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In isogenic microbial populations, phenotypic variability is generated by a
combination of stochastic mechanisms, such as gene expression, and deter-
ministic factors, such as asymmetric segregation of cell volume. Here we
address the question: how does phenotypic variability of a microbial popu-
lation affect its fitness? While this question has previously been studied for
exponentially growing populations, the situation when the population size is
kept fixed has received much less attention, despite its relevance to many
natural scenarios. We show that the outcome of competition between mul-
tiple microbial species can be determined from the distribution of
phenotypes in the culture using a generalization of the well-known Euler–
Lotka equation, which relates the steady-state distribution of phenotypes
to the population growth rate. We derive a generalization of the Euler–
Lotka equation for finite cultures, which relates the distribution of pheno-
types among cells in the culture to the exponential growth rate. Our
analysis reveals that in order to predict fitness from phenotypes, it is impor-
tant to understand how distributions of phenotypes obtained from different
subsets of the genealogical history of a population are related. To this end,
we derive a mapping between the various ways of sampling phenotypes
in a finite population and show how to obtain the equivalent distributions
from an exponentially growing culture. Finally, we use this mapping to
show that species with higher growth rates in exponential growth conditions
will have a competitive advantage in the finite culture.
1. Introduction
A central problem in microbiology is understanding how measurable phenoty-
pic traits such as a cell’s size, growth rate or expression of a gene affect
population dynamics [1–4]. This problem is made difficult by the fact that
there is rarely a well-defined mapping from genotype to phenotype; instead,
a single genotype can give rise to a distribution of phenotypic traits throughout
a population’s history. This distribution can be generated at the cellular level
due to intrinsic factors, such as the stochasticity of biochemical reactions
[5–10], or due to environmental fluctuations that affect the entire population
[11–15]. It is now well established that a population’s long-term growth rate
cannot be determined by the average values of single-cell traits, such as the
growth rates or generation times of cells, but is instead determined by the varia-
bility and heritability of phenotypes measured throughout a population. The
discrepancy is an example of non-ergodicity and results from epigenetic herit-
ability of phenotypic traits that is present in all populations. It is therefore
necessary to quantify the distribution of a phenotypic trait, and not just its
average, in order to deduce how phenotypes affect fitness.

In the setting of exponential growth, a proxy for fitness is the population growth
rate Λ, defined by the relationN∼ eΛt, whereN is the number of cells at time t. The
problem of howΛ is related to the distribution of generation times has a rich history
in the field of mathematical population dynamics, starting with Euler in the seven-
teenth century. Euler derived an implicit relationship between Λ and the birth and
death rates of individuals in a growing population [16]. Euler’s result was
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Figure 1. (a)(i) In a population growing exponentially the population growth rate, Λ, which is a proxy for fitness, can be computed from temporal dynamics of the
number of cells. (ii) A cartoon of genealogies obtained from an exponentially growing population. Each vertical line represents a cell and the length of the line its
generation time. (iii) A histogram of some phenotypic trait that determines generation times obtained from the genealogical tree can be used to determine the fitness
according to the Euler–Lotka equation. The precise procedure for sampling the phenotypes will be discussed in §3. (b)(i) In a finite population containing non-interacting
genotypes, the principle of competitive exclusion says that one genotype will eventually dominate the culture. (ii) A cartoon of genealogies obtained from the two
populations competing in the finite culture. (iii) How do the distributions of phenotypes obtained from the genealogies in the finite culture relate to fitness?
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rediscovered by Lotka [16] and later adapted to microbial popu-
lations by Powell [17]. In its modern form, this result, known as
the Euler–Lotka equation, states that for an exponentially growing
population in which each individual has a generation time, τ,
drawn independently from a distribution f(τ), Λ satisfies the
implicit relationship

1
2
¼
ð1
0
f(t)e�Lt dt: (1:1)

Note that when generation times are deterministic (f(τ) = δ(τ−
τ0)), this reduces to a relationship between the population’s
doubling timeandgrowth rate,Λ = ln(2)/τ0. Equation (1.1) illus-
trates the importance of considering variation in phenotypic
traits, not just the averages, as it can clearly be seen that the
entire distribution of generation times shapes Λ. However, this
formula has limited applicability to understanding fitness in
microbial populations because generation times are typically
not drawn independently, but rather they are correlated
between mother and daughter cells. For example, negative cor-
relations can arise due to cell-size regulation: if a cell grows
abnormally large, its daughter cell will need to have a shorter
generation time to account for the additional size inherited
from its mother [18].

The relationship between the distribution of generation
times and fitness in the presence of mother–daughter corre-
lations is given by a more general equation, derived by
Lebowitz [19]. This states that

1
2
¼
ð1
0
e�Ltctree(t) dt, (1:2)

where ψtree(τ) is the distribution of generation times over the
entire history of a growing population (figure 1a). Note that
in generating this distribution, it is crucial to include the gen-
eration times of cells currently in the culture. The distribution
ψtree(τ) is, in general, distinct from the distribution of gener-
ation times along an isolated lineage. If f (τ|τ0) is the
distribution of generation times τ conditioned on the
mother cell’s generation time, τ0 it was shown that ψtree(τ) sat-
isfied the self-consistent equation [19]

ctree(t) ¼ 2
ð1
0
f(tjt0)ctree(t

0)e�Lt0 dt0: (1:3)

In both natural and experimental settings, populations
cannot grow exponentially for very long. For example, in rich
growth conditions Escherichia coli has a doubling time of
about 20min and the weight of an individual bacterium is of
the order of 1 picogram; hence a single day of continuous expo-
nential growth starting from one cell would yield a colony that
weighs around 224×3≈ 4.7 × 1021 picograms, or around 5 tons.
Another 24 h of doubling would yield a colony roughly four
times the mass of the earth. In reality, populations of microbes
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are periodically diluted giving a populationwhose size is fixed,
at least on average. For example, in a chemostat, cells are con-
tinuously flushed out as new medium is pumped into the
culture. Analogous processes occur in natural environments,
such as the digestive system of a host organism where waste
is periodically disposed of. In both examples, exponential
growth is an inaccurate model of the population dynamics.
Instead, one could imagine a fixed population of N cells. One
way to model such a population is with a Moran process,
where N is kept fixed by selecting a cell to remove from
the population at every division event. In the variant of the
Moran process that we will adopt, the cell to remove is ran-
domly selected from all of the N + 1 cells in the population
after every division (which includes the N− 1 that did not
divide and the two newborn daughter cells), thus reverting
the population size back toN immediately after any cell divides.
The assumption of this model, which wewill study in the large
N limit, is that the population iswell mixed and hence the prob-
ability of any given cell being removed is independent of its age
or genealogical history. If two species are present in such a
population, the principle of competitive exclusion states that one
of them will eventually dominate the population.

What does the distribution of phenotypes tell us about the
fate of a species in a finite population? The standard theory
[20] tells us that if two species with growth rates Λ1 and Λ2

compete in a Moran process, the species with a larger popu-
lation growth rate will eventually dominate. However,
equation (1.2) tells us that the exponential growth rates are
determined by the entire history of cells in a growing popu-
lation, yet in the Moran process, most of the cells are flushed
out. This raises the question: How is the outcome of a compe-
tition experiment related to the distribution of generation
times, or any other measurable trait affecting growth, among
the cells in the culture? In this paper, we will address this
question by analysing the dynamics of phenotypically hetero-
geneous populations. This will lead to a generalization of
equation (1.2) for finite populations, equation (4.3), which
relates the population growth rate to the distribution of gener-
ation times sampled over cells that remain in the culture. We
find subtle distinctions between the phenotype distributions
in the exponentially growing population and the finite popu-
lation. However, it will be shown that the ultimate fate of
species in the competition setting is independent of whether
the population is growing or kept at a fixed size. In particular,
one of our main results is that species with higher values of Λi

in the exponentially growing culture will always dominate the
finite culture, regardless of the initial conditions.
2. A general model of phenotypic variability
We start by introducing a general modelling framework
allowing us to study intrinsic variability in an arbitrary phe-
notypic trait, which will be represented by the vector
x ¼ (x1, . . . , xl) [ Rl

þ. We assume each cell is born with a
value of x drawn from a distribution f(x|x0) depending on
the phenotype x0 of the mother cell. Importantly, x may not
change over the cell cycle. For example, x could represent
the initial concentration of a protein, or some macroscopic
phenotype, such as the average growth rate over the cell
cycle. However, it could not represent the age or volume of
a cell, since these change over the course of the cell cycle.
After a time τ(x), the cell divides and produces two new
cells with phenotypes drawn from f(x|x0) and generation
times depending on these phenotypes. This framework can
capture any possible form of intrinsic (as opposed to environ-
mental) generation time variability through the appropriate
choices of the phenotype x and distribution f. Therefore, exist-
ing models can be derived as specific cases of this framework.
These include models where division is asymmetric [21–24]
and where the relationship between successive generation
times is non-monotonic and nonlinear, such as the kicked
cell-cycle model used to describe circadian rhythms [25].

2.1. Example: cell-size regulation model
As a concrete example, we will consider a model of cell-size
regulation, which has been used extensively in the literature
to understand how cells maintain homeostasis of their sizes
[1]. This model will serve as a useful illustration of how our
formalism can capture the effects of stochasticity in multiple
phenotypic traits. The most important assumption of the
cell-size regulation model is that cells grow exponentially
at the single cell level and divide upon reaching a size
depending on their size at birth, vbirth. We will assume
that cells divide symmetrically so that vbirth is obtained by
dividing the cell mother’s size at division by 2. Phenotypic
variability is introduced by adding noise to both the single-
cell growth rate as well as the volume at division. To this
end, we take the growth rate λ and division volume vdiv
of a cell to obey

ln l ¼ lnhli þ hl

and vdiv ¼ 2(1� a)vbirth þ 2av0 þ hv,

)
(2:1)

where ηλ and ηv are independent normally distributed
random variables. The first equation captures the fact that
growth rates are positive and approximately follow a Gaus-
sian distribution for small noise, while the second equation
tells us how cells decide when to divide based on their
volume. Here, the cell-size regulation strategy is controlled
by the parameter α. α = 1 corresponds to cells dividing at a
critical size (known as a ‘sizer’), while α = 1/2 corresponds
to cells adding a constant size v0 (known as an ‘adder’).
We refer to [1] for an in-depth discussion of the cell-size con-
trol model and its implications for population growth. Within
this model, the generation time of a cell can be expressed as a
deterministic function of the growth rate noise. In particular,

t(hl, hv, vbirth)

¼ 1
hliehl

ln
2(1� a)vbirth þ 2av0 þ hv

vbirth

� �
: (2:2)

It follows that in the notation of our general modelling frame-
work the phenotype that controls generation times is x = (ηλ,
ηv, vbirth). The conditional distribution of phenotypes is
given by

f(xjx0) ¼ d vbirth � v0birth
2

el
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where s2
l and s2

v are the variances of ηλ and ηv, respectively.
Note that in the special case where α = 1 and ηv = 0, the phe-
notype is given by x = ln(λ) and the generation time is simply
τ = ln(2)/λ.
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3. Relationship between phenotypic variability
and fitness in a finite culture

We now consider a model where N, the number of cells in the
population, is fixed. In order to achieve this, every division
event must correspond to a cell being expelled from the
culture. As discussed in the Introduction, this can be
implemented by a Moran process [26]. Since the population
is not growing, we can no longer obtain Λ from the exponen-
tial growth curves (as shown in figure 1a). Instead, one can
measure growth in terms of the rate per cell at which cells
are expelled from the population, or the dilution rate ΛD.

Intuitively, if N is sufficiently large, the continuous expul-
sion of cells from the culture should have no influence on the
relative frequencies of the phenotypes, and therefore the
instantaneous rate at which cells are accumulated should be
equal to ΛN. On the other hand, since the size of the culture
remains fixed, this must be balanced by the rate at which cells
are expelled, implying Λ ≈ΛD for sufficiently large N. It fol-
lows that ΛD should satisfy the same relation as Λ. To make
this intuition mathematically precise, we can derive a trans-
port equation for the joint distribution of phenotypes (x)
and ages (u) at a given time, denoted ψ(t, x, u), which is
given by (see appendix A)

@

@t
þ @

@u

� �
c(t, x, u) ¼ �LDc(t, x, u): (3:1)

This equation is the Von Foerster equation for an age-struc-
tured population [16], although the role of the ‘death rate’
is played by ΛD, which is no longer an input to the model.
Instead, ΛD must be derived from a boundary condition to
ensure the population remains finite. This boundary
condition is

c(t, x, 0) ¼ 2
ð1
0
� � �
ð1
0
f(xjx0)c(t, x0, t(x0)) dx01 � � � dx0l: (3:2)

The term f (x|x0)ψ(t, x0, τ(x0)) dx10 · · · dxl0 in the integrand rep-
resents the probability of a cell with phenotype x0 dividing to
produce a cell with phenotype x. The factor of 2 comes from
the fact that each cell produces two daughters. Importantly,
the probability that any specific cell is expelled is 1/N,
which vanishes in the limit N→∞; therefore, equation (3.2)
does not need to account for the fact that one of the daughter
cells could be expelled. Since each cell produces two off-
spring, integrating over all phenotypes and multiplying by
a factor of 2 yields the distribution of phenotypes and ages
evaluated at age u = 0. Note that this is proportional to the
distribution of phenotypes among newborn cells, denoted
cF
birth(x).
We now look at equation (3.1) in steady state by setting

the time derivative to zero,

@

@u
c(x, u) ¼ �LDc(x, u): (3:3)

Solving equation (3.3) yields

c(x, u) ¼ c(x, 0)e�LDu, u , t(x): (3:4)

As shown in appendix A, ψ(x, 0) is proportional to the tree
distribution, denoted cF

tree(x). In order to obtain the tree distri-
bution, we sample the phenotype of every cell throughout the
entire history of the population, including those that are
expelled from the culture, and make a histogram of their
phenotypes. (In general, we will use the superscript F to indi-
cate a distribution in the finite culture, but we omit this when
there is no ambiguity.) After inserting (3.4) into (3.2), we find

cF
tree(x) ¼ 2

ð1
0
� � �
ð1
0
f(xjx0)cF

tree(x
0)e�LDt(x0) dx01 � � �dx0l: (3:5)

When phenotypes are not correlated across generations, f (x|
x0) = f (x), hence it follows from (3.5) that cF

tree(x) ¼ f(x). Other-
wise, cF

tree(x) will be distinct from the distribution of
generation times obtained from a single, isolated lineage.
We may integrate with respect to x and replace ΛD with Λ
in order to obtain

1
2
¼
ð1
0
� � �
ð1
0
cF
tree(x)e

�Lt(x)dx01 � � �dx0l: (3:6)

This generalizes equation (1.3) in two ways: first, it extends
equation (1.3) to the context of a finite culture, and second,
it relates Λ to a distribution of a more general phenotype,
not only the generation times. Using this formalism, it is
possible to derive the self-consistent equation for ψtree(τ) in
the exponentially growing culture (equation (1.3)) in terms
of cF

tree(t), the tree distribution of generation times in the
finite culture. To see this, note that we can perform the deri-
vation of equation (3.5) with x = τ, leading to

2
ð1
0
fðtjt0ÞcF

treeðt0Þe�LDt
0
dt0: (3:7)

This equation is identical to equation (1.3), implying cF
tree(t)

obeys the same self-consistent equation as ψtree(τ). It follows
that the tree distribution in the finite culture is identical to
the tree distribution in the exponentially growing culture.
Integrating both sides of equation (3.7) with respect to τ
yields the Euler–Lotka equation in the finite culture:

1
2
¼
ð1
0
cF
tree(t)e

�LDt dt: (3:8)

A similar procedure can used to obtain a simple equation
for the population growth rate in terms of the distribution of
any single-cell observable. For example, consider the cell-size
regulation model with α = 1 and ηv = 0. In this case, the gen-
eration time is a deterministic function of the growth rate:
τ = ln(2)/λ. It follows that the marginalization approach
above can be used to obtain

1
2
¼
ð1
0
2�L=lf(l) dl: (3:9)

Here we have used that growth rates are uncorrelated to
replace cF

tree(l) with f (λ). Within this model, f (λ) is simply a
lognormal distribution with mean 〈λ〉 and variance s2

l. This
equation has previously been analysed in [27], where a
saddle point approximation was carried out to obtain

L � hli 1� 1� ln (2)
2

� �
CV2

l

� �
, (3:10)

where CVλ represents the coefficient of variation (the stan-
dard deviation over the mean) of growth rates. This shows
that within the context of this model, growth rate variation
tends to decrease population growth [27].
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Figure 2. (a) The various ways of sampling phenotypes from a lineage tree obtained in an exponential culture. The grey horizontal line on the right panel indicates
the current time of observation. The blue highlighted lines correspond to cells that are sampled to obtain the distribution indicated above the lineage tree. For
example, to obtain ψans we sample all the cells in the tree excluding those that are currently alive. (b) The same image for a finite culture. The red dots represent
cells that are expelled from the culture before they divide. (c) The relationship between distributions in the finite and exponentially growing culture. (d ) Plots of the
various distributions of single-cell growth rates obtained from simulations of the cell-size regulation model with N = 104, CV2l ¼ 0:25, 〈λ〉 = 1, vdiv = 2, α = 1
and ρλ = 0.2. The lineage distribution, which can be computed analytically for this model, is also shown. For the ancestral distribution, we have plotted both the
histogram of lnλ over all ancestral cells (red dashed line) as well as the result of evaluating the right-hand side of equation (4.4), using the carrier and tree
distributions (purple line).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190827

5

4. Computing the population growth rate from
cells in the culture

The tree distribution, which is required to compute the popu-
lation growth rate using equation (1.2), is only one of a
number of ways to quantify phenotypic variability in a line-
age tree, and it is not always the most convenient to work
with. For example, it is often the case that one does not
have access to the cells that are expelled from the culture.
An alternative distribution is given by the expression
2cF

tree(x)e
�LDt(x); this term is twice the integrand of equation

(3.6), which implies it must be a probability distribution, as
it is normalized. As was previously noted by Powell [17] in
the context of a model with uncorrelated generation times,
this expression can be interpreted as the distribution of x
over all cells that divide before being expelled from the cul-
ture (figure 2). Following Powell’s terminology, we define
the carrier distribution as

cF
car(x) ¼ 2cF

tree(x)e
�LDt(x): (4:1)

To derive Powell’s interpretation of the carrier distribution in
the more general setting, first note that e�LDt(x) is the prob-
ability that a cell stays in the culture until it divides, given
that is has phenotype x. Also, the probability that any cell
throughout the history of the population divides in the cul-
ture must be 1/2 in order for the number of cells to remain
fixed. The interpretation of cF

car(x) then follows from an appli-
cation of Bayes’ theorem where cF

tree(x) and cF
car(x) play the

role of the prior and posterior, respectively.
In practice, the distribution cF
car(x) may be easier to obtain

than cF
tree(x) because sampling cF

tree(x) requires knowledge of
generation times of cells that are expelled from the culture.
In certain experimental settings, these cells may be difficult
to track, and additionally, their growth may be not be statisti-
cally identical to those cells that remain in the culture due to
the different conditions in and out of the device where cells
are observed [28]. This motivates us to develop a method for
estimating the population growth rate, Λ, from the available
lineage data. To this end, we use the normalization of
cF
tree(x) to obtain

2 ¼
ð1
0
� � �
ð1
0
eLt(x)ccar(x) dx1 � � �dxl: (4:2)

As we have done above in equation (3.7), we can marginalize
over the phenotype x to recast this equation in terms of the cor-
responding generation time distribution:

2 ¼
ð1
0
eLtccar(t) dt: (4:3)

Equation (4.3) addresses the question of how Λ is related to the
distribution generation times among cells in the culture.
4.1. The ancestral and division distributions
In the exponentially growing culture, the distribution
2ψtree(x)e

−Λτ(x) has a different interpretation; it is equal to
the distribution over all the current cell’s ancestors, denoted
ψans(x) (this has been referred to as the branch distribution in
[27]). This distribution is obtained by sampling all cells in
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the tree excluding those that are currently alive, as shown in
figure 2a. The fact that c F

car(x) ¼ cans(x) suggests there may be
an alternative interpretation of these distributions that is
common to both types of cultures. In fact, in both the continu-
ous culture and exponentially growing culture, the carrier (or
branch) distribution can be interpreted as the distribution of
phenotypes of cells that have just divided, or the division dis-
tribution ψdiv(x). We refer to appendix B for the derivation.

Now consider the the distribution over the ancestral cells
in the finite culture, denoted cF

ans(x). In order to obtain
cF
ans(x), we take the phenotypes of all cells currently alive in

the culture and trace back through their ancestors, collecting
their phenotypes. How might this distribution be related to
ψans(x) in the exponential culture (or equivalently, the carrier
distribution in the finite culture, cF

car(x))? Because all cells
have a common ancestor we can compute cF

ans(x) by taking
only the ancestor cells of this common ancestor—as we
trace back in time far enough the more recent cells make up
a negligible fraction of the observed phenotypes. ψans(x) is
therefore the distribution of phenotypes obtained by looking
backwards along a lineage beginning from an arbitrary cell in
the culture. If phenotypes are not correlated across gener-
ations, then the phenotypes sampled along the lineage are
independent and this is therefore equivalent to sampling
cells in the population that have divided in the culture; as
we saw before, this is ψcar(x). However, if there are corre-
lations across generations, we need to consider how the
ancestor’s phenotypes along a lineage are biased by the des-
cendants’ phenotypes. This is captured by the recursive
formula for ψans(x) (derived in appendix B):

cF
ans(x) ¼ cF

car(x)
ð1
0
� � �
ð1
0
f(x0jx) c

F
ans(x

0)
cF
tree(x0)

dx01 � � �dx0l: (4:4)

From this equation, it is easy to see that cF
ans(x) ¼ cF

car(x) pre-
cisely when f(x|x0) = f (x), as expected from the argument
above.

Our results concerning the relationship between pheno-
type distributions in exponential and finite cultures are
summarized in figure 2c. To explicitly demonstrate these
relationships we performed simulations of the cell-size regu-
lation model. Results of these simulations are shown in figure
2d. For realistic parameter values, we see that the differences
between the distributions are quite small.
5. Competition between multiple species in a
finite population

Having established that the Euler–Lotka equation can be gen-
eralized to the setting of the a finite culture in steady state, we
now consider a model in which two cells compete in a finite
culture. We will once again assume that the number of cells
(N) is sufficiently large so that any stochastic fluctuations at
the population level may be ignored. Before considering
these competition dynamics directly, we suppose that the
two species are grown separately in environments with
unlimited space and nutrients. Under these conditions, the
number Ni of cells in species i will then grow exponentially
at some rate Λi. It is not difficult to see that the fraction of
species 1, ϕ1 =N1/(N1 +N2), evolves according to the logistic
growth equation

d
dt

f1 ¼ f1(1� f1)DL, DL ¼ L1 � L2: (5:1)

The quantity S = ΔΛ/Λ2 is known as the selective advantage of
species 1 over species 2 and its sign determines which species
eventually takes over the culture.

We now imagine placing both species in a finite culture
that can hold exactly N cells (figure 1b). As before, this is
implemented by removing a randomly selected cell from
the culture every time a cell division occurs. For the
moment, we will assume that nutrients are not limiting
growth and the environment is constant. Under these
assumptions, we can heuristically obtain the dynamics of
the frequency of species 1 in the finite setting, ϕ1(t), from
the exponentially growing population by uniformly sampling
N cells from the exponentially growing population at each
time; this would suggest that the outcome of a competition
experiment is also determined by ΔΛ. However, we know
that the steady-state phenotype distribution determines the
population growth rates. Therefore, in order to justify the
heuristic argument mathematically, it must be established
that when two species are placed in a finite culture, their phe-
notype and age distributions converge to their steady states.
If this condition is not met, then there is a possibility that the
outcome of the competition depends on the initial phenotype
distribution. From a biological perspective, it is important to
understand what happens when the initial distribution is not
in steady state, as it is rarely the case that ecological dynamics
begin with each species in steady state. For example, two
species from different environments may meet after being
consumed by the same host organism. Unless the conditions
within the host are identical to the conditions outside, the
populations will not be in steady state at the onset of the
competition.

In appendix C, we have derived the dynamics of ϕ1(t)
within the context of the two-species Moran process model,
along with the generalization to the case of M species.
There, we show that the joint density of phenotypes and
ages among species i, denoted ψi(t, x, u), obeys

@

@t
þ @

@u

� �
ci(t, x, u) ¼ �Li(t)ci(t, x, u): (5:2)

Here Λi(t) is the per capita division rate of cells of species i,
which may depend on time if the system has not reached
its steady state. In terms of ψi,

Li(t) ¼
ð1
0
� � �
ð1
0
ci(t, x, ti(t, x)) dx1 � � �dxl: (5:3)

We have allowed for both the phenotype distribution and
Λi(t) to be time-dependent, since the culture may not be in
steady state. Equation (5.2) holds for u < τi(x) and is sup-
plemented by the boundary conditions prescribing how the
phenotypes are selected at birth,

ci(t, x, 0) ¼ 2
ð1
0
� � �
ð1
0
f(xjx0)ci(t, x

0, ti(x0))dx01 � � �dx0l: (5:4)

Importantly, equations (5.2) and (5.4) are completely
decoupled from the phenotype distributions of other species
and ϕi(t). In other words, the distributions of phenotypes
evolve completely independently from the frequencies of
species in the culture. Some of our main results follow from
this observation. First, in a competition experiment, the
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Figure 3. (a,b) Simulations of two species, each modelled by the random growth rate model, competing in the Moran process compared with the prediction of the
logistic growth equation (5.1). The blue lines represent the average over 1000 simulations. In (a), the phenotype distributions are initially taken to be in steady state,
satisfying the self-consistent equation (1.3). In (b), the phenotype distributions are initially out of steady state. This is achieved by drawing the initial growth rates
from Gaussian distributions with different means. In both cases, we have used σλ = 0.3 for both species 〈λ〉1 = 1 and 〈λ〉2 = 1.1 (hence species 2 has an
advantage). We have used the sizer model for cell-size regulation and neglected any size additive noise. (c) ϕ1(t) at t = 20 generations for two populations
with the same average growth rate and different values of s2

i , the variance in growth rates. We have used 〈λ〉1 = 1 and 〈λ〉2 = 1.1, and we have fixed
σ2 = 0.2 and increased σ1. For both species, growth rates are uncorrelated across generations. Each circle represents the average of 1000 simulations for the
same parameter values.
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phenotype distributions will converge to their steady states
regardless of the initial conditions and relative fitnesses of
each species. Second, the species with a higher value of Λi

as determined by equation (1.2) will eventually dominate
the culture, regardless of the initial state of the phenotype
and age distributions. Finally, in the special case where the
initial phenotype distributions are in their steady states satis-
fying equation (3.2) and there are two species, the frequency
ϕ1(t) will obey the logistic growth equation (5.1).

In figure 3, we show simulations for competition between
two species modelled by the random growth rate model com-
pared with the prediction of the logistic growth equation.
When the competition begins with the phenotype distri-
butions in their steady state, we see that the simulations
agree exactly with the prediction. If the initial phenotype dis-
tributions are not in steady state, we find that the transient
dynamics differ from the logistic growth equation; however,
as predicted, they converge to the trajectory of the logistic
equation within a few generations.

6. Discussion
In this paper, we have studied the dynamics of competition
between phenotypically heterogeneous populations in finite
cultures. While a number of studies have explored the
dynamics of phenotypically heterogeneous populations
under exponential growth conditions and shown how to
relate lineage statistics to the population growth rate (e.g.
[1,27,29–33]), little work has been done concerning the
dynamics of multiple species in finite populations. In expo-
nentially growing populations, the population growth rate
is related to the steady-state phenotype distribution. When
studying competition dynamics, it is not clear that the transi-
ent dynamics of the phenotype and age distributions do not
affect the fate of species. We have shown that even if the
initial populations are not initially in steady state, the end
result of a competition experiment can be predicted by the
steady-state dynamics, which are the same for both exponen-
tial and finite cultures.

We have also clarified the relationship between the different
distributions in both the exponentially growing and finite cul-
ture, as well as derived a simple mapping between the various
distributions in the two types of cultures. Importantly, distri-
butions obtained in equivalent ways do not always have the
same meaning in different types of cultures. In particular, the
ancestral distribution in a finite culture is not equivalent to
the ancestral distribution of the exponentially growing culture
due to a bias towards surviving cells, yet both are obtained by
looking at the history of all cells in the culture. A corollary of
our mapping between the lineage statistics in different cultures
is a formula for the population growth rate (given by equation
(4.3)) that requires knowledge only of the lineage data obtained
in a sufficiently large finite culture. In addition to relating the
lineage statistics to the population growth rate, we have
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shown that the population growth rate predicts the fitness of a
species in a competition experiment.

By demonstrating that the outcomes of ecological compe-
tition are independent of the initial conditions, our results
shed light on what is important in ecological dynamics of
microbial populations. In particular, they suggest that, in the
context of the Moran process, all memory of the transient phe-
notypic distributions is lost over the course of a few
generations. This is important, as many natural populations
do not live in constant environments, but are repeatedly trans-
planted to new environments where they are forced to compete
(in a finite population) with new sets of species. For example,
infectious bacteria may travel between many different hosts,
each one containing distinct populations of microbes.

We emphasize that the simple Moran process in which
species are non-interacting is avery simplified picture of ecologi-
cal competition dynamics. However, by establishing the basic
principles of competition in this context, we believe our results
can help guide future studies seeking to understand higher
order effects. An interesting extension of ourwork could involve
investigating species interactions. When species interact, the
principleof competitive exclusionbreaksdown,and it ispossible
that two species can coexist indefinitely [20]. Howdoes variabil-
ity within species affect coexistence? A second extension would
be to understand how demographic fluctuations (fluctuations
due to the finite size of the population) influence the dynamics.
If one allows for demographic fluctuations in the model, it is
possible that even the species with a larger population growth
rate can go extinct. Therefore, themore relevant quantity to con-
sider is the fixation probability, defined as the probability that one
species will eventually completely dominate the culture. How
are the fixation probabilities related to the population growth
rates? Do the initial conditions significantly affect the fixation
probabilities? To our knowledge, these questions have not
been answered in the existing literature.
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Appendix A. Derivation of Euler–Lotka equation
Here we give a more detailed derivation of equation (3.6). Let
ψ(t, x, u) denote the joint distribution of species with pheno-
types x and ages u in an instantaneous observation of a
population with N≫ 1 microbes. We are mostly interested
in the steady-state distribution ψ(x, u). In this section, we
omit the superscript F because we are only concerned with
the finite culture. We proceed by considering the change in
the number of cells with phenotypes in the hypercubeQl

i¼1 [x
0
i, xi þ dxi) and ages between u and u + du in an inter-

val dt. This change is caused both by the aging of cells (not to
be confused with the way this term is used in [22], where it
corresponds to the deterioration of growth capacity) and
the expulsion of cells from the culture. Since each cell is
chosen to be expelled with equal probability whenever a
cell divides, the probability that any given cell is expelled is
simply the fraction of cells that divide per unit time
multiplied by dt, or ΛD dt. It follows that

Nc(tþ dt, x, u) dx1 � � �dxl dt�Nc(t, x, u) dx1 � � �dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change in number of cells with age u and phenotype x

� Nc(t, x, u� dt)dx1 � � �dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cells gained from aging

�Nc(t, x, u) dxdt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
cells lost from aging

�Nc(t, x, u)LD dx1 � � �dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cells expelled from the culture

: (A 1)

This equation is valid for cells that have not yet divided;
hence, x and u are such that u < τ(x). Taking the limit dt→ 0
and dividing by dt gives the Von Foerster equation (3.1). Con-
sider the distribution of phenotypes among cells that are just
born. This is given by cbirth(x) ¼ c(x, 0)C�1

0 where Ψ0 is a
normalization constant obtained by integrating ψ(x, 0);
C0 ¼

Ð1
0 c(x, 0)dx1 � � �dxl. Empirically, ψbirth(x) is obtained

by taking an instantaneous observation of the population
and sampling only the cells that have just been born. By sol-
ving equation (3.3) and inserting the solution into (3.2), it is
straightforward to obtain

cbirth(x) ¼ 2
ð1
0
f(xjx0)cbirth(x

0)e�LDt(x0)dx1 � � �dxl: (A 2)

Because this distribution is time invariant, sampling those
cells that have just been born at any sequence of times t1,
t2,… tn yields the same distribution. Carrying out this
sampling procedure at an infinite sequence of times samples
every cell only once, and therefore ψbirth(x) = ψtree(x). Integrat-
ing both sides of equation (A 2) results in equation (3.6).
Appendix B. Relationship between phenotype
distributions
B.1. The age distribution
The distribution of ages in the culture g(u) is given by

g(u) ¼
ð
x:t(x).u

c(x, 0)e�uLD dx1 � � �dxl: (B 1)

Another way to derive this expression is by noting that it is
the probability a cell is not flushed out by age u, times the
probability that it has not yet divided by age u. In the specific
context of the random generation time model (τ = x), we
obtain the result found by Powell [17] without generation
time correlations:

g(u) ¼ C0e�uLD

ð1
u
cbirth(t) dt: (B 2)

To find Ψ0, note that the number of cells that divide in a time
dt is the number which have ages equal to their generation
time, hence

NLD dt ¼ N dt
ð1
0
c(s, s) ds ¼ N dtC0

ð1
0
cbirth(s)e

�sLD ds

¼ NC0

2
dt:

It follows that Ψ0 = 2ΛD, which generalizes the conclusion
Powell came to in the uncorrelated setting. Note that for
ψbirth(τ) = δ(τ− τ0), we obtain an exponential age distribution.
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B.2. The ancestral distribution
In the finite culture ψans(x) is the distribution over all cells that
have descendents in the current culture. Let ~f(x0jx) dx1 � � �dxl
be the probability that a cell’s mother has phenotype in the
hypercube

Ql
i¼1 [x

0
i, x

0
i þ dxi) given that its phenotype is x.

Bayes’ theorem tells us that

~f(x0jx) ¼ f(xjx0)ccar(x0)
ctree(x)

: (B 3)

It follows that

cans(x) ¼
ð1
0
� � �
ð1
0

~f(x0jx)cans(x)dx1 � � �dxl

¼ ccar(x
0)
ð1
0
f(xjx0) cans(x)

ctree(x)
dx1 � � �dxl: (B 4)
oc.Interface
17:20190827
B.3. Division distribution
In both the continuous culture and exponentially growing
culture, the carrier (or branch) distribution can be inter-
preted as the distribution of cells that have just divided,
or the division distribution ψdiv(x). In terms of the joint
density of phenotypes and ages throughout the population,
ψ(x, u), the number of cells with phenotypic trait inQl

i¼1 [xi, xi þ dxi) that have just divided is

Nc(x, t(x)) dx ¼ Nc(x, 0)e�LDt(x)dx1 � � �dxl
¼ N2ctree(x)e

�LDt(x)dx1 � � �dxl: (B 5)

Dividing by N dx1 · · · dxl gives the distribution of phenotypes
among recently divided cells, which is cdiv(x)¼2ctree(x)e�LDt(x).
As this argument works for both a finite and exponentially
growing culture, the carrier distribution, branch distribution and
division distributions are identical.
B.4. Summary of distributions in the finite culture
To summarize, we have discussed the following ways to
sample cells in the finite culture:

— Tree distribution (cF
tree(x)): Sample all the cells throughout

the history of the culture, including or excluding the cur-
rent cells, but including those that are expelled before
they divide.

— Carrier distribution (cF
car(x)): Sample all the cells throughout

the culture, excluding those that are expelled before they
divide.

— Ancestral distribution (cF
ans(x)): Sample all the cells in the

history of the culture that have ancestors that are currently
in the culture. Equivalently, select a random cell from the
culture at any time and trace along a lineage backwards
from this cell.

— Current cells distribution (cF
snap(x)): Sample all the cells that

are currently in the culture.
— Birth distribution (cF

birth(x)): From all the cells that are in the
culture at time t, sample only those that have just been
born (meaning they have age ≈0), then repeat this for all
t and average the results.

—Division distribution (cF
div(x)): From all the cells that are in

the culture at time t, sample only those whose age is
approximately equal to their generation time, then repeat
this for all t and average the results.
Appendix C. Derivation of logistic growth
equation
Here we provide a more systematic derivation of the logistic
growth equation. Let ni denote the number of cells of species i
in a culture containing M species. Let ϕi = ni/N be the fraction
of cells of species i and ψi(t, x, u)dudx1 · · · dxl be the fraction
of cells of species i with ages between u and du and pheno-
type xk between xk and xk + dxk. When a cell of species i
reaches age τi(t, x) it divides, hence over an interval dt, the
number of cells in species i that divide is the product of the
total number of cells in species i, or ϕiN, and the fraction of
the these cells that have reached age u = τi(t, x). It follows
that the total number of cells dividing in an interval dt is

XM
i¼1

fiN|{z}
number of cells in species i

ð1
0
� � �
ð1
0
ci(t, x, ti(t, x))dx1 � � �dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fraction of species i cells that are dividing

:

(C 1)

The per capita dilution rate, Λ(t), is obtained by dividing this
expression by N. That is,

L(t) ¼
XM
i¼1

fiLi(t), (C 2)

where Λi(t) is the contribution of each species to the total
dilution rate:

Li(t) ¼
ð1
0
� � �
ð1
0
ci(t, x, ti(t, x))dx1 � � �dxl: (C 3)

At a given time, the number of bacteria of species i in the
hypercube

Ql
i¼1 [x

0
i, x

0
i þ dxi) is

fi(t)Nci(t, x, u)dx1 � � �dxldu: (C 4)

Just as in the single species case, the change in the number of
individuals of a given phenotype and age is caused by aging
of cells and expulsion from the population. Therefore, over an
interval dt, the change in the number of microbes of species i
with age u < τi(x) is

fi(tþdt)Nci(tþdt,x,u)dx1 ���dxldt�f(t)Nci(t,x,u)dx1 ���dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change in number of cells with age u and phenotype x in species i

�fi(t)Nci(t,x,u�dt)dx1 ���dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cells gained from aging

�fi(t)Nci(t,x,u)dx1 ���dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cells lost from aging

� fi(t)NL(t)dx1 � � �dxldt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cells expelled from the culture

: (C 5)

For each i, this equation is almost the same as equation (A 1);
however, we have the additional factors of ϕi which account
for the fact that only a fraction of the cells are in species i.
Taking the limit dt→ 0 gives

@

@t
þ @

@u

� �
ci(t, t, u) ¼ � Lþ 1

fi

d
dt

fi(t)
� �

ci(t, t, u): (C 6)

Compared to equation (3.3), we have picked up an additional
term depending on ϕi, so that we need to consider the evol-
ution of ϕi in order to completely specify the dynamics. The
instantaneous growth of ϕi is the difference between the rate
at which cells of species i are born (Λi(t)) and flushed out
(Λ(t)). Hence,

d
dt

fi ¼ (Li(t)� L(t))fi: (C 7)
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Note that with two species, equation (C 7) becomes the stan-
dard logistic growth equation:

d
dt

f1 ¼ (L1(t)� (f1L1(t)þ (1� f1)L2(t)))f1

¼ f1(1� f1)(L1(t)� L2(t)): (C 8)

By combining equation (C 7) with equation (C 6), we obtain
equation (5.2). Along with an initial distribution ψi(0, x, u),
equations (5.2) and (5.4) describe how the distribution of
phenotypes and ages evolves in the mixed culture. Impor-
tantly, these equations are decoupled from ϕi(t) and each
other. Moreover, they turn out to be identical to the transport
equations for a homogeneous culture. This implies that the
dynamics of the phenotype distribution are unchanged by
the competition, and the fitnesses Λi are therefore determined
by the population growth rates of the individual species in
exponentially growing cultures.
/journal/rsif
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