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Distinct Features of Human Myeloid Cell Cytokine Response
Profiles Identify Neutrophil Activation by Cytokines as a
Prognostic Feature during Tuberculosis and Cancer

Joseph C. Devlin,*,†,‡,1 Erin E. Zwack,†,1 Mei San Tang,† Zhi Li,‡ David Fenyo,‡,x
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Myeloid cells are a vital component of innate immunity and comprise monocytes, macrophages, dendritic cells, and granulocytes.

Howmyeloid cell lineage affects activation states in response to cytokines remains poorly understood. The cytokine environment and

cellular infiltrate during an inflammatory response may contain prognostic features that predict disease outcome. In this study, we

analyzed the transcriptional responses of human monocytes, macrophages, dendritic cells, and neutrophils in response to stimu-

lation by IFN-g, IFN-b, IFN-l, IL-4, IL-13, and IL-10 cytokines to better understand the heterogeneity of activation states in

inflammatory conditions. This generated a myeloid cell–cytokine-specific response matrix that can infer representation of myeloid

cells and the cytokine environment they encounter during infection, in tumors and in whole blood. Neutrophils were highly

responsive to type 1 and type 2 cytokine stimulation but did not respond to IL-10. We identified transcripts specific to IFN-b

stimulation, whereas other IFN signature genes were upregulated by both IFN-g and IFN-b. When we used our matrix to

deconvolute blood profiles from tuberculosis patients, the IFN-b–specific neutrophil signature was reduced in tuberculosis patients

with active disease, whereas the shared response to IFN-g and IFN-b in neutrophils was increased. When applied to glioma

patients, transcripts of neutrophils exposed to IL-4/IL-13 and monocyte responses to IFN-g or IFN-b emerged as opposing

predictors of patient survival. Hence, by dissecting how different myeloid cells respond to cytokine activation, we can delineate

biological roles for myeloid cells in different cytokine environments during disease processes, especially during infection and

tumor progression. The Journal of Immunology, 2020, 204: 3389–3399.

A
lthough there has been rapid recent progress in under-
standing the ontogeny of myeloid cells, including mono-
cytes, macrophages, dendritic cells (DCs), and granulocytes,

in recent years, the heterogeneity of activation states between these
different cell types remains poorly understood. Single-cell RNA se-
quencing (RNA-seq) technologies of inflamed tissues has begun to
provide an appreciation for the heterogeneity of activation states
for different myeloid cells; however, these cells typically encounter

a complex mixture of cytokines in their tissue microenvironment.
The overall status of immune cells in a particular tissue or in blood
circulation in disease conditions is an important indicator of disease
state. Transcriptional profiles of immune cells have thus been used
to define gene expression signatures that could potentially guide
personalized clinical decision making through patient stratifi-
cation and evaluation of disease-associated gene expression
changes. However, in most cases, transcriptional profiles are
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generated from bulk tissues or whole blood, masking changes in
the transcriptomic composition of specific cell types. Recently,
computational approaches have been developed to infer leuko-
cyte compositions in bulk tissue transcriptomes based on cell
type–specific reference gene expression signatures (1). One such
study found that the ratio of tumor-associated neutrophils and
plasma cell signatures was predictive of survival for various
solid tumors (2). Inferring cell types from bulk transcriptomic
data has also been applied in the context of tuberculosis to
classify disease states into active and latent stages (3). Addi-
tional studies in cancer, infection, and sepsis have used similar
approaches of meta-analysis from multiple cohorts to identify
gene patterns for patient stratification and survival predictions
(4–6). Although this strategy enables the deconvolution of im-
mune cell types infiltrating different tissues, the environmental
conditions they encounter as they infiltrate is not yet known.
Identifying specific transcriptional programs in myeloid cells

may facilitate the discovery of biomarkers and targets for therapies
for a variety of diseases. Both granulocytic myeloid cells (e.g.,
neutrophils, eosinophils, and basophils) and monocytic myeloid
cells are important innate immune components of the inflammatory
infiltrate, being almost universally present in any disease condition.
They are all critical not just for protection against pathogens but
also for tissue remodeling and maintenance of tissue homeostasis.
The same differentiation processes that guide the physiologically
necessary function of these cells are also responsible for the
pathological accumulation of these cells under certain inflamma-
tory conditions. For example, myeloid-derived suppressor cells can
play pathological roles in cancer, as well as other inflammatory
settings where they accumulate and differentiate (7).
The cytokine environment is a critical determinant of immune cell

activation phenotypes, and the response of diverse immune cells to the
different cytokines is not well understood. Furthermore, cell types
respond differentially to various cytokine stimulation conditions to
express distinct transcriptional signatures. This may be due to dif-
ferences in chromatin state and cytokine receptor expression levels
that determine, for example, how macrophages and DCs respond to
IL-10 stimulation as compared with IFN-g stimulation (8, 9). Al-
though there have been experimental studies whereby transcriptional
response has been assessed in specific immune cell types following
exposure to assorted cytokines, we are not aware of a systematic
comparison of diverse myeloid cell types in response to a wide va-
riety of different cytokine stimulation conditions. In this study, we
compare the transcriptional response of primary human macro-
phages, DCs, monocytes, and neutrophils to stimulation with a cy-
tokine panel consisting of IL-4, IL-10, IL-13, IFN-g, IFN-b, and
IFN-l. These signatures were then used to infer the signature of
specific immune cell types responding to specific cytokine environ-
ments from bulk transcriptomic data. This method allows us to infer
not only the type of immune cells present in a bulk tissue or blood
but also the cytokine environment that they are likely encountering.
We have successfully identified 12 myeloid cell–cytokine stimulation
signatures and correlated both Mycobacterium tuberculosis infection
status and glioma cancer outcome with these specific signatures.

Materials and Methods
Cell isolation and differentiation protocol

Primary human polymorphonuclear neutrophils (PMNs) and PBMCs from
anonymous, healthy donors (New York Blood Center) were isolated by
Ficoll gradient separation as previously described (10). CD14+ monocytes
were then isolated from the PBMC fraction by positive selection. In brief,
PBMCs were resuspended in MACS buffer (PBS + 0.05% BSA + 2 mM
EDTA) at a concentration of 1 3 108 PBMCs per 950 ml. Fifty microliters
of CD14+ microbeads (Miltenyi Biotec) was added for every 1 3 108

PBMCs. Cells were incubated for 20 min at 4˚C, washed, and filtered

through a cell strainer. The cells were run on an AutoMACS Pro (Miltenyi
Biotec) using the “Posselds” program. Monocytes were used directly after
sorting. Monocyte-derived DCs and monocyte-derived macrophages were
differentiated from CD14+ monocytes by culturing the cells for 4 d at 37˚C
and 5% CO2 in RPMI medium supplemented with 10% FBS, 10 mM
HEPES, 100 U/ml penicillin, and 100 mg/ml streptomycin with either
110 U/ml GM-CSF (Leukine; Sanofi) and 282 U/ml IL-4 (Affymetrix;
eBioscience) for DCs or 280 U/ml GM-CSF for macrophages. Media was
replenished with fresh cytokine on day 2. PMNs, monocytes, DCs, and
macrophages were confirmed by flow cytometry by staining with anti-
CD14–FITC mAb, anti-CD11c–PerCPcy5.5 mAb, and anti–HLA-DR–
allophycocyanin Cy7 mAb (BioLegend). After washing, samples were
fixed with PBS supplemented with 2% FBS, 2% paraformaldehyde, and
0.05% sodium azide and analyzed by flow cytometry (Cytoflex; Beckman
Coulter). Data were analyzed using FlowJo software.

Cell stimulation protocol

Differentiated cells were resuspended in clear RPMI 1640 + 10% FBS. A
total of 1 3 105 cells were added to each stimulation well. Stimulations
composed of buffer control (PBS + 0.01% glycerol), 500 U/ml IFN-b1a
(referred to as IFN-b) (carrier free; R&D Systems), 10 ng/ml IFN-g
(carrier free; R&D Systems), 100 ng/ml IFN-l2 (referred to as IFN-l)
(carrier free; R&D Systems), 1000 IU/ml (78.125 ng/ml) IL-4 (carrier free;
Life Technologies), 100 IU/ml IL-10 (carrier free; Life Technologies), and
100 IU/ml IL-13 (carrier free; R&D Systems). Plates were spun for 5 min
at 1200 rpm and incubated for 4 h at 37˚C and 5% CO2. Cells were then
washed with PBS. Cells were resuspended in RLT buffer (Qiagen) and
vortexed for 1 min before being placed at280˚C. RNA for each donor was
then isolated with the RNeasy Plus Mini Kit (Qiagen) following the pro-
tocol with on column DNAse Digestion (Qiagen).

Whole blood simulation protocol

Healthy donors were recruited and consented and are part of an institutional
review board–approved study (protocol no. S14-02129; “Immunomodu-
latory Virulence Factors and Bacterial Pathogenesis”) by the NYU Lan-
gone Health. Blood was drawn from healthy human donors according to
our institutional review board protocol. One milliliter of blood per tube
was then added to TruCulture tubes and inverted gently to mix. Stimula-
tions were added to appropriate tubes at the following final concentrations:
buffer control (PBS), 500 U/ml IFN-b1a (referred to as IFN-b) (carrier free;
R&D Systems), 10 ng/ml IFN-g (carrier free; R&D Systems), 100 ng/ml
IFN-l2 (referred to as IFN-l) (carrier free; R&D Systems), 78.125 ng/ml IL-
4 (carrier free; R&D Systems), 100 IU/ml IL-10 (carrier free; R&D Sys-
tems), and 100 IU/ml IL-13 (carrier free; R&D Systems). Tubes were
inverted gently to mix. Tubes were incubated for 4 h at 37˚C with gentle
rotation. Tubes were spun for 10 min at 4503 g without break. Supernatants
were removed, and the pellets were resuspended in 2 ml of PAXgene re-
agent. Tubes were incubated at room temperature for 2 h and placed at 4˚C
overnight. RNA was then isolated using the PAXGene protocol.

Gene expression analysis

Libraries were generated for each donor using the CelSeq2 protocol (11)
and were sequenced on Illumina HiSeq (cell stimulation) and Illumina
NovaSeq (whole blood). Reads were mapped by Bowtie2.3.1 (12) to the
hg38 reference genome, and uniquely mapped indices were determined by
HTSeq-counts (13). Differential expression analysis was performed in R
(v3.5.1) using DESeq2 (14). Compared with buffer controls, differentially
expressed genes were considered significant with Log2 fold change.2 and
adjusted p value , 0.05.

Self-organizing map and outlier analysis

Self-organizing map (SOM) analysis (15) was performed on the list of 571
differentially expressed genes using the R statistical programming lan-
guage (v3.5.1). SOM analysis was performed individually for each cell
type with the package Kohonen (16) at default parameters. According to 16
identified SOM clusters, outlier analysis was performed to identify specific
gene expression patterns. A gene was considered an outlier with an ex-
pression level 1.5 times greater than the median expression level across all
conditions in at least two out of the three donors (17). A total of 131 of 571
genes were found to meet these criteria in 12 of the possible 16 cell type
and stimulation conditions.

Cell type deconvolution through CIBERSORT

Source code for the Cell-type Identification By Estimating Relative Subsets
of RNA Transcripts (CIBERSORT) deconvolution algorithm (https://
cibersort.stanford.edu/) was obtained from the developers and implemented
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in the R statistical programming language (18). All input bulk datasets were
obtained as normalized count tables when available. If not normalized,
datasets were scaled and quantile normalized according to the default
CIBERSORT functions. Our myeloid cell–cytokine-specific (MCCS) sig-
nature basis matrix was supplied as the average normalized expression level
across the three donors for our 131-gene set. The basis matrices for
immunoStates (19) and LM22 (default CIBERSORT immune cell signature
matrix) (1) were obtained from the respective publications. CIBERSORT
was run according to default parameters in all cases with 100 permutations.

Tuberculosis sample collection and normalization

Conducting a literature search for all available M. tuberculosis infection
studies with publicly available data yielded eight microarray and five
RNA-Seq studies, with the following accession numbers: GSE19491,
GSE28623, GSE37250, GSE39939, GSE39940, GSE40553, GSE41055,
GSE56153, GSE101705, GSE107995, GSE79362, GSE89403, and GSE94438
(20–32). See Supplemental Table II for full sample details. Microarray studies
were obtained as scaled expression values as downloaded from Gene
Expression Omnibus (GEO). RNA-Seq studies were obtained as edgeR
(33) normalized count tables.

LASSO modeling and feature selection for patient survival in
primary gliomas

RSEM-normalized count tables for all primary glioma samples available in
The Cancer Genome Atlas (TCGA) database were obtained through the
TCGA2STAT R package (34). Additional sample metadata was also ob-
tained from Ceccarelli et al. (35). Samples were randomly split into a
training set and a test set with an 80/20 split depending on the vital status at
the 2- or 5-y model. Additionally, survival status was balanced as much as
possible between the test and train sets to improve model predictions. In
the 2-y model, there were 264 samples (133 alive, 131 deceased) in the
training set and 66 (32 alive, 34 deceased) samples in the test set. In the 5-y
model, there were 358 samples (168 alive, 190 deceased) in the training set
and 90 (56 alive, 34 deceased) samples in the test set. Prior to modeling,
the samples were scaled with min–max normalization by normalizing the
gene expression levels for each sample between 0 and 1. The sample
breakdowns were subject to a logistic least absolute shrinkage and selec-
tion operator (LASSO) model with 7-fold cross-validation repeated 10
times using the R package caret (36). Area under the receiver operator
curve (AUC) and precision recall curves were used to assess model per-
formance by the default functions in caret (36). Additionally, feature im-
portance was assessed by the caret importance function, varImp, which
measures the regression coefficients for each gene supplied to the model.

Availability of data and material

Gene expression data from myeloid cells and whole blood is deposited in
GEO under the accession number SuperSeries GSE145648 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145648). The M. tuberculo-
sis infection studies of publicly available data includes eight microarray
and five RNA-Seq studies, with the following GEO accession numbers:
GSE19491, GSE28623, GSE37250, GSE39939, GSE39940, GSE40553,
GSE41055, GSE56153, GSE101705, GSE107995, GSE79362, GSE89403,
and GSE94438 (20–32). RSEM-normalized count tables for all primary
glioma samples are available in the TCGA database (https://portal.gdc.
cancer.gov/) and were obtained through the TCGA2STAT R package
(34). Additional sample metadata was also obtained from Ceccarelli et al.
(35). Source code and analysis can be found on Github (https://github.com/
ruggleslab/MCCS).

Results
Myeloid cells respond to cytokine stimulation with cell
type–specific transcriptional profiles

To better understand how different human myeloid cells respond to
activation by different types of cytokines, we set out to compare the
transcriptional profiles attained through RNA-Seq of monocytes,
neutrophils, macrophages, and DCs from the same healthy donors
in response to stimulation. We chose to stimulate with the three
different types of IFN (IFN-g, IFN-b, and IFN-l) because they are
important signals for both bacterial and viral responses in the
blood and blood-derived myeloid subsets, and we were interested
in similar and distinct features of each IFN (37, 38). We also chose
to stimulate with type 2 cytokines (IL-4 and IL-13) and the regu-
latory cytokine IL-10. Neutrophils and monocytes were stimulated

directly after isolation from blood leukopaks, whereas macrophages
and DCs were stimulated after a 4-d differentiation period from the
isolated monocytes (Fig. 1A). RNA was isolated 4 h after stimu-
lation for each of the four different cell types and stimulation
conditions, including an unstimulated buffer control for each
cell type. Donor-to-donor differences had a much smaller effect
on transcriptional profiles than differences between cell types
(Supplemental Fig. 1A). To assess the purity of our monocyte-
derived macrophage and DC populations, we performed flow
cytometry with known macrophage, DC, and monocyte lineage
markers (CD11c, HLA-DR, and CD14) (Supplemental Fig. 1C).
Additionally, we carefully assessed the transcriptional profiles of
the unstimulated buffer controls from the four myeloid subsets.
Highly expressed transcripts in the DC compartment included
CD1 surface markers that are important for Ag presentation (39)
as well as CLEC10A and CCL17. Macrophage subsets were
enriched for IL-24 and CXCL5. Monocytes were enriched for IL-6
and CCL20, whereas neutrophils expressed FCGR3B, CXCR2,
and ADGRG3 (Supplemental Fig. 1B).
We next identified genes that were significantly upregulated in

individual cytokine stimulations relative to the unstimulated buffer
for each cell type. For example, with macrophages, we identified a
total set of 341 genes that were significantly upregulated, log2 fold
change .2 and false discovery rate , 0.05, by at least one cy-
tokine relative to the unstimulated control samples. Monocytes
upregulated 197 genes, DCs upregulated 199 genes, and neutro-
phils upregulated 274 genes in response to cytokine stimulation
(Fig. 1C). We then combined all of these lists for a total of 571
individual genes that are upregulated by at least one cytokine in
at least one myeloid cell type. Principle component analysis
based on these genes indicated that each cell type engages a
distinct transcriptional programming for each cytokine stimulation
(Fig. 1B). Thirty-five percent of the explained variation along the
first principle component was strongly associated with cell type
identity. Within each myeloid cell type, it is clear that type 2
cytokines IL-4 and IL-13 triggered shared transcriptional pro-
grams, whereas the type 1 cytokines IFN-b and IFN-g triggered a
similar set of upregulated genes (Fig. 1C). An IL-10–induced
signature was observed in macrophages, DCs, and monocytes but
was completely absent in neutrophils. Interestingly, neutrophils
had a robust response to other cytokines, including a small subset
of genes induced by IFN-l, which was not observed in the other
cell types (Fig. 1C).
With this set of 571 cytokine upregulated genes on myeloid cells,

we considered if shared cytokine specific responses would domi-
nate over cell type–specific responses to stimulation. Unsupervised
clustering and correlation analysis of transcriptional responses
showed a clear distinction between stimulations of different cell
types. Macrophages and DCs had a more closely correlated re-
sponse, whereas neutrophils and monocytes were more closely
correlated in their response signature (Fig. 2A). Although type 1
(especially IFN-g and IFN-b) and type 2 (IL-4 and IL-13) cytokine-
specific responses mainly clustered together within each cell type,
this was not sufficient to override the correlation between cell type–
specific responses. These results indicated that for the most part, the
cell type is a larger determinant of whether a gene is upregulated
after stimulation than the cytokine. The only exception was a strong
correlation between macrophages and DCs stimulated by IFN-b
(Fig. 2A).
To obtain finer resolution on how the different cell types share

responses to cytokine stimulation, we looked for overlaps in dif-
ferentially expressed genes between cell types. This revealed that
81 of the 571 genes were upregulated in all four cell types (Fig. 2B),
which was primarily driven by a shared response to IFN-b stimulation
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(Fig. 2C). However, 342 of the other upregulated genes were
specific to a single cell type (Fig. 2B), and further segregation by
cytokine stimulation confirmed that the major transcriptional re-
sponse to each cytokine was unique to a particular cell type
(Fig. 2C–H). For example, IL-10 induced 47 genes that were
specific to monocytes, 9 to macrophages, and 8 to DCs while
having almost no effect on neutrophils (Fig. 2H). Alternatively,
neutrophils induced 49 and 50 genes uniquely after IL-4 (Fig. 2F)
and IL-13 (Fig. 2G) stimulation, whereas the other cell types were
generally less responsive. Neutrophils also had a robust cell type–
specific response to IFN-g (31 genes, Fig. 2D) and IFN-b stim-
ulation (56 genes, Fig. 2C). Overall, these results indicated that
the cytokine driven transcriptional responses in different myeloid
cell types are highly cell type specific, apart from a core response
to IFN-b stimulation (and to a lesser extent IFN-g) that is shared
by all cell types.

Identification of a myeloid cell cytokine specific
transcriptional signature

We next identified specific transcriptional signatures that define a
particular cell type and stimulation pair. Through SOM analysis
(15), we identified clusters of similar gene expression between
cytokines in an unbiased manner. For each cell type, the full list of
differentially expressed genes were subclustered into stimulation
specific signatures. This analysis divided the gene expression
pattern of neutrophils into four subclusters corresponding to genes
induced only by IFN-b (cluster 1), by both IFN-b and IFN-g
(cluster 2), by both IL-13 and IL-4 (cluster 4), and by IFN-l
(cluster 3) (Fig. 3A, 3B). For macrophages, five clusters were
identified corresponding to genes upregulated by only IFN-b
(cluster 2), both IFN-b and IFN-g (cluster 1), both IL-13 and IL-4

(cluster 5), IL-10 (cluster 3), and one cluster that could not be
clearly assigned (Supplemental Fig. 2A, 2B). In DCs, four clusters
were identified corresponding to genes upregulated under IFN-b
alone (cluster 1), IFN-b and IFN-g combined (cluster 4), IL-10
(cluster 2), and one cluster that could not be assigned because two
few genes were present (Supplemental Fig. 2C, 2D). For mono-
cytes, four clusters were identified corresponding to genes upreg-
ulated only by IFN-b (cluster 1), both IFN-b and IFN-g (cluster 3),
IL-13 and IL-4 (cluster 4), and IL-10 (cluster 2) (Supplemental Fig.
2E, 2F). Altogether, 12 cell type and stimulation-specific expression
patterns could be identified by SOM analysis. Importantly, not all
cell types and stimulation signatures were robust enough to be
clearly isolated.
Following identification of these 12 unique expression clusters,

we performed outlier analysis (17) to further filter the expression
cluster gene list to only include genes highly specific for the cell
type and cytokine stimulation conditions identified by SOM
analysis. Genes such as RBBP6 and ASF1B were considered
outliers for monocytes responding to IFN-b and IFN-g and neu-
trophils responding to IL-4 and IL-13, respectively (Supplemental
Fig. 3), because of their highly specific and consistent expression
pattern in these cell type stimulation conditions across all three
donors. This evaluation method identified 131 genes that reflected
the 12 myeloid cell cytokine stimulation conditions that were
clearly distinguishable (Fig. 3C, Supplemental Fig. 4, Supplemental
Table I). These genes represent a high confidence marker gene set
for myeloid cells under stimulation of various cytokines. We refer to
this as an MCCS signature.
We next sought to confirm that the MCCS signature identified in

cultured cells could be detected in a more biologically relevant
sample such as whole blood. In particular, the robust gene

FIGURE 1. Transcriptional profiling indicates

myeloid cell lineages respond strongly to cytokine

stimulation. (A) Schematic of experimental work-

flow. Four different lineages of myeloid cells were

isolated (PMNs and monocytes [Monos]) and dif-

ferentiated (macrophages [Macs] and DCs) from

the same leukopaks from three healthy human do-

nors. The cells were stimulated with a panel of six

cytokines, as listed, and profiled for gene expres-

sion. (B) Principle component analysis of 571 genes

determined by differential expression analysis

compared with buffer condition. (C) Heatmaps of

log2 fold change of differentially expressed genes

in each cell type. Genes were considered significant

with Log2 fold change .2 and adjusted p value ,
0.05 in at least stimulation.
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expression signature of stimulated neutrophils should be de-
tectable because these are the most abundant leukocytes in
circulating blood (40). We stimulated whole blood from three
additional healthy donors with IFN-g, IFN-b, IFN-l, IL-4, IL-
13, and IL-10 for 4 h using TruCulture tubes (41) before iso-
lating RNA for transcriptional profiling, with an unstimulated
control for each donor. We found the neutrophil gene expres-
sion profile within the MCCS signature was readily detected
in freshly isolated whole blood stimulated with cytokines
(Fig. 4A). Additionally, the cytokine-mediated gene expression
signatures of macrophages, DCs, and monocytes could also be
detected in whole blood (Fig. 4A). We also identified a dataset
whereby a similar experiment was performed on the whole
blood of 25 donors, with a smaller range of cytokines and
transcriptional changes quantified by NanoString nCounter
analysis (41). Examination of the overlapping gene sets con-
firmed that the selected genes from our signature of in vitro
IFN-activated neutrophils could be detected in the whole blood
from a larger number of donors (Fig. 4B). These results indi-
cate that the MCCS signature that we generated from in vitro
cell culture stimulation of different myeloid cells could also be
detected when leukocytes in whole blood are exposed to the

same cytokines. Hence, we could use this signature to decon-
volute whole-blood transcriptomes from publicly available
datasets.

Deconvolution of transcriptional signatures from M.
tuberculosis infection

To determine the utility of our MCCS signature matrix, we first
examined whole-blood transcriptomes from 13 clinical cohorts
with M. tuberculosis infections, which were publicly available
(Supplemental Table II). Previous studies have described a
neutrophil-driven type 1 IFN–inducible signature increased in
patients with active disease compared with healthy and latently
infected individuals (20). Therefore, we were interested in the role
of neutrophil-specific cytokine responses in this context. More
recently, circulating NK cells were also reported to increase in
abundance during tuberculosis latency but decreased back to
baseline during active disease (42). We compiled eight available
human whole blood microarray and five RNA-Seq datasets rele-
vant to active M. tuberculosis infections in GEO and analyzed the
two sets independently. We focused our analyses on the differ-
ences between healthy (microarray n = 88, RNA-Seq n = 365),
latently infected (microarray n = 376, RNA-Seq n = 117), and

FIGURE 2. Myeloid cell lineages respond to cytokine stimulation in a cell type–specific manner. (A) Hierarchical clustering of pairwise spearman

correlation analysis for the 571 differentially expressed genes. (B) Venn diagrams of 571 genes determined by differential expression in each cell type.

Eighty one of 571 differential genes are shared between all four cell types, whereas 139 (macrophages [Macs], red), 64 (monocytes [Monos], green), 108

(neutrophils, purple), and 31 (DCs, blue) genes are found to be differentially expressed in only one cell type. (C–H) Venn diagrams for the number of genes

significant in each individual cytokine stimulation determined by differential expression in each cell type. The genes listed next to each Venn diagram are the

top two differentially expressed genes for each cell type (B), cell type and stimulation (C–H), or the top genes conserved across all four cell types, circled (B–D).
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active disease individuals (microarray n = 547, RNA-Seq n = 306),
as described in Supplemental Table II. We first used the original
LM22 basis matrix from CIBERSORT (https://cibersort.stanford.
edu) (1) and the more recent “immunoStates” matrix (19) to infer
leukocyte representation by support vector regression through
CIBERSORT. The original CIBERSORT LM22 basis matrix
identifies 22 human hematopoietic cell phenotypes from periph-
eral blood and in vitro culture conditions, whereas immunoStates
identifies 20 immune cell types from over 6000 samples during
different disease states. Using these matrices, we were able to
confirm that CD56bright NK cells (immunoStates) were increased
in abundance for latently infected individuals in both the micro-
array and RNA-Seq datasets (Fig. 5A). Although the signature of
resting NK cells (LM22) also showed this response (Supplemental
Fig. 5E) in the microarray dataset, the RNA-Seq dataset showed a
slightly different pattern (Supplemental Fig. 5F). This finding is
consistent with immunoStates being an improved basis matrix
compared with LM22 and confirmed that our compiled datasets
could reproduce previously published findings (42).
When we examined the inferred abundance of neutrophils, we

found that the LM22 matrix indicated an increased abundance of
neutrophils in actively infected individuals from the microarray

dataset (Supplemental Fig. 5E) but also suggested that neutrophils
were more abundant in latently infected individuals compared
with healthy individuals from the RNA-Seq dataset (Supplemental
Fig. 5F). In contrast, the immunoStates matrix inferred greater
abundance of neutrophils during active disease from the RNA-Seq
dataset (Supplemental Fig. 5D), with decreased abundance of
neutrophils during latent infection in the microarray dataset
(Supplemental Fig. 5C). When we applied our MCCS matrix on
these datasets, we found that there was a clear increase in actively
infected individuals for neutrophil response genes that were in-
ducible by both IFN-g and IFN-b (Fig. 5C). Surprisingly, genes
that were only inducible by IFN-b in neutrophils were reduced in
expression during active infection compared with latent infection
(Fig. 5B). This was consistent for both microarray and RNA-Seq
datasets. Although a role for IFN-b during active M. tuberculosis
infection has now been well established (20), these results were
surprising in that they point to a requirement for both IFN-g and
IFN-b in driving the IFN-inducible signature of neutrophils during
active M. tuberculosis. Alternatively, it is perhaps impossible to
truly determine if the IFN-inducible signature of neutrophils is the
result of type 1 or type 2 IFNs because they induce a similar set
of genes (43). Notably, when we examined other myeloid cell

FIGURE 3. Signature gene ex-

pression patterns can be identified in

many of the cell types and stimulation

conditions. (A) Principle component

analysis from SOM assignments of

gene expression patterns in neutro-

phils (B). Mapping of SOM clusters

by cytokine stimulation. (C) Heatmap

indicating the scaled expression levels

of selected genes generated from out-

lier analysis between the three donor

samples and between the group as-

signments derived from SOM analy-

sis. The top gene for each signature is

listed. Macs, macrophages; Monos,

monocytes.
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responses, we found that there was a consistent reduction of the
IL-4/IL-13 signatures from both monocytes (Fig. 5D) and mac-
rophages (Supplemental Fig. 5A, 5B) during active infection,
relative to healthy and latently infected individuals. Hence, in
addition to providing further insights into the IFN-inducible
neutrophil signature during human M. tuberculosis infection, our
MCCS matrix implicates a suppression of type 2 cytokine (IL-4
and IL-13) responses in monocytes and macrophages during active
infection. Additionally, there was an increased abundance of DCs
expressing IFN-g and IFN-b inducible genes during active in-
fection (Supplemental Fig. 5A, 5B). From these results, we were
able to gain additional biological insight into the cytokine re-
sponses of myeloid cells during different stages of M. tuberculosis
infection.

IL-4/IL-13–stimulated neutrophil signature indicates poor
survival in glioma

Recently, infiltrating and circulating myeloid cells have been tied
to survival and likelihood of response to immunotherapy in the
context of human gliomas (44, 45). A significant portion of the
cellular mass in primary glioma samples is infiltrating immune

cells such as tumor-associated macrophages, whose levels corre-
late with tumor grade and severity, and other myeloid subsets (46).
Additionally, over 600 primary glioma tumors have been profiled
by TCGA (35) by a variety of sequencing methods including
RNA-Seq with detailed clinical outcome information. Applying
statistical deconvolution based on our curated MCCS signature,
we found a strong but reciprocal relationship to survival for
neutrophils responding to IL-4 and IL-13 stimulation and mono-
cytes responding to IFN-b and IFN-g stimulation. Monocyte IFN
responses were predictive of favorable survival, whereas tumors
with high neutrophil IL-4/IL-13 responses exhibited reduced pa-
tient survival (Fig. 6A, Supplemental Fig. 6).
We next considered a more direct approach to assess the utility

of our MCCS signature to predict survival of patients with glioma.
We trained LASSO models on our 131-gene MCCS signature,
the original CIBERSORT LM22 (1) basis matrix, and the immu-
noStates (19) basis matrix separately to classify 2- and 5-y sur-
vival predictions. Our model demonstrated robust survival
prediction with an AUC between 0.85 (5 y) and 0.89 (2 y) on our
test set, whereas the LM22 and immunoStates signatures were
lower (immunoStates AUC = 0.868 at 2 y and 0.763 at 5 y, LM22

FIGURE 4. Myeloid cell cytokine

specific gene signatures are present

and detectable in human whole blood.

(A) Heatmaps of whole-blood scaled

expression values from three separate

healthy donors subjected to stimula-

tion with IFN-b, IFN-g, IFN-l, IL-10,

IL-13, and IL-4. The selected genes

are color coded according to the gene

expression patterns identified in our

MCCS signature as shown in Fig. 3.

(B) Gene expression by Nanostring of

myeloid cell signature genes from

whole blood stimulated with IFN-g,

IFN-b, or null (no stimulation) in 25

donors from the Milieu Interieur

Consortium cohort (41). Significance

was determined by Wilcox test with

*p , 0.001. Macs, macrophages;

Monos, monocytes.
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AUC = 0.828 at 2 y and 0.788 at 5 y) (Fig. 6B, Supplemental Fig.
7). Evaluation of the gene importance for survival predictions in
our MCCS matrix at 5 y indicates that the top genes were derived
from the IL-4/IL-13–stimulated neutrophils and IFN-b and IFN-
g–stimulated monocytes (Fig. 6C), confirming the CIBERSORT
proportion estimates and survival curves shown in Fig. 6A. In
addition to the cell type and stimulation condition, we were also
interested in the relationships between the genes most predictive
of long-term survival. Correlation analysis of the top features
with strong predictive power, as measured by feature importance

(See Materials and Methods), indicated two distinct expression
clusters (Fig. 6D). Furthermore, primary glioma samples from
TCGA have been previously profiled to identify somatic mutations
and molecular markers (35) indicative of survival. One such
marker is the gene encoding isocitrate dehydrogenase (IDH),
which when mutated is known to be associated with increased
patient survival in both low and high-grade gliomas (47). Based on
pairwise gene expression correlation analysis of the 40 most
predictive gene features from our model, we identified two clus-
ters that were found to significantly differ in their gene expression

FIGURE 5. Statistical deconvolution of bulk expression profiles indicates role of IFN-induced neutrophil response in M. tuberculosis infection. (A–D)

Proportion estimates for neutrophils, Monocytes and NK cells from CIBERSORT with our MCCS signature matrix (B–D) and immunoStates (A) for eight

microarray datasets and five RNA-Seq datasets (Supplemental Table II). (E) Scaled expression of 20 genes found in our neutrophil–IFN signatures are

shown for the RNA-Seq and microarray samples as well as the disease status of the sample. Sample sizes for each disease state and data type are as follows;

healthy (microarray n = 88, RNA-Seq n = 365), latently infected (microarray n = 376, RNA-Seq n = 117), and active disease individuals (microarray

n = 547, RNA-Seq n = 306). Significance was determined by Kruskal–Wallis rank sum test with *p , 0.05, **p , 0.01, ***p , 0.001.
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between glioma samples with a mutated or wild-type IDH gene
(Fig. 6D). Specifically, on average, cluster 1 genes had higher
expression in samples with wild-type IDH status, whereas cluster
2 genes have significantly higher expression in samples with a
mutated IDH gene. This indicated that our set of genes were not
only predictive of survival but also strongly associated with known
molecular markers for primary gliomas.
Given the strength of the importance measures for several of the

top features, we also measured survival outcomes based on gene

expression levels with a Cox regression for ASF1B, PLSCR1,
SLC1A4, and GRIN3A and found significant associations between
these expression-based models and survival (Fig. 6E). ASF1B and
PLSCR1 gene expression were indicative of poorer survival out-
comes, whereas SLC1A4 and GRIN3A expression were indicative
of more favorable outcomes (Fig. 6D, 6E). Furthermore, ASF1B, a
strong indicator of glioma prognosis, was derived from the neu-
trophil signature in response to IL-13 and IL-4, suggesting a more
complex role for neutrophils in the tumor microenvironment.

FIGURE 6. Myeloid signatures under stimulation are indicative of survival in glioma. (A) Survival analysis of statistically deconvolved bulk RNA-Seq

data from 671 glioma tumor samples for individuals with low proportion estimates (red) or high proportion estimates (blue) for neutrophils responding to

IL-4 and IL-13 and for monocytes (Monos) responding to IFN-g and IFN-b. (B) The power of our myeloid gene signature was determined by area under the

curve measures for LASSO models at 2- and 5-y increments trained on our 131-cytokine stimulated myeloid gene signature with 7-fold cross- validation. A

dashed diagonal line indicates an AUC of 0.5 for a random prediction model. (C) As measured by model importance (see Materials and Methods), the top

20 features derived from the 5-y prediction model are shown. (D) Hierarchical clustering of pairwise spearman correlation analysis of 40 of the most

predictive features derived from our 5-y model. Gene expression clusters were then mapped by genotype for a wild-type or mutated IDH gene locus, a

molecular marker of gliomas. (E) Survival analysis based on individual genes from cluster 1 (ASF1B and PLSCR1) and cluster 2 (SLC1A4 and GRINA3A)

using a cox regression model of gene expression in the TCGA samples profiled. Macs, macrophages.
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Interestingly, expression of SLC1A4, identified as part of the IL-4–
and IL-13–stimulated macrophage signature, was indicative of
better survival (Fig. 6E), raising additional questions about the
role of tumor-associated macrophages in primary glioma samples.
Altogether, our MCCS signature matrix was able successfully
predict patient survival from gene expression in primary glioma
samples corresponding to specific neutrophil-associated gene
signatures and other myeloid cell signatures.

Discussion
In this study, we first assessed the transcriptional response of four
different human myeloid cell types to stimulation with a panel of
cytokines. This enabled us to assemble a set of gene signatures for
myeloid cell type–cytokine-specific response genes (MCCS sig-
nature), which we could then assess for biological and clinical
relevance. Although limited to neutrophils, monocytes, macro-
phages, and DCs, the MCCS signature matrix provides the cellular
context these cells experience during cytokine stimulation. Re-
markably, the identified MCCS signature was also observed in
whole blood stimulated with cytokines. This approach could be
expanded to include additional cell types as well as additional
stimulation conditions to provide even more granular context.
Hence, controlled in vitro assays could enable the interpretation of
expression profiles in vivo from primary human blood and tissue
samples. This approach can thus be applied toward existing bulk
transcriptomics data available in GEO, for example from the
Genotype-Tissue Expression Project and TCGA.
In the context ofM. tuberculosis infection, the importance of an

IFN-inducible gene signature is well documented (48). The first
seminal study, which also profiled purified cell populations, had
indicated that this signature was driven by neutrophils and both
IFN-g and type I IFN signaling (20). Our findings in this study are
consistent with that initial report, because actively infected indi-
viduals were enriched for neutrophil response genes that are in-
ducible by both IFN-g and IFN-b (Fig. 5C). However, we found
that neutrophil genes induced by IFN-b alone are reduced in ac-
tively infected individuals, indicating that IFN-g may be more
dominant than type 1 IFNs in driving the IFN-inducible signature
of neutrophils during active tuberculosis. This is in contrast to a
recent report showing that IFNG (which encodes IFN-g) and
TBX21 (which encodes the transcription factor T-bet) are down-
regulated in patients with active tuberculosis (21). Hence, the ratio
of type 1 IFN versus IFN-g inducible genes in neutrophils needs to
be better clarified in future studies. Because the goal of our study
was to explore the biological context of myeloid cells responding
to cytokine stimulation, rather than to identify the ideal gene
signature for discriminating active tuberculosis from latent tu-
berculosis, we have not performed deeper characterization of
heterogeneity in the multiple datasets that we compiled from tu-
berculosis patients.
The relationship between neutrophil responses to IL-4 and IL-13

stimulation with glioma survival was of particular interest. Pre-
vious reports from helminth infected mice have described a distinct
transcriptional response to type 2 cytokines in neutrophils (49), and
the concept of N2 neutrophils in the tumor microenvironment has
also been proposed (50, 51). However, the transcriptional re-
sponses of human neutrophils to stimulation by IL-4 and IL-13
have not been well established. Instead, TGF-b has been impli-
cated in N2 polarization (52), which was not examined as part of
our analysis. Our results demonstrate not only that human neu-
trophils respond to IL-4 and IL-13 stimulation with a very distinct
transcriptional signature but also that this signature can be de-
tected in tumor samples and is associated with survival outcomes
for glioma in particular. Therefore, we provide some of the best

evidence thus far that type 2 cytokine–associated neutrophil ac-
tivation may play an important role in tumor progression.
An important limitation of our study is that transcripts that were

found to be associated with specific myeloid cell type–cytokine
stimulation combinations could also be expressed by other im-
mune or nonimmune cells. Although we are inferring or inter-
preting some of these results in the context of myeloid cell
responses, the same transcripts could be induced by other cell
types in response to other cytokines we have not examined. Future
studies should expand upon this preliminary assessment of four
myeloid cell types and six cytokine combinations, to include
multiple immune and nonimmune cell types and additional cyto-
kines or other micro environmental stimuli. Moreover, the major
differences in transcriptional profiles between macrophages and
DCs with monocytes and neutrophils could be also driven by
differentiation during cell culture. It is currently impossible to
determine if cell culture differentiated macrophages and DCs re-
flect the in vivo response of tissue DCs and macrophages. Clearly,
more cytokines (e.g., TNF, IL-1b) could have been investigated,
but technical (number of cells) and financial considerations (cost
of RNA-Seq) limited us to this current set of parameters. Addi-
tionally, we have not assessed combinations of cytokines at
varying concentrations. In an inflamed environment, a combina-
tion of different cytokines at different concentrations will have
synergistic or inhibitory effects on different cell populations.
Recently, approaches have been developed to use single-cell

transcriptomics data for deconvolution of bulk transcriptomic
data. Although this approach could in principle assess hundreds or
thousands of cell states in bulk transcriptomic data, the reference
collection sample set for the single cell RNA-Seq profiles may not
provide easily interpretable data on the cytokine environment of
the bulk tissue. We are currently working toward combining
specific cytokine stimulation conditions and single cell RNA-Seq
to determine if we can assemble a cytokine specific matrix for
hundreds or thousands of single-cell states.
We present in this article the concept of combining transcrip-

tional profiles from in vitro stimulated immune cells with different
cytokines, together with algorithms such as CIBERSORT (1), to
infer the cytokine and immune cell environment within an
inflamed tissue. We also provide a myeloid cell–cytokine signature
matrix that can be used by the community to help assess immune cell
composition in complex samples. This approach has the potential to
provide additional biological insights into the ever-expanding col-
lections of transcriptional profiling datasets associated with different
diseases, potentially leading to improvements in diagnosis and ther-
apeutic strategies during infection and tumor progression.
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