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Abstract

Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being 

delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side 

chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by 

the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in 

the regulation of the immune system and exert their action through the glucocorticoid receptor 

(GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be 

produced in a number of extra-adrenal tissue including the immune system, skin, brain, and 

intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 

and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone 

which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be 

stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to 
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emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a 

variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), 

rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis 

(AD). Further research on local glucocorticoid production and its bioavailability may open doors 

into new therapies for autoimmune diseases.
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Introduction: Glucocorticoids, autoimmune, and inflammatory disorders in 

a nutshell.

The biosynthesis of steroid hormones starts from cholesterol, which in turn is derived from a 

number of sources including de novo synthesis, lipoprotein-derived cholesteryl esters, and 

cholesteryl esters stored in lipid droplets1–3. Hormonal regulation of steroid biosynthesis 

occurs within minutes (acute) to hours (chronic) and is primarily mediated by cAMP 

signaling3–7. Steroid hormones are largely synthesized in steroidogenic cells of the adrenal, 

ovary, testis, placenta, and brain; however, they are also produced in a number of extra-

adrenal and -gonadal tissues. Glucocorticoids play critical roles in a wide variety of 

physiological processes, including regulation of various developmental and homeostatic 

pathways and display several immune functions3, 8. Their release and production are 

regulated primarily by ACTH (adrenocorticotropic hormone) and indirectly by CRH 

(corticotropin releasing hormone)1.

Autoimmune disease and skin inflammatory disorders represent a significant clinical 

problem affecting large segments of the population and the quality of life of affected patients 

and impose a significant cost to the economy, and the health care system in particular. While 

there are different factors underlying the etiology of multiple sclerosis (MS), lupus 

erythematosus (LE), rheumatoid arthritis (RA) and skin inflammatory disorders such as 

psoriasis and atopic dermatitis (AD), they are linked by one element, the diseases are a 

consequence of a dysfunctional/hyperactive immune system. Glucocorticoids are used 

worldwide to treat autoimmune disease and inflammatory disorders. Since the skin and 

systemic immune cells can produce glucocorticoids as well as their hormonal regulators, we 

are exploring the hypothesis that autoimmune and inflammatory diseases develop and 

progress due to a malfunction of local glucocorticosteroid signaling and that their regulators 

play a role in the development and progression of autoimmune and inflammatory diseases.

Glucocorticoid synthesis

a. Molecular and biochemical principles of glucocorticoid biosynthesis

Cholesterol transport into the inner mitochondria: Glucocorticoid synthesis is a 

complex and multiregulated process that predominately takes place in the adrenal cortex. A 

schematic of this process is shown in Figure 1. It starts with the mobilization and delivery of 
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cholesterol from the outer to the inner mitochondrial membrane, a process that is mediated 

by the steroidogenic acute regulatory protein (StAR; also called STARD1) and also involves 

StAR related lipid transfer domain containing 3 (STARD3), also known as metastatic lymph 

node protein, clone 64 or MLN64), and possibly the translocator protein (TSPO; known 

previously as peripheral benzodiazepine receptor, PBR).

The mitochondrial StAR protein plays an indispensable role in the regulation of steroid 

hormone biosynthesis, i.e. the transfer of cholesterol from the outer mitochondrial 

membrane to the inner membrane site where CYP11A1 converts it to pregnenolone3, 4, 9, 10. 

Regulation of the expression, activation, and/or degradation of StAR is influenced by cAMP/

protein kinase A (PKA), protein kinase C (PKC), as well as a host of other signaling 

pathways3, 4, 11–16. Therefore, control of StAR expression involves the interaction of a 

diversity of hormones and signaling pathways that coordinate the cooperation and 

interaction of various transcriptional regulators, as well as a number of post-transcriptional 

events that govern mRNA and protein expression2, 17, 18. Regardless of the regulatory 

events, there is a tight correlation between the synthesis of steroids and the synthesis of 

StAR mRNA/protein in a variety of classical and non-classical steroidogenic tissues3, 19. 

StAR has been implicated in virtually all cholesterol- and/or steroid led processes that 

involve endocrine, autocrine, and paracrine events3, 20–24.

STARD3 has a significant homology with the StAR protein and belongs to the START 

domain subfamily of 15 proteins (STARD1-STARD15), and it is localized in late endosomes 

and lysosomes25, 26. The START domain proteins, STARD1 and STARD3–6 bind a variety 

of sterols including cholesterol, 25-hydroxycholesterol and oxysterols, and are involved in 

intracellular cholesterol trafficking, lipid metabolism, and signal transduction27, 28. There is 

increasing evidence that STARD3 plays an important role in the intracellular transport of 

cholesterol from endosomes to the mitochondria for sustaining steroidogenesis. STARD3 is 

ubiquitously expressed in tissues suggesting a role in a variety of sterol mediated regulatory 

processes. In tissues such as the human placenta that do not express StAR, cholesterol 

delivery to CYP11A1 is mediated by STARD325, 29. It is assumed that STARD3 may deliver 

cholesterol to the mitochondria through transient interactions between the START domain 

and the outer mitochondrial membrane, as occurs for the StAR protein30. Taken together, 

STARD3, by transporting cholesterol from late endosomes and/or lysosomes to the 

mitochondria, influences steroidogenesis.

Translocator protein (TSPO) is ubiquitously expressed in tissues, most abundantly in 

mitochondria of steroid producing cells. Several studies reported that it plays a key role in 

controlling steroid biosynthesis31–35. TSPO binds cholesterol with high affinity and has been 

implicated in the transport of cholesterol to the inner mitochondrial membrane. Aberrant 

expression of TSPO has been linked to various complications and multiple diseases, 

including neurodegeneration, brain injury, ischemia reperfusion injury, and cancers36–40. 

The association of upregulation of TSPO expression with neuronal damage and 

inflammation makes it an important biomarker for neurodegenerative diseases. However, 

serum pregnenolone levels and pregnenolone synthesis by isolated mitochondria were found 

to be unaltered in global TSPO knockout mice which cast doubts over an essential role of 

TSPO in steroidogenesis41.

Slominski et al. Page 3

Genes Immun. Author manuscript; available in PMC 2020 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b. Glucocorticoid Biosynthesis:

The biochemistry of glucocorticoid biosynthesis is well established. This biochemical 

pathway is shown in Figure 1. In the inner mitochondrial membrane, CYP11A1 converts 

cholesterol to pregnenolone, a precursor of all steroids1, 42. CYP11A1 can also convert 7-

dehydrocholesterol to 7-dehydropregnenolone and hydroxylates vitamin D, ergosterol and 

lumisterol to their corresponding hydroxyderivatives, with some side chain cleavage also 

occurring with lumisterol43–49. Pregnenolone can either serve as substrate for 3β-

hydroxysteroid dehydrogenase (3-βHSD), which converts it to progesterone or be converted 

to 17α-hydroxypregnenolone by the enzyme CYP17A1)50, 51. The former reaction involves 

the oxidation of the 3β-hydroxyl group to a ketone group and the movement of the double 

bond from C5 to C4 through an isomerization reaction1. Progesterone is then converted to 

corticosterone by the actions of CYP21A2 and CYP11B1, while these same enzymes 

convert 17α-hydroxyprogesterone to cortisol1, 52. 7-Dehydropregnenolone can be 

metabolized by steroidogenic enzymes to the corresponding Δ7steroids (androgens and 

estrogens) as demonstrated experimentally47, 53, 54, and predicted from the steroid profile in 

Smith-Lemli-Opitz syndrome55–58. However, Δ7 glucocorticoids cannot be produced from 

7-dehydropregnenolone53. Since cortisol is the predominant glucocorticoid in humans, the 

manuscript will focus on cortisol.

Peripheral glucocorticoid bioavailability is also dependent on the two enzymes, 11β-

Hydroxysteroid dehydrogenase type 1 (11βHSD1) and 11β-Hydroxysteroid dehydrogenase 

type 2 (11βHSD2)59, 60. 11βHSD1 can act as both an activator of glucocorticoids by 

reducing cortisone to cortisol and as an inactivator by oxidizing cortisol to cortisone, 

depending on the NADPH and NADP levels1, 59. 11βHSD2 on the other hand acts only as 

an oxidase, converting the hydroxy group at C11 of cortisol to a ketone, generating 

cortisone1, 59, 60. One of the roles of 11βHSD2 is to prevent nonselective binding of cortisol 

to the mineralocorticoid receptor, thus enabling aldosterone to be the dominant 

mineralocorticoid59.

Hypothalamic-pituitary adrenal (HPA) axis: CRH and ACTH

a. Overview of hypothalamic pituitary adrenal (HPA) axis:

The HPA axis is the main regulator of the stress response as well as for systemic 

glucocorticoid production61, 62. CRH is the key regulator of the HPA and is produced in the 

paraventricular nucleus (PVN) of the hypothalamus63. Under stress it is released to the 

hypophysial portal vessels and after entering the anterior pituitary gland, it binds to the CRH 

receptor type 1 (CRH-R1) on the corticotrophs. Here it stimulates the expression, synthesis, 

and processing of proopiomelanocortin (POMC) including production and release of ACTH 

from corticotrophs 61–64. After entering the circulation, ACTH binds to the G-protein 

coupled 7-transmemebrane receptor, MC-2 (melanocortin type 2 receptor), in the zona 

fasciculata of the adrenal cortex. Then, via cAMP dependent mechanisms it stimulates the 

transport of cholesterol into the mitochondria and the synthesis and activity of steroidogenic 

enzymes resulting in increased production and secretion of cortisol and corticosterone65, 66 . 

Glucocorticoids inhibit POMC expression, ACTH secretion and production of CRH in a 

negative feedback loop67. Figure 2 shows a scheme for the regulation of the HPA axis.
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b. CRH:

In the central HPA axis, various stressors cause the release of CRH from the hypothalamus 

which then indirectly regulates immune and inflammatory reactions through secretion of 

ACTH from the pituitary which subsequently stimulates glucocorticoid secretion by the 

adrenal glands68 . Inflammatory cytokines, including IL-1, TNFα and IL-6, stimulate the 

hypothalamus to secrete CRH69. CRH is also produced in various peripheral tissues 

including immune cells70, skin71, and other organs72, 73. The net effect of central CRH is 

immunosuppressive through activation of the HPA axis, while the direct effect of locally 

produced CRH is pro-inflammatory70, 71, 74–76. However, indirect immunosuppressive 

effects through stimulation of local production of POMC peptides and glucocorticoids are 

possible77–80.

CRH, in addition to acting on CRH-R1 also acts on CRH-R2, and both receptors are widely 

distributed in the body 81, 82 including skin 71, 83 and the immune system84. CRH receptors 

are coupled to different second messengers including cAMP, IP3 (inositol triphosphate), and 

Ca2+ 71, 81. There are different alternatively spliced isoforms of CRH-R1 and CRH-R2 with 

different functions 71, 79, 81, 85, 86. CRH related peptides including urocortin 1–3 are also 

produced centrally and peripherally and these show different affinities for CRH-R1 and 

CRH-R2 87, 88.

c. ACTH:

ACTH is synthesized as a part of the ~30 kD POMC precursor that undergoes cell-specific 

post translational processing by protein convertase 1 (PC1) to cleave the 39 amino acid (aa) 

ACTH peptide, as well as other neuropeptide precursors that are further processed by PC2 to 

melanocyte stimulating hormone-γ (γ-MSH), β-MSH and β-endorphin peptides64, 89. 

ACTH can also be cleaved by PC2 and further processed to produce the 13aa α-MSH 

peptide. ACTH interacts not only with MC-2 as an exclusive ligand for this receptor, but also 

with other MC receptors (MC1, MC3–5) to regulate different functions including 

melanogenesis (via MC-1)90–92. ACTH can also act directly as an immunosuppressor64, 93.

Glucocorticoid Receptor:

The glucocorticoid receptor (GR; NR3C1), a member of the nuclear receptor superfamily, 

mediates the action of glucocorticoids. It contains 4 domains: an N-terminal transactivation 

domain (NTD), central DNA-binding domain (DBD), a C-terminal ligand binding domain 

(LBD), and a hinge domain that connects the DBD with the LBD52, 94–96. There are two 

signaling pathways for GR: classical and non-classical94, 97, 98. GR is localized to the 

cytoplasm in association with a chaperone complex. In the classical GR signaling pathway, 

interaction with activating ligands induces a conformational change in GR and dissociation 

from the chaperone complex. GR subsequently translocates into the nucleus where it binds 

to GRE (glucocorticoid-responsive elements) and regulates the transcription of target 

genes94, 97. The non-classical GR signaling pathway is characterized by rapid signaling 

which is transcription independent, and is dependent on various types of kinases98.
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Selected autoimmune and skin inflammatory disorders: an overview

a. Multiple sclerosis:

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous 

system99, 100. Multiple sclerosis affects about 1 in 400 adults with women being twice as 

likely to be affected by the disease than men101, 102. One likely mechanism giving rise to 

multiple sclerosis is that the overactive T helper cells (Th1 and Th17 cells) promote 

inflammation that results in demyelination103. The demyelination leads to the damage of the 

blood brain barrier (BBB), thus resulting in immune cells such as macrophages, T cells, and 

B cells infiltrating the brain and causing further inflammation and the eventual formation of 

scar tissue103, 104.

The main types of multiple sclerosis are relapsing/remitting MS (RMMS), secondary-

progressive MS (SPMS), primary progressive MS (PPMS), and progressive- relapsing 

MS103, 105, 106. Progressive- relapsing MS used to be a subtype, but in 2013 was removed 

due to it being considered as repetitive105. RMMS is the most common type of MS 

representing about 85% of MS cases, followed by PPMS which represents 8–10% of MS 

cases103.

b. Lupus erythematous

Systemic lupus erythematosus (SLE) is an autoimmune disease that presents with multiple 

symptoms; however, the effects of the disease seem to result from the formation and 

deposition of autoantibodies 107–109. The causes of the disease remain to be further 

investigated; however, there are multiple etiological factors (genetic, immunological, 

hormonal, etc) involved in the disease107, 110. The disease seems to be related to the 

dysregulation of the Th2 cells as there is an increase in Th2 cytokines (IL-4, IL-5, and 

IL-13) in SLE patients108. SLE also happens to affect females more than men110, 111. 

Fortunately, because of better treatment the survival rate for SLE has improved significantly 

from a 5% survival rate over a 5 year period in the 1950s to a 99% survival rate over a 5 year 

period in the 2010s111.

c. Rheumatoid arthritis:

Rheumatoid arthritis (RA) is an autoimmune disease that is present in 1% of the 

population112. This disease adversely affects the quality of life and productivity of the 

patient, and there are high costs for therapy and its monitoring for toxicity113. RA is 

characterized by chronic synovitis, which shows a predilection for diarthrodial joints, 

particularly the metacarpophalangeal (MCP) and proximal interphalangeal joints (PIP 

joints)112. A preponderance of evidence indicates that an antigen-driven immune process 

against one or more proteins found in cartilage sustains synovial inflammation in RA114, 115. 

Each DMARD and biologic used to treat RA has the potential to cause unique serious 

adverse events and morbidities or mortalities. These include lung fibrosis, fulminant 

infections, inflammatory demyelination, liver cirrhosis, development of skin cancer or 

melanoma, retinal damage and triggering the onset of other autoimmune diseases such as 

vasculitis, MS and SLE112, 116–120.
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d. Psoriasis

Psoriasis is a chronic inflammatory disorder of the skin affecting 1-9% of the 

population121–123. The etiology of this diseases is multifactorial with a crucial role assigned 

to the malfunctioning of the immune system with the dysregulation of T cells, particularly of 

the Th1 and Th17 lineages121, 123, 124. Although the exact mechanisms need further 

investigation, it is accepted that the disease progression is driven by cytokines, particularly 

IL-17 and IL-23123, 124. In addition, stress and deregulation of local and systemic 

neuroendocrine functions have been implicated in the etiology and natural history of 

psoriasis 71, 125–127. Currently, the main treatment for mild psoriasis encompasses the use of 

corticosteroids with or without additional topical vitamin D derivatives128. Ultraviolet light 

therapy is also used to treat psoriasis129. More recently, biologics that can target the IL-23/

IL-17 pathways as well as JAK inhibitors that target IL-12 and IL-23 cytokines have been 

used in the therapy of this disease130, 131.

e. Atopic dermatitis

Atopic dermatitis is the most common skin inflammatory disease, affecting millions of 

people132. Like psoriasis the exact mechanism of this disease needs to be further 

investigated, although some of its causes include dysregulation of filaggrin and epidermal 

barrier function, and dysregulation of Th1 and Th2 effector cells132, 133. The acute phase of 

atopic dermatitis is mediated by Th2, while the chronic phase is mediated by Th1 cells133. 

Treatments for atopic dermatitis include the use of corticosteroids, cyclosporine, and more 

recently biologics that target IL-5 and IL-13, and potentially JAK inhibitors131.

Expression of CRH and POMC in the immune system and the skin

a. Immune system

Peripheral CRH can be synthesized by cells of the immune system, somatic cells and by 

peripheral afferent type sensory fibers and postganglionic sympathetic nerves134, 135. Many 

tissues (e.g. skin, synovium of patients with RA, colonic mucosa of patients with ulcerative 

colitis, ovaries, cardiovascular system, eyes, uterus, adipose tissue, thymus, bladder, liver, 

stomach and kidney) express CRH and/or CRH receptors (CRHR)64, 136–145. The most 

extensively studied site has been the skin of humans and mice which revealed the presence 

of not only CRH and CRH-R1/2, but also peptides derived from POMC64.

Whether an HPA-like axis is present and operative in synovium, gastrointestinal tract or 

other extracranial locations requires further studies. Although some authors reported 

expression of a truncated POMC mRNA in fibroblasts from human synovium, they failed to 

detect POMC protein in osteoarthritis synovial tissue and proper melanocortin signaling146. 

However, latter studies by these authors indicated a role for POMC signaling including MSH 

and ACTH in osteoarticular tissues with anti-inflammatory actions147, 148. Also, truncated 

POMC mRNA can be translated into full-length POMC protein that is processed to the 

corresponding downstream neuropeptides149–151. The POMC-derived peptides, ACTH and 

β-endorphin (β-End), are expressed in the synovium of RA patients and are produced by 

lipopolysaccharide stimulated B lymphocytes152. Analysis by double immunostaining of 

arthritic synovial tissue from Lewis rats with adjuvant arthritis showed that both ACTH and 

Slominski et al. Page 7

Genes Immun. Author manuscript; available in PMC 2020 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRH colocalized in fibroblast-like cells and in mononuclear cells152. Various stimulants or 

stressors including phytohemagglutinin, concanavalin A, and IL-2, induce lymphocytes to 

express CRH mRNA and/or CRH protein153. Human monocyte- derived dendritic cells 

produce CRH mRNA and protein when stimulated by the intestinal commensal bacteria 

bacteroides vulgatus and fusobacterium varium154. Production of PGE2 by explants of RA 

synovial tissue is increased in the presence of CRH155.

Locally produced CRH modulates both pro-inflammatory and anti-inflammatory processes. 

This is supported by its ability to stimulate production of IL-6 from blood monocytes, 

increase leukocyte IL-1 and IL-2 secretion, suppress LPS- induced IL-1 and IL-6 by 

peripheral blood mononuclear cells, stimulate lymphocyte expansion, and IL-2 receptor 

expression, inhibit splenocyte proliferation induced by IL-2, facilitate NK cell mediated cell 

lysis; and stimulate the of production of ACTH and B-END by leukocytes156–161. CRH 

induces macrophages and mast cells to produce and release VEGF, IL-1β and IL-684 and 

human peripheral blood CD14+ monocytes to produce TNFα and dysfunction of vascular 

endothelium162. CRH upregulates IL-4 production by human Th2 T cells, downregulates 

IFN-ɣ production by human Th1 T cells and downregulates IL-10 production by FoxP3- 

negative human peripheral blood T regulatory cells163.

The different effects of CRH on inflammation and immune function may be influenced by 

different CRH receptors being expressed on different types of leukocytes or by somatic cells 

in different tissues84. The effects of CRH are mediated via two different receptors, CRH-R1 

and CRH-R2, which are members of class B1 of G-protein coupled receptors that exhibit 

approximately 70% overall homology at the amino acid sequence level but only about 47% 

homology in the N-terminal extracellular domain164. CRH binds to CRH-R1 with greater 

affinity than it binds to CRH-R2165. Alternative splicing gives rise to at least 8 spliced 

variants of CRH-R1 and at least 3 spliced variants of CRH-R284, 85, 166. Both the pro-

inflammatory and anti-inflammatory effects have been reported to be mediated by either 

CRH-R1 or CRH-R2 indicating that the ultimate effect of signaling via these receptors is 

determined by factors other than the specific type of CRH-R. For example, CRH via CRH-

R1 induces mast cells and macrophages to produce IL-6, IL-1β, TNFα and VEGF and 

promotes vasculitis but has also been shown to block IL-1α-stimulated prostaglandin 

synthesis by fibroblasts84. Similarly, in the early stages of inflammation, CRH via CRH-R2, 

suppresses production of TNFα by macrophages activated by LPS, but has the opposite 

effect on LPS-induced macrophage TNFα production in late stage inflammation167.

b. Skin

Since the initial detection of CRH, CRH-R1, and CRH-R2 in human168–173 and 

murine168, 174–176 skin, a flurry of reports documented their regulated expression in the 

mammalian skin (reviewed in71, 79, 177–180). CRH and urocortins acting on cutaneous CRH-

R1 and CRH-R2 can affect skin functions in a context-dependent fashion71, 75, 79, 181, 182. 

The direct CRH effects are predominantly anti-proliferative, pro-differentiation, barrier 

building and pro-inflammatory. However, indirect effects through activation of POMC or 

glucocorticoid signaling can be anti-inflammatory71, 79, 80 (see below). It should be noted 

that since the original discoveries on POMC expression and production of POMC peptides 
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by skin cells149, 183–185, it has been widely established that skin cells can produce different 

POMC peptides in a context dependent fashion under different stimuli to regulate different 

skin functions, including downregulation of pro-inflammatory responses64, 186.129, 178

Extra-adrenal glucocorticoid biosynthesis

a. General overview with a list of steroidogenically active organs

It has been reported that glucocorticoids can be synthesized in many non-adrenal and non-

gonadal tissues, such as the brain, intestine, lung, skin, spleen, placenta, adipose tissue and 

the immune system, as well as in a variety of cancer cells42, 52, 187–189. Table 1 shows the 

distribution of the proteins involved in the initial rate-controlling steps of steroidogenesis, 

CYP11A1 and StAR, as well as other downstream steroidogenic enzymes reported to be in 

these tissues including immune cells (Figure 3), at least at the level of mRNA expression. 

Some of the tissues listed such as bone, endometrium and mammary gland appear to 

primarily produce sex steroids and the production of corticosteroids from cholesterol 

remains to be established

b. Glucocorticoid biosynthesis in the skin

The skin has been shown to express all the CYP enzymes involved in steroid synthesis, 

including CYP11A1, CYP17A1, and CYP21A2 and StAR protein in both keratinocytes and 

sebaceous glands188, 190–193 (Table 1; Figure 4). Moreover, the skin has also been shown to 

express CRH and POMC170. The incubation of melanocytes with CRH caused the 

melanocytes to produce ACTH , and in turn ACTH stimulated the production of cortisol in 

melanocytes78. Similarly, fibroblasts can produce cortisol as shown by liquid 

chromatography/ mass spectrometry (LC/MS)194, and production of corticosterone can be 

stimulated by CRH and ACTH. Finally, the exposure of dermal fibroblasts to CRH 

stimulates POMC activity and corticosterone production77, with UVB activating cutaneous 

elements of the HPA195–198. Thus, there is evidence that a functional peripheral HPA-like 

axis is operative in the skin199, 200

Glucocorticoid production in the skin is regulated by CRH, ACTH, IL-1β, UV light, and by 

11βHSD1 and 11βHSD2 enzymes52, 188, 192. Stress to the skin either by inflammation or 

injury causes the stimulation of ACTH and POMC production in the skin64 . UVB exposure 

of the skin has been found to cause production of CRH, ACTH, β-END, and cortisol195. The 

corticosteroids produced in the skin appear to play a role in countering the inflammatory 

response of the skin192, 201. However, glucocorticoids produced locally can have a negative 

effect on barrier function and would healing and promote skin infection202–206.

c. Glucocorticoid biosynthesis by the immune system

The thymus, a place where T lymphocyte maturation occurs, has been found to produce 

glucocorticoids187 (see Table 1). In fact, de novo synthesis of steroids in the thymus was 

discovered in the mid 1990s by Vacchio et al.207. Vacchio also demonstrated the presence of 

the steroidogenic enzymes CYP11A1 and CYP11B1 by immunohistochemistry. In addition, 

thymic epithelial cells produced pregnenolone and deoxycorticosterone. Peripheral T cells 

have also been reported to produce steroids, particularly pregnenolone208. Importantly, there 
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are recent reports showing the expression of CYP11A1 in human209 and murine208, 210, 211 

T cells. We have also observed the expression of CYP11A1 in CD4 and CD8 human T 

lymphocyte and non-T cells (B cells and monocytes) as shown in Figure 3.

d. The role of the Glucocorticoid Receptor in the immune system

Inhibition of the expression of pro-inflammatory cytokines and synthesis by glucocorticoid 

is mediated by the binding of the glucocorticoid-GR complex to GREs in the promoter 

regions of these genes (e.g. IL-1α and IL-1β). This can block the binding and function of 

other transcription factors (e.g. nuclear factor-kappa-B (NF-κB), and activator 

protein-1(AP-1)) essential for transcriptional activation of proinflammatory 

mediators212–216. Inversely, NF-kB can also inhibit the function of the GR in a dose-

dependent manner217 indicating that these pathways mutually affect each other. The protein 

glucocorticoid-induced leucine zipper (GILZ) has been found to play a role in some of the 

anti-inflammatory effects of glucocorticoids218–220. These effects include, but are not 

limited to inhibiting NF-κB, Ras/Raf, and AP-1 dependent pathways218, 220, 221.

Another mechanism for glucocorticoid-GCR mediated inhibition of inflammation is the 

recruitment of other transcription factors to promoter sequences of genes that code for 

proteins with anti-inflammatory properties (e.g. IL-10, NF-κB, IL-1 RII, GILZ, lipocortin-1, 

alpha-2-macroglobulin, and secretory leukocyte-protease inhibitor)212–214, 220, 221. 

Glucocorticoids can also mediate their anti-inflammatory effects at the post-translational 

level by decreasing the stability of mRNAs for IL-1,IL-2, IL-6, IL-8, TNFα and GMCSF, or 

increasing the stability of a number of other mRNAs. The latter include mRNAs for various 

enzymes (e.g. angiotensin - converting enzyme and neutral – endopeptidase) that degrade the 

vasodiliatory peptide (e.g. bradykinin), annexin-1( lipocortin-1, macrocortin and/or 

lipomodulin ) which has anti-inflammatory action by inhibiting phospholipase A2 leading to 

reduced generation of arachidonic acid from membrane phospholipids, and by decreasing 

the stability of cyclooxygenase-2 mRNA resulting in reduced production of PGE2222

The global effects of glucocorticoids on leukocytes and endothelial cells lead to a decrease 

in the adherence of leukocytes to the endothelium of blood vessels which reduces their 

extravasation into areas of inflammation, thus reducing the inflammatory response223–225. 

Proliferation of B cells and T cells is inhibited as well as the production of immunoglobulins 

(B cells) and Th1 and Th2 cytokines (T cells). There is less inhibition of Th2 production 

than Th1 and there is attenuation of natural killer (NK) cell activation177, 226, 227. 

Glucocorticoids act on eosinophils to increase their apoptosis directly, or via reducing the 

production of IL-5228. Mast cell degranulation, cytokine production and their adherence to 

the endothelium are inhibited by glucocorticoids177, 229. Glucocorticoids reduce the number 

of circulating monocytes and cause activation of antigen presentation functions of 

monocytes/macrophages/dendritic cells177, 230
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Dysregulated local glucocorticoid synthesis in the etiology of autoimmune 

and inflammatory disorders

a. Skin inflammatory disorders

Psoriasis and atopic dermatitis: The dysregulation of skin steroidogenesis may play a 

role in both psoriasis and atopic dermatitis188, 231, 232. Glucocorticoids act by blocking the 

production of IL-4 and IL-5231, 233. Hannen et al. reported that in the skin, the expression of 

several enzymes involved in steroid synthesis such as CYP11A1 and CYP17 are reduced in 

psoriasis, as well as the enzymes 11βHSD1, 11βHSD2, and the GR128. They further 

demonstrated that StAR and MLN64 expression is reduced in skin of both atopic dermatitis 

and psoriasis patients193. Tiala et al. reported that CCHCR1, a gene that plays a role in 

steroidogenesis and vitamin D metabolism, is downregulated in psoriasis234. Another study 

reported that deficient in situ synthesis of glucocorticoids in psoriatic skin was associated 

with increased inflammation235. The above data support the hypothesis that defective 

glucocorticoid signaling contributes to the pathogenesis of psoriasis206.

b. Autoimmune disorders

i. Multiple sclerosis: Local steroidogenesis might also play a role in the prevention of 

multiple sclerosis. Boghozian et al. found lower CYP17A1 expression levels as well as 

lower dehydroepiandrosterone (DHEA) levels in oligodendrocytes in both MS patients and 

animals with EAE (experimental autoimmune encephalomyelitis)236. This group also found 

increased expression of IL-1β and IFN-γ in MS patients. The results seem to suggest that 

DHEA may play a role in immunoregulation. Arnason et al. reported that ACTH can be 

beneficial for MS patients, although Miller et al found ACTH to be a candidate for the 

therapy of multiple sclerosis as early as 1961237, 238. Arnason et al. later described how 

melanocortins are anti-inflammatory and act by blocking NF-kB , and that melanocortins 

exert their anti-inflammatory effects through melanocortin receptors MC1R, MC3R, and 

MC5R237.

The expression of genes encoding certain enzymes producing sex hormones as well as the 

receptors for these hormones may also be implicated in the pathogenesis of multiple 

sclerosis101. For example, Luchetti et al. reported that the MS lesions in males display 

higher expression of mRNA for aromatase, estrogen receptor B, and TNF, while women 

with MS have increased expression of mRNA for 3β-hydroxysteroid dehydrogenase and the 

progesterone receptor101.

ii. Lupus erythematous: The dysregulation of steroidogenesis could be a contributing 

factor to the pathogenesis of SLE. Corticosteroids are used in first line treatment of patients 

with SLE108, 188, 239. Glucocorticoids affect T cells (especially CD4) more rapidly than B 

cells239. Glucocorticoids affect the T cells by enhancing circulatory emigration, inducing 

apoptosis, inhibiting T cell growth factors, and impairing the release of cells from lymphoid 

tissue239. ACTH has been used since the 1950s as a treatment option for SLE240, 241. Vogl et 
al. have found that a number of steroids are lower in SLE patients than control patients, 

specifically progesterone, 17-hydropregnenolone, and cortisol242. Li et al compared pituitary 
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hormone level in SLE patients verses the healthy controls and found that prolactin levels 

were increased in SLE patients110.

iii. Rheumatoid arthritis: Steroidogenesis as well as the factors that regulate it may 

play an important role in the pathogenesis of rheumatoid arthritis. This is not surprising 

since 100–2000 genes are regulated by glucocorticoids243. Yoursi et al found that there are 

32 steroid-like metabolites whose concentration differ significantly between RA patients and 

healthy controls244. These metabolites included DHEA, adrostenediol, and cortisol244.

Straub et al reported that serum levels of cortisol, DHEA, and DHEA-S levels were elevated 

in early rheumatoid arthritis patients compared to healthy individuals and correlated with 

elevated levels of the proinflammatory cytokines, IL-6 and TNF245. This group speculated 

that this might be due to RA patients having a deficiency in either CYP21A2 or 

CYP11A1245. In another report, Straub et al noted that the relatively low levels of steroids in 

RA patients in relation to proinflammatory cytokines was not due to increased renal 

clearance, and in fact the renal clearance of steroids, including androgens, was decreased in 

RA patients246.

Schlaghecke et al found that the PBMCs (peripheral blood mononuclear cells) in RA 

patients have a lower density of glucocorticoid receptors that healthy controls247. However, 

Schlaghecke later reported that this decreased GC density does not cause glucocorticoid 

resistance in RA patients248.

In a review article about the role of 11βHSD1 and 2 in RA, Edwards concluded that 

overactivity of 11βHSD1 can cause dysregulation of the HPA controlling cortisol 

production249. He also speculated that the proinflammatory cytokine, TNFα ,triggers the 

overactivity of 11βHSD1 and that anti-TNFα therapy can be beneficial in RA249. Finding 

out the exact mechanism by which steroidogenesis is dysregulated in RA may open doors 

for discovering new treatment options in RA. Specifically, the regulation of the local 

interconversion of cortisol and cortisone and/or glucocorticoid biosynthesis and CYP11A1 

activity may be targeted in immune cells or their target organs.

Concluding remarks and future perspectives

Glucocorticoids play many roles in the maintenance of homeostasis in the body including 

displaying important immunosuppressive activity. Glucocorticoid synthesis is regulated by 

ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα in a context-dependent fashion. 

While some of the regulators such as ACTH directly display immunosuppressive effects, 

others such as CRH and cytokines have predominantly pro-inflammatory activity. Therefore, 

in peripheral organs dissociation of the actions of the higher-level regulators, CRH and 

proinflammatory cytokines, from the executive arm involving the synthesis of 

glucocorticoids, can lead to uncontrolled stimulation of the immune system. Furthermore, 

our view is that dysregulation of local (immune cells and or target organs for immune 

activity) glucocorticoid synthesis plays a pivotal role in several autoimmune diseases, 

including MS, LE, and RA, as well as proinflammatory skin diseases such as psoriasis and 

AD (Figure 5).
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Creative investigations on how to pharmacologically target local and endogenous 

glucocorticoid biosynthesis and glucocorticoid signaling should help to find future therapies/

cures for inflammatory and autoimmune diseases. In particular, there needs to be targeted 

research aimed at increasing local cortisol/corticosterone levels through the activation of 

their local synthesis without systemic effects and/or by preventing their inactivation, and/or 

by stimulation of the activity of 11βHSD1/2. The precise delivery of factors regulating 

glucocorticoid biosynthesis to the target organs or immune cells should also be a focus of 

future research. Such agents that are able to directly or indirectly influence local cortisol 

levels may be chemically synthesized in an educated fashion or represent natural products 

identified by medicinal chemistry and computer modeling. In addition, the application of 

different types of physical factors such as ultraviolet B (UVB) radiation in a controlled 

fashion may represent an additional opportunity, since UVB is both immunosuppressive and 

also stimulates glucocorticoid biosynthesis. In conclusion, local cortisol levels can influence 

the development or regression of inflammatory (psoriasis, AD) and autoimmune diseases 

such as LE, MS and RA. Research aimed at modulating local levels of cortisol is necessary 

to provide new therapies to patients suffering from these devastating diseases.
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Figure 1. 
The biochemical pathway of steroidogenesis. Glucocorticoid synthesis is in bold. DHCR7: 

7-delta reductase; 3βHSD: 3β-hydroxysteroid dehydrogenase
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Figure 2. 
The functional organization of the hypothalamic-pituitary-adrenal axis with inputs from the 

immune system and the skin. Physical and biological stress promotes the release of stress 

signals in both the brain, the skin, and immune cells, resulting in the hypothalamic release of 

CRH, which in turn stimulates the release of ACTH and POMC expression and processing 

in the anterior pituitary. ACTH binds to the MC-2 receptor in the zona fasciculata of the 

adrenal cortex and stimulates the transport of cholesterol into the mitochondria and 

stimulates the production cortisol. Glucocorticoids not only regulate body homeostasis but 

also act in a negative feedback loop for CRH and POMC expression. Re-use of some 

elements of schematic figure from Dr Slominski Commentary205 is with permission from 

the Journal of Clinical Investigation.
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Figure 3: 
CYP11A1 expression in human peripheral blood mononuclear cells (PBMCs).The left dot 

plot shows CD4, CD8 T cells, and CD4−CD8− cells in PBMCs. The right histogram shows 

expression of CYP11A1 in gated CD4 cells, CD8 T cells, and CD4−CD8− cell populations 

verses the unstained PBMC. The blood was obtained from a healthy volunteer (IRB 

160426001) and processed as described previously250. Intracellular staining for CYP11A1 

(Cell signaling technology; Danvers, MA, USA) was performed in cells fixed with 

paraformaldehyde and permeabilized in methanol containing buffer 250, 251. Anti- Cyp11A1 

was conjugated to APC-Cy7 (Abcam; Cambridge, UK) as per manufacturers protocol before 

use. Stained cells were analyzed using a BD-FACS Symphony flow cytometer (BD 

Biosciences, San Jose, CA). Data are representative of three independent experiments 

utilizing different donors.
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Figure 4: 
Expression of StAR and CYP11A1 in HaCaT cells (human epidermal keratinocytes). The 

intracellular expression of StAR and CYP11A1 in HaCaT cells was determined using Image 

Stream II (Amnis, Seattle, WA, USA) cytometer as described previously 252. Dot plots from 

left to right depict Area vs Aspect ratio (strategy to gate on single cells); StAR vs 

mitochondria; CYP11A1 vs mitochondria; and StAR vs CYP11A1. The 1:1 (diagonal) 

expression of StAR with mitochondria indicated their tightly linked expression and potential 

co-localization. Positive correlation between expression of CYP11A1 and mitochondria and 

between StAR and CYP11A1 indicate linked expression with each other and perhaps co-

localization in the mitochondria. The HaCaT keratinocytes were detached and processed as 

previously described253. The cells were fixed and stained with antibodies to Cyp11A1 (Cell 

signaling technology; Danvers, MA, USA) StAR (Santa Cruz; Dallas, TX, USA), and 

Mitotracker Red (CMX Ros Invitrogen; Carlsbad, CA, USA) at 10 nM as described 

previously252. Data were analyzed using IDEAS software (Amnis, Seattle, WA, USA).
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Figure 5. 
Local cortisol/corticosterone levels can control immune functions and inflammatory 

responses in a Yin/Yang manner.
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Table 1.

Extra-adrenal and extra-gonadal expression of CYP11A1, StAR and other steroidogenic enzymes

Tissue or cell type
a CYP11A1 

expression
StAR 
expression

Other steroidogenic 

enzymes expressed
b

Major type(s) of 
steroid produced

References

Adipocytes (human 
subcutaneous 
abdominal and omental 
and/or mouse 3T3-L1 
preadipocytes)

mRNA, protein, 
activity

mRNA CYP11B1, CYP11B2, 
CYP17A1, CYP19A1, 
CYP21A2, HSD3B1, 
HSD11B1, HSD17B3, 
HSD17B5, HSD17B7; 
SRD5A2

sex steroids, 
corticosteroids

254–256

Bone, osteoblasts mRNA, protein not investigated CYP17A1, CYP19A1, 
HSD3B, HSD17B2, 
HSD17B4

estrogens 257–259

Brain mRNA, protein, 
activity

mRNA, protein CYP11B1, CYP17A1, 
CYP21A2, CYP2D6 (21-
hydroxylase), HSD3B, 
HSD11B2

pregnenolone sulfate, 
DHEA-sulfate, 
corticosteroids

1, 19, 189, 260–264

Colorectal, intestine 
(non-cancerous and 
cancerous)

mRNA, protein, 
activity

mRNA CYP11B1, CYP21A2, 
HSD3B3, HSD11B1, 
CYP17A1 (human 
tumour)

corticosterone 
(mouse), cortisol

189, 265–271

Endometrial, 
endometriosis and 
tumors

mRNA, protein, 
activity

mRNA, protein CYP17A1, CYP19A1, 
HSD3B2

progesterone, 
androgen, estrogen

272–274

Heart (and blood 
vessels)

mRNA mRNA CYP11B1? CYP11B2? 
CYP21A2, HSD3B, 
HSD11B2

aldosterone?
c 

corticosterone 
(mouse)

189, 275–279

Kidney (rat) mRNA protein, 
activity

mRNA, protein HSD3B pregnenolone, 
progesterone

280, 281

Lung mRNA, activity mRNA CYP11B1, CYP21A2, 
HSD3B1, HSD3B3, 
HSD11B1

aldosterone, 
corticosterone 
(mouse)

265, 282, 283

Lymphocytes 
macrophages and 
monocytes

mRNA, protein, 
activity

mRNA, protein CYP21A2 pregnenolone, 
cortisol?

209, 284–288

Mammary gland 
(including tumours)

mRNA mRNA, protein CYP17A1, CYP19A1 progesterone, 
estrogen

8, 18, 289–291

Nasal mucosa mRNA, protein, 
activity

not investigated CYP11B1, CYP21A2, 
HSD3B, HSD11B1, 
HSD11B2,

cortisol 292, 293

Pancreas mRNA, protein mRNA, protein CYP11B1 pregnenolone? 
cortisol?

294, 295

Prostate mRNA, protein, 
activity

mRNA, protein CYP17A1, CYP19A1 
HSD3B1, HSD3B2, 
HSD17B3, HSD17B5

progesterone, 
androgens

296–300

Skin mRNA, protein, 
activity

mRNA, protein CYP11B1, CYP17A1, 
CYP21A2, HSD3B1, 
HSD11B1, HSD11B2, 
HSD17B

corticosteroids, 
androgens

19, 188, 232, 301

T-cells-activated 
(mouse)

mRNA, protein, 
activity

not investigated not investigated pregnenolone, 
corticosterone?

208, 210, 211, 270, 302, 303

Thymus (mouse) 
thymocytes and thymus 
epithelial cells

mRNA, activity mRNA CYP11B1, CYP17A1, 
CYP21A2, HSD3B

corticosterone 189, 207, 208, 304

arefers, at least in part, to human tissues unless otherwise indicated
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bexpression observed at least at the level of mRNA

cquestion mark indicates product is predicted but not confirmed experimentally
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