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Abstract: Levan-typed fructooligosaccharide (LFOS), a β-2,6 linked oligofructose, displays the
potential application as a prebiotic and therapeutic dietary supplement. In the present study,
LFOS was synthesized using levansucrase from Bacillus amyloliquefaciens KK9 (LsKK9). The wild-type
LsKK9 was cloned and expressed in E. coli, and purified by cation exchanger chromatography.
Additionally, Y237S variant of LsKK9 was constructed based on sequence alignment and structural
analysis to enhance the LFOS production. High-performance anion-exchange chromatography
coupled with pulsed amperometric detection (HPAEC-PAD) analysis indicated that Y237S variant
efficiently produced a higher amount of short-chain LFOS than wild type. Also, the concentration of
enzyme and sucrose in the reactions was optimized. Finally, prebiotic activity assay demonstrated
that LFOS produced by Y237S variant had higher prebiotic activity than that of the wild-type enzyme,
making the variant enzyme attractive for food biotechnology.
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1. Introduction

Fructooligosaccharide (FOS) is a well-known prebiotic which is widely used in food and
pharmaceutical industries. Besides prebiotic, FOS was also used as a sweetener and dietary supplement
for low-carbohydrate consumers [1,2]. FOS can be divided into 2 major categories based on the linkages
between the fructosyl unit. Inulin-typed fructooligosaccharide (IFOS) is mainly linked by β-2,1linkage,
while major linkage in levan-typed fructooligosaccharide (LFOS) consist of β-2,6 bound.

Typically, FOS was synthesized by enzymatic reactions. Hydrolysis is the reactions used to
produce FOS from fructan polysaccharides. This reaction can be achieved by inulinase (EC 3.2.1.7) and
levanase (EC 3.2.1.65), the enzymes randomly hydrolyzed β-2,1 and β-2,6 glycosidic linkages of fructan,
respectively [3,4]. However, the production of FOS by hydrolysis was limited because it is difficult
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to control the molecular weight of FOS produced. On the other hand, FOS can be synthesized from
the small molecule of saccharides by transglycosylation reaction. Fructosyltransferases are enzymes
that can transfer the fructosyl units from “glycosyl donor” to “acceptor”. In principle, the synthesis
of FOS is divided into two steps: initially, sucrose molecules (glycosyl donor) are split, and the
fructosyl-enzyme intermediate is formed; then, the acceptor molecules attach to the fructosyl-enzyme
intermediate, and FOS are formed (Figure 1). There are two kinds of fructosyltransferases; inulosucrase
(EC 2.4.1.9) and levansucrase (EC 2.4.1.10), which produced inulin and levan from sucrose, respectively.
Although inulosucrase and levansucrase shared very high amino acid sequence and structure similarity,
these enzymes exhibited the different mechanism for product elongation and linkage formation [5–7].
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Levansucrase was found in many bacteria species, such as Bacillus subtilis (Bs_SacB) [8], Bacillus
megaterium (Bm_SacB) [9], Bacillus licheniformis (Bl_SacB) [10] and Lactobacillus reuteri [11]. Both free
and immobilized levansucrase have been used to produce the LFOS [10–12]. However, the production
of LFOS by levansucrase is not effective since the main product is polysaccharides. Many studies
attempted to modulate the size distribution of levan using site-directed mutagenesis. According to
Strube et al. [9], the degree of polymerization of LFOS produced by B. megaterium levansucrase can
be changed by mutation at residues on the substrate-binding cavity. Since the prebiotic effect of FOS
strongly relied on a degree of polymerization (DP) [2] and the LFOS displays superior prebiotic activity
and chemical stability compared to IFOSs [13–15], variant levansucrases producing short-chain levan
should be useful for dietary supplement production.

We herein describe the cloning, expression and site-directed mutagenesis of levansucrase from
Bacillus amyloliquefaciens KK9 (LsKK9). Y237S variant LsKK9 was constructed in order to improve
the yield of LFOS produced. The influences of reaction conditions, including sucrose and enzyme
concentration, on LFOS synthesis, were also investigated and compared to the wild-type enzyme.
Finally, the prebiotic activity of LFOS produced from Y237S variant was determined and compared to
that of wild type.

2. Materials and Methods

2.1. Cloning of Levansucrase from Bacillus Amyloliquefaciens KK9

The B. amyloliquefaciens KK9, isolated from soil in Thailand and identified by 16S rRNA sequence,
was grown aerobically in LB broth at 37 ◦C. The gene encoding levansucrase was amplified from
the chromosomal DNA of B. amyloliquefaciens KK9 using the partial degeneracy primers which
were designed based on sequence alignment; forward primer (5′-CATGCCATGGACATCAAA



Biomolecules 2020, 10, 692 3 of 13

AAG(A)T(A)TTGC(T)AAAAC-3′) and reverse primer (5′-CGGGATCCTTATTG(A,T)GTTA(G)AC
TGTT(C)AA(G)T(C)TGTCCTTG-3′). Pfu polymerase (Promega™) was used for DNA amplification.
The PCR product was ligated into pET-19b vector (Novagen™) via NcoI and BamHI sites and
transformed into E. coli Top10 (Invitrogen™). The sequence of recombinant plasmid was verified by
nucleotide sequencing and assigned to GenBank in Accession number KC477262.

2.2. Expression and Purification of Recombinant Levansucrase

The sequence-verified plasmid was transformed into E. coli BL21 StarTM (DE3) (Invitrogen™,
Waltham, MA, USA). The recombinant cells were cultured in Luria-Bertani (LB) medium containing
0.1 mg/mL ampicillin and 1% (w/v) glucose at 37 ◦C, 250 rpm until OD600 reach 0.4-0.6. After that,
IPTG was added to the culture medium to a final concentration of 0.1 mM, and further incubated at
30 ◦C, 250 rpm for overnight. The cells were harvested by centrifugation at 8000× g, 4 ◦C for 10 min,
and resuspended in lysis buffer (50 mM acetate buffer (pH 6.0) containing 0.1%TritonX-100, and then
lysed by ultrasonication (35% amplitude for 2 min with pulse durations of 1 s on and 2 s off, Sonics
Vibra-Cell™). The cell debris was discarded by centrifugation at 10,000× g for 15 min.

A crude extract of a recombinant levansucrase (LsKK9) was loaded onto hand-packed TOYOPEARL
CM-650 column (column volume 20 mL; Tosoh Bioscience™, Tokyo, Japan) pre-equilibrated with
200 mL of acetate buffer (50 mM; pH 6.0) at 0.7 mL/min and 4 ◦C. The column was washed by the
same buffer (~10 column volume) until the OD280 reach baseline and then eluted by a stepwise
gradient of acetate buffer (50 mM; pH 6.0) containing 100 mM, 150 mM and 300 mM NaCl, respectively.
The fractions with levansucrase activity were collected and pooled. The purity of enzymes was
evaluated by SDS-PAGE and purification table (Table S1).

2.3. Enzyme Activity Assay

The activity of both wild-type and variant LsKK9 was determined by 3,5-dinitrosalicylic acid
method [16]. The enzyme was incubated with 5% (w/v) sucrose in acetate buffer pH 6.0 at 37 ◦C in
0.5 mL total volume. Subsequently, the reactions were terminated by adding 0.5 mL DNS reagent and
then boiled for 10 min. The amount of reducing sugar was determined by spectrophotometer at A540.
Standard glucose was used as a calibration curve. One unit of the enzyme was defined as the amount
of levansucrase that released one µmole of reducing sugar per min.

2.4. Amino Acid Sequence Alignment and Homology Modelling Study

Multiple amino acid sequence alinement of wild-type LsKK9 was conducted using Clustal
Omega [17]. The docking study was performed using homology models of both wild-type and Y237S
variant LsKK9 and pentasaccharide of LFOS (GF4). Glycosciences.DB server [18] was employed
to construct the structure of GF4 with a sequence of [β-d-Fruf-(2-6)-β-d-Fruf-(2-6)-β-d-Fruf-(2-1)-
β-d-Fruf-(2-1)-α-D-Glcp], the main pentasaccharide product of levansucrase based on a previous
study [19]. Homology models of both wild-type and Y237S variant LsKK9 were constructed using
SWISS-MODEL server [20] using a crystal structure of B. subtilis levansucrase variant E342A bound
to raffinose (PDB ID: 3BYN) [21] as a template (89% identity and 98% coverage). Ramachandran
plots were then produced using the same server to validate the quality of the homology models [22].
Most residues are mainly present in a favored region with 95.43% (Figure S1). Binding conformation of
GF4 in the binding site of both wild-type and Y237S variant LsKK9 was predicted using Autodock
Vina [23]. To construct the enzyme-GF4 complex, GF4 was docked into the binding site of both
wild-type and Y237S variant LsKK9 models using a grid box of 30 Å × 30 Å × 30 Å with a grid spacing
of 1Å.
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2.5. Product Characterization

2.5.1. NMR Spectroscopy

The polysaccharide product was harvested from the reaction by ethanol precipitation and
further purified by BioGel P-100 (Bio-Rad, Hercules, CA, USA) using DI water as eluent.
The levan was dissolved in D2O, and the spectra were acquired at 40 ◦C on a Varian VNMRS-500
operating at 125 MHz for 13C and 500 MHz for 1H. Chemical shifts were measured relative to
dimethylsilapentane-5-sulphonate (DSS) as the internal standard.

2.5.2. Thin-layer Chromatography (TLC)

The TLC analysis was performed according to the method described previously [24]. The mobile
phase consisted of 1-butanol: glacial acetic acid: water, 3:3:2 (v/v/v). The separation was conducted
for 3 ascents using TLC silica gel 60 F254 (Merck™). The TLC plates were dried and stained with a
solution containing 8 mL of water, 10 mL of concentrated H2SO4, 27 mL of ethanol and 0.1 g of orcinol.
The TLC were visualized by heating at 110 ◦C for 10 min.

2.5.3. High-performance Liquid Chromatography (HPLC)

The transglycosylated product (fructan + LFOS) was analyzed by HPLC equipped with a refractive
index detector (Shimadzu™ Corporation, Kyoto, Japan). The product was separated by Sugarpak
column (Water™, Milford, MA, USA) using 50 mg/L CaEDTA as mobile phase, at a flow rate of
0.5 mL/min and 70 ◦C. Glucose, fructose and sucrose were used as external standards for mono- and
di-saccharide quantification. The amount of transglycosylated product was calculated using following
equation: Total FOS (% (w/v)) = initial sucrose (% (w/v)) − remaining sucrose (% (w/v)) − glucose
(% (w/v)) − fructose (% (w/v)).

2.5.4. High-performance Anion-Exchange Chromatography Coupled With Pulsed Amperometric
Detection (HPAEC-PAD)

The pattern of oligosaccharides produced by the enzymes was analyzed by Dionex™ ICS 5000
system using CarboPac™ PA-1 column (Thermo™). Initially, the column was equilibrated with 150 mM
NaOH at the flow rate of 1 mL/min. Then, the samples were injected and eluted by a linear gradient of
0 to 300 mM sodium acetate in 150 mM NaOH for 25 min. After that, the concentration of sodium
acetate was sharply increased from 300 to 500 mM within a minute and held for 4 min before going
down to equilibrated condition.

2.6. Site-directed Mutagenesis

Site-directed mutagenesis was achieved by PCR-driven overlap technique [25]. The primers
F_Y237S (5′-CGATGAAGGCAACAGCACATCCGGCGACAACC-3′) and R_Y237S (5′-GGTTGTC
GCCGGATGTGCTGTTGCCTTCATCG-3′) were designed for mismatch mutation and was amplified
by PrimeStar™ polymerase (Takara BioTM, Shiga, Japan). The PCR product was recombined into
pET-19b expression vector via NcoI and BamHI. The point mutation was verified by DNA sequencing.

2.7. Biochemical Characterization

The effect of pH and temperature on the initial rate of both wild-type and Y237S variant LsKK9
was measured using DNS assay. For the effect pH on enzyme activity, relative enzymatic activity
was measured at 37 ◦C in 20 mM Biston-Robinson’s universal buffer pH range of 3.0–8.0, while the
effect of temperature was monitored in 50 mM citrate buffer pH 6.0 at the temperature of 4 to 60 ◦C.
All experiments were performed in triplicate.
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2.8. Synthesis of LFOS Using Wild-Type and Variant LsKK9

LFOS was synthesized from sucrose using both wild-type and Y237S variant LsKK9. The reactions
were conducted at 37 ◦C for 24 h. The effect of enzyme concentration on LFOS synthesis was investigated
using 0.5–3 U/mL of enzymes, while sucrose concentration was constant at 10% (w/v). Likewise, the effect
of sucrose concentration on LFOS synthesis was explored by incubating 2 U/mL of enzymes with
5–50% (w/v) of sucrose. After incubation, the reactions were terminated by boiling for 10 min, and their
carbohydrate compositions were analyzed by HPLC as described above.

After that, the obtained LFOS was purified by Bio-Gel P2 column (Bio-Rad™) using ultrapure
water as mobile phase. LFOS was separated by this column at 50 ◦C using a flow rate of 0.6 mL/min.
The fractions containing LFOS were pooled and lyophilized.

2.9. Prebiotic Activity Study

Lactobacillus plantarum NCIMB 8826 and Escherichia coli ATCC 35401 was used for prebiotic activity
study. The cells were statically cultured in 5 mL of MRS broth medium at 37 ◦C for 48 h. After that,
the cells were harvested by centrifugation at 7500× g for 10 min, and washed by 0.85% (w/v) NaCl for
2 times. Then the cells were cultured in 2.5 mL MRS broth containing 2% (w/v) of different carbon
sources, namely glucose, wild-type LFOS and Y237S LFOS, using final cell concentration of 5-6 Log
CFU/mL. After cultivation at 37 ◦C for 48 h, the diluted cells were spread on MRS agar medium
(for L. plantarum) or LB agar medium (for E. coli), and incubated at 37 ◦C for 48 h. The growth of
bacteria was explored by counting the number of colonies forming after incubation. Prebiotic activity
score of each carbohydrate sources can be calculated using the following equation [26,27].

Prebiotic activity score = [(PP48h − PP0h)/(PG48h − PG0h)] − [(EP48h − EP0h)/(EG48h − EG0h)] (1)

were PP0h, PP48h, PG0h and PG48h are the number of colonies of L. plantarum (Log CFU/mL) cultured
in MRS containing target prebiotic samples (PP) or glucose (PG) at 0 and 48 h, whereas EP0h, EP48h,
EG0h and EG48h are the number of colonies of E.coli (Log CFU/mL) cultured in MRS containing target
prebiotic samples (EP) or glucose (EG) at 0 and 48 h.

3. Results and Discussion

3.1. Cloning, Expression and Product Characterization of Levansucrase from Bacillus Amyloliquefaciens KK9

Levansucrase from Bacillus amyloliquefaciens KK9 (LsKK9) was successfully cloned and showed
1422 bp of ORF encoding 473 amino acid residues, with theoretical molecular mass 52,974.12 Da.
Although levansucrase from B. amyloliquefaciens has been reported from other isolations [28,29],
the wild-type LsKK9 has a minor variation of amino acid sequence approximately 2%. Additionally,
the sequence alignment showed that LsKK9 sequence showed 90%, 76%, and 72% sequence identity
with those of Bs_SacB, Bl_SacB, and Bm_SacB, respectively (Figure 2). The wild-type LsKK9 was
overexpressed in E. coli BL21 StarTM (DE3) with a specific activity of 82 U/mg protein (Table S1).
After purification by cation chromatography, the specific activity increased to 152 U/mg protein.
The recovery of recombinant wild-type LsKK9 is 55.2% of the total activity with 1.9-fold purification.
Approximately 90% purity of the enzyme was obtained as shown in SDS PAGE (Figure S2).

Structure of the obtained polysaccharide was analyzed by 13C-NMR and 1H-NMR. As shown
in Figure 3, the 1H-NMR spectrum showed seven protons between 3.8 and 4.8 ppm (Figure 3A).
For 13C-NMR spectrum, six main resonances at 104.2 (C2), 80.3 (C5), 76.2 (C3), 75.1 (C4), 62.1 (C6) and
59.9 (C1) ppm were observed (Figure 3B). These chemical shifts were characteristic of β-configurated
fructosyl units, which are almost identical to the levan product of other bacteria sources (Table 1).
This data confirmed the product as a levan type-fructan.
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Table 1. Comparison of the 13C-NMR chemical shifts of the levan produced from different
bacterial sources.

Sources
Chemical Shifts (ppm)

References
C-1 C-2 C-3 C-4 C-5 C-6

B. polymyxa 60.7 104.2 77 75.7 80.5 63.6 [30]
B. subtilis 60.1 104.4 76.5 75.4 80.5 63.6 [31]

B. licheniformis 62.9 106.9 79.3 78.1 83 66.1 [32]
B. aryabhattai 62.7 106.9 79 77.9 83 66.1 [33]

B. amyloliquefaciens KK9 59.9 104.2 76.2 75.1 80.3 62.1 This study

3.2. Molecular Docking Study

Based on the sequence alignment and 3D structure of homology modelling, the catalytic residues of
LsKK9 were proposed to be Asp86 (nucleophile), Asp247 (transition-state stabilizer), and Glu342 (general
acid-base catalyst) (Figure 4). According to Strube et al. (2011) [9], mutagenesis at Tyr247, Asn252,
and Lys373 of Bm_SacB affected the polysaccharide formation activity and oligosaccharide spectrum.
Therefore, Tyr237, Asn242, and Lys363 (equivalent to Tyr247, Asn252, and Lys373 of Bm_SacB [9]) should
be a substrate-entering channel of wild-type LsKK9, which remotely located from the catalytic triad.
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The molecular docking study was also performed in order to investigate the binding conformation
of the substrate in the pocket of both wild-type and Y237S variant LsKK9. The result suggests that
GF4 positioned on the predicted substrate-binding pocket previously described by Strube et al. [9],
and formed hydrogen bonds with many amino acid residues, including Tyr237, Asn242 and Lys363

(equivalent to Tyr247, Asn252, and Lys373 of Bm_SacB from Strube et al. (2011) [9]) (Figure 4A).
On contrary, the Y237S variant LsKK9 lose their hydrogen bond between Tyr237 and GF4 after this
residue was replaced by Serine (Figure 4B). This is along with the reduction of free binding energy for
GF4 from -7.7 kcal/mol in the wild type to -7.1 kcal/mol in the variant. This result suggested that the
Y237S variant might synthesize the short chain fructan.
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Figure 4. The docking conformation of GF4 into the (A) wild-type and (B) Y237S mutant LsKK9.
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3.3. Site-Directed Mutagenesis and Biochemical Characterization

According to our previous study, mutation at Tyr246 of B. licheniformis RN-01 levansucrase
(equivalent to Tyr237 in LsKK9) strongly affected the enzyme activity and the degree of polymerization
(DP) of levan product [12,34]. Nevertheless, Y246S displayed a potential application to produce a high
amount of LFOS with slight levan polymer. Moreover, this mutant synthesized the LFOS with DP3 –
10, which potentially be used as a prebiotic [35,36]. Therefore, in this study, Y237S variant of LsKK9
was constructed to improve the yield of prebiotic LFOS.

Afterwards, variant enzymes were expressed and purified in the same condition with the wild
type. Subsequently, activity and biochemical properties of the variant enzymes were analyzed and
compared. The specific activity of Y237S varaint was 104 U/mg protein (Table S1), which decreased
around 1.5-fold compared with that of the wild type (152 U/mg protein). The reduction of activity could
usually be observed after mutation at acceptor binding residues as confirmed by several reports [5,10].
The effect of pH and temperature on the activity of wild-type and the variant enzymes were also
investigated. Surprisingly, the Y237S variant showed broad optimum pH ranging from pH 5.0–7.0,
while wild type showed a narrow curve and peaked at pH 6.0 (Figure 5A). However, mutation
at Tyr237 did not significantly affect the optimum temperature for wild-type LsKK9 activity (37 ◦C)
(Figure 5B). The optimum pH and temperature for wild-type LsKK9 are in acceptable range with several
levansucrases which usually displayed activity optima at neutral range (pH 6.0–7.0), and temperatures
optima between 30 and 45 ◦C.
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3.4. Production of LFOS by Wild-Type and Y237S Variant LsKK9

Both wild-type and Y237S were used for LFOS production using sucrose substrate. The pattern of
LFOS was explored using HPAEC-PAD. As shown in the chromatogram (Figure 6), Y237S product
profiles relatively exhibited a high amount of oligosaccharides than that of wild type, while the peak of
polysaccharide at 29 min of retention time cannot be observed. In addition, most peaks from Y237S
products were also present similar to in that of wild-type LsKK9. This indicated that the mutation at
Tyr237 did not impact on overall linkages of obtained oligosaccharides. As a result, the substitution of
Tyr237 by Ser could enhance the yield of oligosaccharides and suppressed polysaccharide forming of
levansucrase, which is correlated to previous studies [12,34,37].

To achieve the highest yield of LFOS, the reaction conditions were subsequently optimized.
In this study, the effect of enzyme and sucrose concentration on the yield of LFOS was explored,
whereas pH and temperature of the reaction were fixed at pH 6.0 and 37 ◦C. For the effect of enzyme
concentration, the units of the enzyme were varied from 0.5 to 3 units per mL of reaction. As a
result, the LFOS synthesis was largely dependent on the enzyme concentration. The concentration of
transglycosylated products (Fructan + LFOS) increased when enzyme concentration increased and
reached to the highest yield at 1 U/mL (Figure 7A,B). However, when considering in term of the percent
sucrose conversion, >95% conversion sucrose was completely transformed when at least 2 U/mL of
enzymes were used. Thus, two units per mL condition were selected for further analysis since it
provided the low concentration of sucrose, preventing the contamination of LFOS by the high amount
of disaccharide. TLC analysis showed that Y237S variant mainly produced LFOS, while wild type
mainly synthesized polysaccharide (Figure 7C).
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Then, the effect of sucrose concentration on LFOS production was explored, using sucrose at
final concentrations of 5–50% (w/v). The results showed that the amount of transglycosylated product
increased when sucrose concentration was risen (Figure 8A,B). The concentration of transglycosylated
products produced by wild-type LsKK9 increased up to 20% (w/v) when 50% (w/v) sucrose was used.
In the case of Y237S, the concentration of transglycosylated products increased and reached a plateau
when ≥ 40% (w/v) sucrose was used. Although wild-type enzyme produced higher transglycosylated
products, the main product is a polysaccharide. On the other hand, Y237S produced mainly LFOS with
a slight polymer (Figure 8C). As a result, we can conclude that Y237S variant LsKK9 has a potential for
production of LFOS, which might be used as a prebiotic.Biomolecules 2020, 10, x 11 of 15 
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3.5. Prebiotic Activity

Although the mutation at equivalent Y237 position of other levansucrases have previously been
reported [9,34,37], the biological properties of their products have never been evaluated compared
with that of wild-type enzyme. Therefore, LFOS synthesized by both wild-type and Y237S variant
LsKK9 were purified by Bio-gel P2 column size exclusion chromatography to eliminate mono- and
disaccharide in the reaction mixture. Subsequently, the prebiotic activity of the purified LFOSs was
evaluated using Escherichia coli ATCC 35401 and Lactobacillus plantarum NCIMB 8826. The prebiotic
activity score of wild-type LFOS is approximate of -0.15, whereas that of Y237S is 0.11 (Figure 9).
It indicated that LFOS produced by Y237S variant had higher prebiotic activity than products from
wild type. This finding corresponded to the previous study that lower DP fructans strongly stimulated
the growth of Lactobacilli and other probiotics [35,36].
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4. Conclusions

This study illustrated the rational mutagenesis of levansucrase from Bacillus amyloliquefaciens KK9
to increase the yield of short-chain LFOS and suppress polysaccharide production. The substitution
at Y237 by serine did not only affect biochemical properties of LsKK9, but also increase the prebiotic
activity of LFOS produced. These properties make the Y237S variant LsKK9 highly attractive as an
alternative catalyst for the production of the prebiotic and for biotechnological applications.
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