the potential importance

of the augmented inflammatory responses observed to
occur after injury.
One issue that continues to plague ALS research is the

lack of effective therapeutic translation from animal
models to patients. Key to improving this track record is
identifying shared targets between animal models and
the human disorder. Patient studies confirm the pres-
ence of abnormal inflammation and microglial activation
in post-mortem human tissues [41, 42]. This is in
addition to experiments that detected inflammation in
the cortex of living ALS patients with positron emission
tomography (PET) [43]. Therapeutic targeting of ner-
vous system inflammation continues to be an attractive
strategy for ALS treatment, despite having not yet been
proven effective in human clinical trials [31]. It is
increasingly clear that understanding how and when to
reduce inflammatory activation will be important for the
treatment of this and many other neurological diseases
[34, 44].

Neuron-glia signaling as a mechanism of disease
spread
Neurons have numerous signaling mechanisms to com-
municate with surrounding glia and other cells. One
such signaling factor well studied in development is
neuregulin-1 (NRG1). In the nervous system, NRG1 is a
predominantly neuron-derived growth and differenti-
ation factor that signals from neurons to surrounding
cells through activation of the epidermal growth factor
(EGF)-family of tyrosine kinase receptors human epider-
mal growth factor receptor (HER)2-4 [45–51]. NRG1
supports neuromuscular junction formation during de-
velopment and has been implicated in a number of dis-
ease conditions [52–54]. NRG1, previously called glial
growth factor, is a potent mitogen for glial cells and
plays a role in nerve injury repair [55] with increased
HERs and NRG1 in the initial stages following injury
[56, 57]. Specifically, NRG1 expression and release in-
creases during re-innervation of target muscles after in-
jury and promotes remyelination of spinal motor
neurons [58].
However, prolonged or excessive NRG1 signaling can

be problematic. For example, after peripheral nerve in-
jury in animal models of chronic pain, NRG1 from dor-
sal root ganglia neurons is released into the spinal cord
leading to microglial activation. Blocking NRG1 after
nerve injury using a number of agents dramatically re-
duces microglial activation and the development of
chronic pain [59]. This pathological inflammation is
thought to contribute to the development of chronic
pain through microglia-mediated synaptic rewiring in
the dorsal horn of the spinal cord [59, 60]. These obser-
vations have led to the exploration of NRG1’s possible
role in promoting excessive inflammation in the ventral
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horn of the spinal cord in ALS. Because of its ability to
remain localized within the extracellular matrix through
a unique heparin-binding domain, NRG1 accumulation
could mediate the slow spread of neuroinflammation
and possibly disease spread up or down the spinal cord
in ALS.

Neuregulin signaling is increased in ALS and is a
potential therapeutic target
In ALS, aberrant NRG1 signaling has been shown in
human tissues and animal models [42, 61–63]. Specif-
ically, phosphorylated (activated) NRG1 receptors
have been observed on activated microglia in the
spinal cords of both ALS patients and animal models
[41, 42]. This activation, just as in the chronic pain
models discussed above, could lead to enhanced in-
flammation leading to motor neuron damage and
death. Neuronal degeneration leads to more NRG1
release producing further microglial activation hence
propagating the neurodegenerative process up and
down the spinal cord (Fig. 2). Consistently, a highly
selective NRG1 antagonist was shown to decrease
microglial activation, reduce motor neuron loss, delay
disease onset, and prolong survival in the SOD1
G93A mouse model [61]. This antagonist is a human-
ized fusion protein consisting of the extracellular do-
main of the HER4 NRG1 receptor and NRG1’s own
heparin-binding domain, which, unlike other biologics
such as antibodies, allows the drug to penetrate the
CNS and directs to the same sites that NRG1 goes
[64]. In addition to being humanized and producing
no toxic side effects, a key advantage of using this fu-
sion protein to block neuroinflammation is that it can
be delivered directly to the brain through the cerebral
spinal fluid [60]. Direct CNS delivery has a key

advantage of reducing peripheral, off-target effects
that have led to significant side effect from other
anti-inflammatory drugs given systemically [63]. These
features make it an attractive and potentially translat-
able treatment to stop or slow disease progression in
ALS patients.
Delivery of the NRG1 antagonist directly into the cen-

tral nervous system (CNS) is important in light of other
findings suggesting that NRG1 may still be needed to
maintain neuromuscular junctions and can be protective
in ALS animal models [65–67]. Lasiene et al. [65] re-
ported that viral-mediated delivery of type I-NRG1 (sol-
uble form of NRG1) to the spinal cord had no beneficial
effect on disease onset and survival in SOD1 G93A mice.
Interestingly, a similar study examining the effects of
overexpressing type III-NRG1 in the spinal cord through
viral delivery resulted in preserved neuromuscular func-
tion of the hindlimbs, improved locomotor performance,
and increased numbers of surviving motor neurons
along with reduced glial reactivity, but only in female
mice [68]. However, viral-mediated delivery of type III-
NRG1 (membrane-bound form of NRG1) to the spinal
cord restored C-bouton puncta and extended survival in
SOD1 mice with no effect on disease onset, suggesting
supplementation of membrane-bound NRG1 confers
neuroprotection in motor neuron disease [65]. While we
similarly showed that intraventricular delivery of NRG1
had no effects on disease onset and survival in SOD1
G93A mice, blocking endogenous NRG1 with an intra-
ventricular antagonist was protective [61]. Taken to-
gether, the mode and location of delivery appears to be
critical in order to block NRG1 within the CNS, while
allowing its normal function in the peripheral nervous
system (as highlighted in Fig. 2), to reduce neuroinflam-
mation and neurodegeneration in ALS.

Fig. 2 Proposed mechanism of nerve-injury-induced activation of neuregulin-1 leads to spread of disease. In the presence of mutant SOD1
protein, nerve injury produces a heightened, NRG-induced inflammatory response leading to a permanent loss of synapses that spreads up and
down the spinal cord and resulting in progressive neurodegeneration. Results summarized in Fig. 1 suggest that this inflammatory response starts
with microglia followed by a second wave of astroglial reactivity that correlates with a significant loss of motor neuron synaptic inputs
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Conclusions
In summary, inhibition of NRG1-mediated neuroinflam-
mation could prevent synaptic stripping and other toxic
effects of chronic inflammation leading to disease pro-
gression in ALS, regardless of the underlying genetics.
Our studies in the SOD1 G93A mouse model treated
with a NRG antagonist support this theory and show an
increase in survival [61]. New animal models are needed
that better mimic disease progression in humans.
Models that use nerve injury to initiate focal and early
disease onset could be used to test therapeutics targeting
disease progression in a number of genetic models. An-
other critical area of research needed to advance thera-
peutics that focus on disease progression will be the
identification of reliable and non-invasive biomarkers of
disease progression. These key facets will enable a better
understanding of disease pathology and paradigm shifts
in treatment, ultimately resulting in therapies truly cap-
able of providing hope for patients.
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