
Physical Principles and Extant Biology Reveal Roles for RNA-
Containing Membraneless Compartments in Origins of Life 
Chemistry

Raghav Poudyal1,2, Fatma Pir Cakmak1, Christine D. Keating1,*, Philip C. Bevilacqua1,2,3,*

1.Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, 
United States.

2.Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 
16802, United States.

3.Department of Biochemistry and Molecular Biology, Pennsylvania State University, University 
Park, Pennsylvania 16802, United States.

Abstract

This Perspective focuses on RNA in biological and non-biological compartments resulting from 

liquid-liquid phase-separation (LLPS), with an emphasis on origins of life. In extant cells, 

intracellular liquid condensates, many of which are rich in RNAs and intrinsically disordered 

proteins, provide spatial regulation of biomolecular interactions that can result in altered gene 

expression. Given the diversity of biogenic and abiogenic molecules that undergo LLPS, such 

membrane-less compartments may have also played key roles in prebiotic chemistries relevant to 

the origins of life. The RNA World hypothesis posits that RNA may have served as both genetic 

information carrier and catalyst during the origin of life. Due to its polyanionic backbone, RNA 

can undergo LLPS by complex coacervation in the presence of polycations. Phase separation 

could provide a mechanism to concentrate monomers for RNA synthesis and selectively partition 

longer RNAs with enzymatic functions, thus driving prebiotic evolution. We introduce several 

types of LLPS that could lead to compartmentalization and discuss potential roles in template-

mediated non-enzymatic polymerization of RNA and other related biomolecules, functions of 

ribozymes and aptamers, and benefits or penalties imparted by liquid-demixing. We conclude that 

tiny liquid droplets may have concentrated precious biomolecules and acted as bioreactors in the 

RNA World.
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Introduction

Liquid-liquid phase coexistence in aqueous macromolecule solutions has been known for 

many years and its possible involvement in both living cells and prebiotic chemistry was 

considered early on. In 1929, Bungenberg de Jong and Kruyt coined the term “coacervate” 

to describe macromolecule-rich droplets that formed by associative phase separation. 

Commenting on the potential biological significance of these structures, they wrote, “On 
closer inspection of the ground mass of the protoplasm, it strikes one that this has some 
properties in common with the coacervates, so that there is a possibility that this ground 
mass may be considered as a coacervate or as a system of coacervates.”1 Oparin postulated 

that coacervates served an important role in the origin of life, ultimately evolving to form 

heterotropic microbes.2 As science progressed and roles for DNA as an informational 

molecule and lipid self-assembly as a means of providing compartmentalization became 

apparent, attention shifted away from coacervation.3 With the recent discovery that 

membraneless organelles including P granules and the nucleolus are in fact liquid-like 

phases,4–6 we now know that liquid-liquid phase separation (LLPS) is important in extant 

biology as a previously unappreciated strategy for subcellular compartmentalization. The 

prevalence and simplicity of phase separation in aqueous solutions of biogenic and 

abiogenic polymers,7 particularly as oligomer length, complexity, and concentration 

increase,8 suggests that these structures could have occurred early in prebiotic systems and 

cellular evolution.9 Indeed, intrinsically disordered proteins (IDPs), which are major 

components of extant membraneless organelles, are present in primitive organisms 

suggesting an early origin.10 Furthermore, disordered and conformationally dynamic regions 

of proteins have been hypothesized to have played key roles in evolution of functional 

proteins.11–12

In this Perspective, we consider the physical chemistry of liquid condensate formation and 

the roles of such membraneless compartments in extant biology and prebiotic chemistry as 

protocells (Figure 1, left). We examine formation of condensates comprised of IDPs and the 

biomolecules that partition into them. In extant biology, condensates can form in cytoplasm 

and the nucleolus where they partition mRNAs,13 lncRNAs14 and ribosomal RNAs15 among 

others, while in protocells, such membraneless compartments can form under diverse 
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conditions and partition RNA oligonucleotides and functional RNAs. We then discuss 

possible roles of liquid condensates in chemistries that have been implicated in origin of life 

(Figure 1, right). Specifically, we explore advantages and limitations that are the result of 

LLPS on relevant prebiotic chemistries such as non-enzymatic polymerization of RNA and 

activities of RNA enzymes (ribozymes) and other functional RNAs. Overall, LLPS leads to 

the formation of membraneless organelles in extant cells and we hypothesize that it could 

have also provided compartmentalization on primordial Earth.

PHYSICAL CHEMISTRY OF LIQUID-LIQUID PHASE SEPARATION

Classes of LLPS.—Many types of phase separation occur in macromolecule-containing 

aqueous systems. In considering the consequences of LLPS for extant biology and the RNA 

World, it is useful to distinguish between non-associative and associative phase separation, 

and to first consider simple, limiting cases (Figure 2). In non-associative, or segregative, 

phase separation, each phase is enriched in a different component.1,7 This is common in 

solutions containing two or more nonionic polymers such as polyethylene glycols (PEGs) 

mixed with polysaccharides such as dextran, and in solutions with one or more nonionic 

polymers and a high concentration of salt (e.g., ~0.5 M potassium phosphate).16 Various 

PEG/dextran and PEG/salt aqueous two-phase system have been used extensively for 

bioseparations.7,17–18 Due to their ability to generate coexisting phase compartments that 

provide macromolecular crowding and to localize biomolecules on the basis of their size and 

chemical structure, PEG/dextran aqueous two-phase systems (ATPS) with 5–10 weight 

percent of both PEG 8 kDa and dextran 10 or 500 kDa have also been used to mimic 

compartmentalization in extant biology.19,20 A possible limitation of non-associative phase 

separation as a model for prebiotic compartmentalization is that it can require relatively high 

total polymer concentrations.7 Therefore, it may best be considered for scenarios where 

organic concentrations are locally higher, for example due to wet/dry cycles.

Associative LLPS, or coacervation, results in a macromolecule-dense phase termed the 

coacervate phase (Figure 2 right) along with a dilute supernatant phase.1 As an example, the 

IDP LAF-1 phase separates at concentrations above ~0.8 μM LAF-1 in vitro,21 generating 

dense protein-rich droplets related to intracellular membraneless organelles. Water is 

considered a poor solvent for many polypeptides, including IDPs with sequences rich in Gly 

and the polar uncharged residues Gln, Asn, and Ser.22–23 Such IDPs often exhibit 

concentration- and temperature-dependent phase transitions that can include coacervation as 

well as gelation or fibrillation.6 Associative LLPS for which ion pairing (“complexation”) is 

important is termed complex coacervation.1 With respect to prebiotic compartmentalization, 

this type of LLPS is of particular interest for concentrating nucleic acids due to their 

negatively-charged phosphodiester backbone. Several synthetic and biological 

polyelectrolytes that have been used to form complex coacervates are illustrated in Figure 3. 

Features that affect complex coacervation include the number, distribution, and strength of 

the ion pairing interactions, which can depend not only on functional group identity but also 

on polymer chain conformation and flexibility.24–25,26 Solution conditions can play a role as 

well, with pH determining the charge state of weak acid/base groups and ionic strength 

tuning the extent of polyelectrolyte/polyelectrolyte ion pairing for a given pH.27 These 

parameters also control coacervate water content and viscosity.28 Although multivalency 
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drives polyelectrolyte association and is important for phase separation,8 complex 

coacervation can be achieved even for low molecular weight polyions, which is important in 

a prebiotic milieu where high molecular weight organic polymers may have been scarce. For 

example, Mann and coworkers demonstrated droplet formation in solutions of 

mononucleotides and oligolysine peptides.29

Due to the chemical complexity of biopolymers, multiple types of interaction can contribute 

to their phase behavior. In addition to simple charge-charge contacts, other polymer-polymer 

and polymer-solvent chemical interactions can be important for LLPS, including cation-p, 

dipole-dipole, and p - p stacking.23 In vitro LLPS of certain IDPs associated with 

membraneless organelles has shown sensitivity to increasing solution ionic strength. This 

observation, particularly coupled with the presence of structural domains rich in charged 

amino acid residues, suggests a complex coacervation mechanism.21,30–31 These systems 

also commonly exhibit temperature sensitivity; for example, formation of stress granules is 

favored at elevated temperature,32–33 while coacervate droplets rich in the disordered N-

terminus of the protein Ddx4 are destabilized by both increased ionic strength and 

temperature.30 Specific biorecognition, for instance between multivalent protein-RNA or 

protein-protein binding partners, can also be important in phase separation and phase 

occupancy.34

The presence of additional molecules increases the complexity of biomolecular interactions 

and impacts phase behavior as well. RNA in particular can substantially impact LLPS of 

IDPs in vitro and is thought to be important in vivo due to the prevalence of RNAs in many 

membraneless organelles.35 Binding of RNA to RNA recognition motifs (RRMs) can drive 

phase separation of a number of proteins including hnRNPA1 and polypyrimidine tract-

binding protein.36 Polymeric crowding agents such as PEG and ficoll have been shown to 

favor coacervation of some proteins, including IDPs37 and RNA/spermine systems.38 This is 

potentially relevant both for LLPS in the crowded interior of living cells, and for prebiotic 

coacervation under drying conditions where total polymer concentrations would be 

increased.39–40

Associative phase separation provides a potential mechanism for concentrating rare organic 

polymers into small-volume compartments in a prebiotic context. Although most studies 

have been conducted with relatively pure synthetic or biological polymers, the generality of 

the LLPS mechanisms indicates that polymer mixtures heterogeneous in length or 

composition can also be expected to undergo coacervation with different properties based on 

their compositions. Phase transitions in response to changes in temperature, pH or dilution/

concentration could have provided means of cycling between compartmentalized and non-

compartmentalized solutions. This would have not only allowed compartment-specific 

reactions and interactions to take place, but also diffusion of informational and small 

molecules during the non-compartmentalized state.

Physical chemistry of compartments formed by LLPS.—Characteristics of 

intracellular liquid organelles include surface tension-minimizing spherical shapes, 

coalescence upon contact, and often rapid exchange of biomolecules with the surrounding 

cytoplasm or nucleoplasm.13 These properties are consistent with formation by LLPS and in 
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sharp contrast to membrane-bounded organelles that require specialized transport 

mechanisms to allow entry and egress of biomolecular solutes. Structures of liquid 

organelles provide a different type of intracellular compartment that can be more readily 

accessed and retains its major and minor components by equilibrium partitioning rather than 

a physical barrier such as a lipid bilayer membrane. In thinking about protocells, such an 

approach does not require energy input nor specialized transport mechanisms to collect and 

maintain locally higher concentrations of organic oligomers; hence its simplicity could offer 

advantages compared to lipid vesicles, particularly at the earliest stages of prebiotic 

evolution.

Coexisting aqueous phases provide distinct physicochemical environments that depend on 

phase composition. In addition to the obvious differences based on the distribution of phase-

forming molecules (e.g., the dextran-rich phase of a PEG/dextran ATPS is enriched in 

dextran, or a complex coacervate is enriched in oppositely-charged polyelectrolytes), 

different phases can have a unique dielectric constant, viscosity, ionic strength, and water 

activity. This in turn affects the distribution of other solutes in the phase-separated medium 

and can alter reaction rates and equilibria.41–42 For example, in a 10 wt% PEG 8kDa / 10 wt

% Dextran 10 kDa system, the dextran-rich phase has ~7x higher dextran concentration, 

nearly 5x lower PEG concentration, and 2-fold greater viscosity than the PEG-rich phase.
43–44 Local concentrations of charged groups within complex coacervates can be in the 

molar range, and water content as low as ~40 wt %.8,24,45 Mann and coworkers have 

reported an apparent dielectric constant (ε) of ~60 inside peptide/nucleotide coacervate 

droplets (as compared with ε = 80 for water at 20 °C).29

Many membraneless organelles in extant Biology contain both RNA and proteins 

(ribonucleoprotein (RNP) bodies). A growing body of literature shows that the presence of 

RNA in IDP-based coacervates can alter the physical properties of these droplets; for 

example, resulting droplets have reduced local protein concentration and decreased 

viscosity.46 The physical properties of these compartments can also have important 

consequences for RNA structure, as will be discussed below.42

COMPARTMENTALIZATION BY LLPS

Increased local concentration of different biomolecules assists in association between them, 

ultimately allowing downstream reactions. For example, related genes of metabolic 

pathways in bacteria are often polycistronic wherein they are translated from the same 

mRNA.47 This strategy helps co-localize enzymes for downstream reactions and substrates 

are channeled efficiently. For instance, polyketide synthases consist of several distinct 

catalytic domains that are spatially organized through specific protein-protein interactions.48 

Similar distinct interactions between “client” and “scaffold” proteins have been shown to 

effectively recruit proteins inside compartments formed by LLPS.34 Localization of 

biomolecules in ATPS, membraneless organelles, and complex coacervates can potentially 

assist in chemical reactions, as they can concentrate ions, small molecules, and large 

polymers.

In addition to LLPS, mineral surfaces,49 aerosols,50 and fatty-acid vesicles51 have been 

proposed as prebiotic compartmentalization strategies, and indeed multiple 
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compartmentalization mechanisms likely coexisted, which could have facilitated prebiotic 

chemistry and chemical evolution. Compartmentalization through LLPS has several unique 

properties that would have been highly desirable in a prebiotic protocell. Specifically, LLPS 

allows uptake of freely diffusing solutes such as Mg2+ from the other phase since both 

phases coexist as liquid without the need of dedicated transporters that are common in 

modern biology. High concentrations of polymers and ions in LLPS also mimics biological 

intracellular environment which tends to be crowded.52 Furthermore, accumulation and 

concentration of larger molecules from a dilute external phase tends to be difficult in some 

fatty acid and lipid vesicles. While the absence of a physical barrier to solute entry/egress 

can be an advantage for compartmentalization, genetically distinct protocells require that 

informational molecules are not rapidly exchanged. Exchange rates for molecules 

encapsulated by LLPS can vary extensively with composition. For example, in ATP/

oligolysine coacervates, an RNA oligomer was shown to exchange rapidly,53 while for 

PDDA/ATP coacervates generated microfluidically, a single-stranded DNA oligomer of 

similar length was shown not to exchange over 48 hr.54 In general, rates of RNA exchange 

between droplets will depend on coacervate composition, solution conditions (e.g., 

temperature, ionic strength), and RNA sequence and length, where longer RNAs are slower 

to exchange.53,55 Thus membraneless compartments can potentially serve as protocells, 

which have unique genetic identities depending on solution conditions. While a variety of 

molecules and ions can be compartmentalized by LLPS,9,18,29 in this Perspective we focus 

on partitioning of RNA and Mg2+ ions because of their potential roles in the origin of life on 

Earth in the context of RNA World hypothesis.

ROLES FOR MEMBRANELESS COMPARTMENTS IN ORIGINS OF LIFE CHEMISTRY

Protocells: Oligomerization of Monomers to Functional RNA Polymers.—The 

RNA World hypothesis has been investigated as a model for origin of functional 

biopolymers, prebiotic evolution, and subsequent origin of life on Earth (reviewed 

extensively).56–57 The origin of RNA polymers from non-enzymatic polymerization of 

monomers is still an active area of origins of life research. The anionic phosphoric acid 

moieties in both monomers and oligonucleotides of RNA and other alternative nucleic-acid 

molecules58 are ideal for complex coacervation driven by ion pairing interactions. Indeed, 

studies on ATP/polylysine coacervates53 revealed high partitioning of RNA oligonucleotides 

into the condensed phase. As shown in Figure 4, solutions of coacervates can be centrifuged 

to separate the condensed coacervate phase from the bulk solution. The concentration of 

analytes in the coacervate phase can be then determined by subtracting the amount of 

analyte in the bulk phase, which can be readily measured, from the known total amount of 

analyte. We used this method to study ATP- poly(allyl)amine (PAH) coacervates,45 where 

ATP and ADP concentrations within the condensed phase were found to be on the order of 

molar (Figure 4). Similar reports of enriched nucleotide concentrations have also been 

reported for coacervates comprised of ATP and polylysine.29

Increasing the concentration of reactants is one of the major ways that modern enzymes 

operate, through the so-called principle of approximation,59 and it is likely that coacervates 

can capture some of these same principles. For instance, non-enzymatic polymerization of 

RNA reactions are sensitive to concentrations of monomers, and experiments to synthesize 
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functional RNA molecules via template-mediated non-enzymatic polymerization typically 

use very high concentrations (~50 mM) of activated nucleotide monomers.60–61 Mechanisms 

for attaining such high concentrations of monomers, which were presumably rare, outside of 

the laboratory setting have not been well explored. Furthermore, both experimental62–63 and 

recent in silico64 studies have shown that concentration and organization of amino acids 

along mineral surfaces can enhance polymerization under prebiotic conditions. Complex 

coacervates may have performed similar roles perhaps concentrating amino acids to provide 

early peptides to provide an exit from the RNA world.

Concentrating RNA by partitioning.—The first RNA polymers were likely generated 

by non-enzymatic polymerization of nucleotides,65 these reactions tend to proceed at 

timescales where degradation of the newly synthesized RNA and activated monomers 

becomes a major issue.65 Thus, compartmentalization of scarce and dilute RNA polymers 

would have been extremely beneficial to increase the local concentration of functional RNA 

molecules and protect them from destructive chemicals and radiation. Partitioning of solutes 

and polymers in ATPS is largely dependent on their respective chemical and physical 

properties. For example, in PEGDextran ATPS, hydrophobic peptides/denatured proteins 

tend to partition in the more hydrophobic PEG phase,9 whereas the anionic backbone of 

RNA makes it more favorable to partition in the dextran phase. For larger RNAs, the contact 

area with the dextran increases, thus they tend to show increased partitioning in dextran 

phase. Indeed, in PEG/dextran ATPS, increased-partitioning of RNA in the dextran phase 

strongly correlates with the size of the RNA.41

Although partitioning of RNAs inside complex coacervates is driven by ion pairing 

interactions, additional interactions can occur between the RNA and other molecules within 

the condensed phase. For example, in case of polyU RNA/spermine coacervates, A15 RNA 

partitions much strongly in the condensed phase compared to U15 or N15 RNAs.55 This is 

likely due to sequence-specific interactions between polyU RNA/spermine coacervates and 

A15 RNA.

It is helpful to consider how RNA partitions inside biological intracellular condensates and 

abiological complex coacervate. As mentioned earlier, intracellular condensates comprised 

of proteins have been found to contain RNA. While it is known that RNA functions are 

closely tied with their structures, detailed studies of RNA functions and structures inside 

condensed phases of coacervates are sparse. For example, in Ddx4-containing organelles, it 

was found that single-stranded RNA and DNA were partitioned in the interior of condensate 

irrespective of length.42 However, long double-stranded DNA and RNA were excluded, 

while short ones were only moderately absorbed (Figure 5 A). This partitioning behavior 

was rationalized in terms of the distortion produced by the nucleic acids on the underlying 

structure of the organelle interior (Figure 5A right). The authors posit that single-stranded 

nucleic acids, short double-stranded oligonucleotides, and compact RNA folds exert only 

minimum distortion on the “mesh-like weave” of the membraneless organelle, whereas long 

double-stranded nucleic acids distort the interior structure of the organelle and are thus 

excluded.42 Mechanisms for absorption nucleic acids are highly dependent on the 

constituents that make up the coacervate; therefore, this distortion of interior structures may 

not apply to other phase separated systems.
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In case of the poly(allyl)amine hydrochloride (PAH)-ATP coacervate system,45 we found 

that different lengths of polyA RNA partition similarly (Figure 5B). Furthermore, RNAs 

containing 54 random nucleotides and the structured HDV ribozyme were absorbed in the 

condensed phase to similar extent as polyA RNA. Since the charge-charge interaction is the 

main driver of the PAH-ATP coacervate system, partitioning of RNAs is likely from the 

displacement of ATP (Figure 5B right), which has smaller charge valency. This mechanism 

also appears to serve as the basis for selection of longer RNA polymers in the coacervates.

There are large differences in partitioning coefficients for RNA in Ddx4 organelles and in 

PAH-ATP coacervates. For example, there is ~3000-fold smaller Keq values for RNAs of 

similar lengths in Ddx organelles. Since Ddx organelles are biological, there are likely other 

constraints such as structure and sequence that not only dictate partitioning, but also have 

biological functions. The PAH-ATP coacervates, on the other hand, are abiological, and the 

partitioning of RNAs are strictly based on the chemical interactions without any 

evolutionary history.

Effect of Compartmentalization on Ribozyme Reaction Rates.—Concentrating 

biomolecules by partitioning can enhance reaction rates. We investigated the effect of 

compartmentalization on single turnover kinetics for three different hammerhead ribozymes 

in PEG/dextran systems.41 Different volume ratios of dextran-rich to PEG-rich phase 

(VD:VP) allowed the effect of compartment size on ribozyme catalysis to be studied without 

altering the composition of the phases. Apart from the selective RNA partitioning in the 

dextran phase, we observed the highest reaction rate increase of ~70-fold at a 1:100 (VD:VP) 

volume ratio (Figure 6A), which occurs because substrate and enzyme are concentrated 

under kcat/KM conditions. Since ATPS increase polymer concentrations, they can 

additionally exert the crowding effects to help fold RNAs. Indeed, crowders such as PEG 

and dextran have been shown to increase cooperative folding in variants of tRNA.66 The 

mode for enhanced cooperative folding is RNA and crowder-specific, and can arise due to 

destabilization of secondary structures or stabilization of tertiary structures.67 Interestingly, 

viscous solvents have also been hypothesized to have alleviated strand inhibition during 

prebiotic RNA replication.68

Mg2+ Partitioning Inside Coacervates.—It is well established that ribozymes and 

riboswitches often require Mg2+ or other metal ions for catalysis and folding.69–72 

Interactions with components that form ATPS can concentrate metal ions,73 for example, 

iminodiacetic acid derivatized PEG has been used in PEG/Dextran ATPS to chelate copper 

and effectively extract heme proteins.74 Partitioning of Ca2+ ions in coacervates composed 

of elastin peptides have been known.75 Recent work has established that the condensed 

phase of PAH-ATP coacervate phase extensively partition Mg2+ ions.45 We found that Mg2+ 

ions in the condensed phase can reach concentrations in the order of ~1 M (Figure 6B). We 

reasoned that Mg2+ partitioned within the condensed phase while being coordinated by the 

phosphates of ATP.

Ribozymes and riboswitches often require Mg2+ ions for optimal activity.69–70,76 One of the 

most striking examples of the interplay between magnesium and ribozyme is the RNase P 

ribozyme, where both high (~0.2 mM) and low affinity (~3 mM) interactions are involved in 

Poudyal et al. Page 8

Biochemistry. Author manuscript; available in PMC 2020 June 07.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



catalysis.77 Magnesium ions are believed to stabilize the transition state and neutralize 

charges to assist in substrate association. While RNase P in bacteria and eukarya alike 

require associated proteins for function in vivo, bacterial RNase P RNA-alone is active at 

high magnesium concentrations in vitro78 with almost complete cleavage of precursor of 

bacterial ptRNAGly in 50 mM Mg2+.79 Increased Mg2+ concentration within the condensed 

phase of coacervates may have assisted the functional RNAs that would be non-functional in 

bulk solution with low concentration of required cations. Apart from the RNase P ribozyme, 

many other natural and artificial ribozymes show magnesium dependent increases in 

observed rate constants.80 Notably, high concentration of metals and salts in eutectic ice 

phase has been shown to assist in ribozyme catalyzed RNA polymerization.81

Apart from enhancement in ribozyme catalysis, hydrolysis of activated nucleotides used for 

non-enzymatic polymerization of RNA is also highly dependent on Mg2+ 82 and would 

disfavor function. It remains to be known how condensed phases rich in monomers, RNA 

primers and template, and Mg2+ conspire to affect the many rates and fidelity of non-

enzymatic RNA polymerization.

Covalent and Non-covalent Control of Coacervation.—A key component of all of 

biology is regulation of function, turning on genes only when needed. The constituents of 

coacervates themselves can provide some level of control on formation and dissolution of 

these compartments. One of the most fundamental reactions in all domains of life is 

phosphoryl transfer, which is a common post-translational modification (PTM). Ribozymes 

with polynucleotide kinase activity have been discovered from multiple in vitro evolution 

experiments and they have been found to be dependent upon diverse metal ions.80,83–84 

Furthermore, ribozyme-catalyzed covalent modification can selectively inactivate functional 

RNAs,85 analogous to differential protein regulation by PTMs. Notably, deoxyribozymes 

with kinase and phosphatase activities have also been isolated.86–87 Each phosphate group 

added to a substrate’s sidechains changes the charge density, thus affecting the propensity of 

phase separation.

While phase-separation through ribozyme/deoxyribozyme-mediated covalent modifications 

has not been explored yet, protein enzymes have been shown to actively induce or prevent 

phase separation through phosphoryl transfer. This has been demonstrated in coacervate 

systems made with polyU RNA and the cationic peptide RRASLRRASL.88 The 

phosphorylated form of this peptide, RRApSLRRApSL, cannot undergo coacervation with 

polyU RNA; coacervates form only after a phosphatase enzyme removes the two phosphates 

(Figure 7 A and B). This is because as the phosphate groups are lost from the peptide, there 

is a net increase in positive charge, which consequently increases interaction with the polyU 

RNA. Conversely, protein kinase A is able to transfer phosphoryl groups to 

unphosphorylated peptide RRASLRRASL causing a net reduction in positive charge, which 

weakens the polyelectrolyte interactions and results in dissolution of coacervates (Figure 7 C 

and D). Reversible coacervate systems of polylysine and ATP have also very recently been 

programmed by enzymatically converting between ATP, which could form coacervates with 

polylysine, and ADP, which could not.25 This system is notable in that both enzymes can 

remain active in the reaction mixture simultaneously, facilitating control over coacervate 

formation and dissolution.25
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An important issue in protocells is protection of the biomolecules from degradation. 

Montmorillonite clay has been found to protect ribozymes from UV-irradiations.49 Interior 

of coacervates may also physically protect RNAs from factors that could destroy its 

integrity. This has been demonstrated for glycine and diglycine in coacervates made with 

partially sulfated and aminoacetylated polyvinyl alcohols.89 RNA molecules may be 

similarly protected from the insults in the bulk solution that would otherwise degrade or 

modify RNAs when inside coacervates.

While partitioning of RNA inside the condensed phase would have been advantageous for 

the RNA World, recycling and reshuffling of functional and non-functional RNA molecules 

is important too. Exchange of RNA53 and DNA90 molecules between coacervate droplets 

and dilute solutions have been shown. Dissolution of coacervates can readily release 

biomolecules into the bulk solution. This would allow specific functional RNAs to be taken 

up by other coacervates, where they can impart functions. Simple environmental changes 

such as temperature can significantly impact formation of coacervates. Recent example of 

this was demonstrated in the polyuridylic acid-spermine/spermidine coacervates,55 which 

showed a characteristic lower critical solution temperature (LCST) of ~20°C. Formation of 

coacervates were only observed at temperature greater than the LCST (Figure 7 E and F). 

Depending on the composition, coacervates can also have an upper critical solution 

temperature (UCST),91 above which they cannot phase separate. Dynamic coacervate 

systems92 that form or dissolve based on surrounding temperature could have been prevalent 

in early earth where temperature changes in diurnal cycle would have driven transient 

coacervation allowing coacervate-dependent functions of RNA such as ribozyme or aptamer 

functions, and then dissolve to allow these molecules to diffuse in the solution.

Coacervates and Catalytic Strategies.—All of the coacervate-forming molecules 

provided in Figure 3 have chemical moieties that can participate in one or several of the 

catalytic strategies described for naturally occurring self-cleaving ribozymes (Figure 8A)93. 

These catalytic strategies involve deprotonation of the O2′ nucleophile, ‘γ’; neutralization 

of the non-bridging oxygen (NBO) atoms of the scissile phosphate, ‘β’; protonation of the 

incipient oxyanion on the O5′, ‘δ’; and orientation of the in-line nucleophilic attack, ‘α’. 

Recently, we described two other catalytic strategies, which focus on activation of the O2′ 
nucleophile:94 a ‘γ′’ strategy that involves direct acidification of the O2′ by hydrogen bond 

donation, and a ‘γ″’ strategy that releases the O2′ nucleophile from inhibitory interactions 

(Figure 8A). These catalytic strategies can be facilitated by the components of the 

coacervates themselves. For example, arginine has the guanidinium group that resembles the 

N1-C2-N3 part of guanosine molecule that is involved in γ, γ′, and the γ″ catalytic 

strategies. On prebiotic earth, the nonenzymatic polymerization of RNA likely yielded some 

level of backbone heterogeneity, where some of the critical functional groups utilized for 

catalysis could have been mis-oriented; in such cases, components of the coacervates may 

have assisted in catalysis. These issues await further experimentation.

Apart from coacervates enhancing catalytic potential of ribozymes, they could have also 

served as a basis for origin and selection of functional RNAs by taking advantage of the 

partitioning principles described above. A scheme for complex coacervate-based selection of 

longer and functional RNAs is shown in Figure 8B. As nucleotides concentrated within the 

Poudyal et al. Page 10

Biochemistry. Author manuscript; available in PMC 2020 June 07.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



coacervates, non-enzymatic polymerization of RNA would yield RNA oligonucleotides. 

Since the longer RNA molecules have more net charge, they would outcompete smaller 

oligonucleotides to remain inside complex coacervates. Because longer RNA molecules are 

more likely to fold into complex structures, functional RNA molecules such as aptamers and 

ribozymes would be more likely to originate within the condensed phase.

CONCLUSIONS

Phase-separated condensates are common in modern biology. While LLPS was implicated in 

origins of life on Earth by Oparin before the discovery of the genetic code and the RNA 

World hypothesis, relevance of such systems in prebiotic chemistry remains largely 

unexplored. Unique microenvironments that concentrate specific biomolecules are provided 

by LLPS. Both of these characteristics would have been beneficial during the origins of life 

on Earth where molecules would have been otherwise dilute and unfolded. As a later step to 

modern cells, which contain semi-permeable membranes, complex coacervates could have 

interacted with other prebiotic compartments, ultimately forming outer coatings at the 

liquid-liquid interface. For example, Mann and coworkers reported assembly of 

multilamellar fatty acid membranes around PDADMAC/ATP and oligolysine/RNA 

coacervates,95 and we have observed self-assembly of pre-formed liposomes at the surface 

of spermine/polyU RNA coacervate droplets.55

Since RNA molecules are highly polyanionic, they make excellent counterions for cationic 

polymers that are involved in coacervation. Strikingly, prebiotic syntheses of some RNA 

monomers has already been demonstrated;96–97 furthermore, oligonucleotides of RNA have 

been generated from mononucleotides in wet and dry cycles.98 Therefore, LLPS involving 

RNA molecules could have been highly relevant during the RNA World. Phase-separation-

assisted synthesis of RNA oligonucleotides, selection of longer RNA molecules by 

partitioning, enhancement of ribozyme catalysis, and protection from a harsh and 

unfavorable external environment are all plausible roles for LLPS in the primordial Earth. 

Further investigations of RNA-containing LLPS systems in extant biology and simulated 

early Earth conditions promise to unravel new insights into the interplay between LLPS and 

RNA structure-functions.
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Figure 1: 
Phase separation in extant biology (left) and prebiotic chemistry (right). Low complexity 

regions of the LAF-1 helicase protein, charged peptides and RNA are involved in liquid-

liquid phase separation inside cells (left)21. Similar interactions could have produced non-

membranous compartments in the primordial earth that partition molecules (right). 

Spermine/polyU RNA coacervates (top)55 and PAH-ADP coacervates (bottom).45
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Figure 2: 
Non-associative and associative phase separation. In non-associative phase separation, 

solutions rich in two “incompatible” aqueous polymers form two distinct crowded phases 

(left). In associative phase separation, polymers interact and associate to form a very 

crowded polymer-rich phase and separate from the dilute bulk solution (right).
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Figure 3: 
Structures of molecules discussed in this perspective that are involved in associative phase 

separation.
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Figure 4: 
Coacervates concentrate monomers and polymers A) (left) Centrifugation separates 

condensed phase from the bulk solution. (middle) Concentration of nucleotides in dilute 

phase (mM). (right) Concentration of nucleotides in condensed phase (M).45
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Figure 5: 
Multiple mechanisms for RNA partitioning inside membraneless compartments (A) Ddx4 

protein condensates differentially exclude long double stranded DNA and RNA while 

absorbing single stranded nucleic acids and regulatory RNAs (left), ΔGpart= -RTln([in]/

[out]), where [in] and [out] are concentrations of nucleotides inside and outside of droplets. 

Constraints in the interior structures of Ddx4 condensates allow a subset of nucleic acid 

sizes and structures to be absorbed.42 (B) PAH-ATP coacervates selectively partition RNAs 

irrespective of the structures and sizes (left)45. The mechanism for RNA partitioning is by 

displacement of ATP.
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Figure 6: 
Ribozyme catalysis in non-associative phase separated system and Mg2+ partitioning in 

associative phase separated system. (A) Structure of the hammerhead ribozyme. Ribozyme 

catalysis was carried out in different dextran:PEG phase volumes. 1:0 (filled black circles), 

1:5 (blue squares), 1:12.5 (red diamonds), 1:50 (blue triangles) and 1:100 (inverted green 

triangles).41 (B) Magnesium and other catalytic potentials inside complex coacervates. 

Magnesium associated with ATP is also partitioned inside the PAH-ATP coacervates.45
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Figure 7: 
Molecular and environmental tuning of coacervates (A) and (B) Phosphatase enzyme 

increase the net positive charge by dephosphorylating RRASpLRRASpL peptide which 

forms coacervates with polyU RNA. (C) and (D) Kinase enzyme decrease the net positive 

charge by phosphorylating RRASLRRASL peptide and prevent coacervation with polyU 

RNA.88 For (B) and (D) appearance or disappearance of phase-separation is indicated by 

changes in turbidity measurements. Red trace indicates samples without any enzyme. (E) 

and (F) Turbidity plots indicating either the appearance or disappearance of PolyU RNA/ 

Spermine coacervates as a function of temperature.55
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Figure 8: 
Potential contributions of coacervate components to prebiotic catalysis and evolution. (A) 

Several catalytic strategies used by naturally occurring self-cleaving ribozymes described in 

ref 94. (B) Scheme for coacervate-assisted RNA oligomerization and partitioning of larger 

RNAs.
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