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Abstract

Background: Myocardial infarction (MI) is a major cause of death worldwide. Although percutaneous coronary
intervention and coronary artery bypass grafting can prolong life, cardiac damage persists. In particular,
cardiomyocytes have no regenerative capacity. Mesenchymal stem cells (MSCs) are attractive candidates for the
treatment of MI. The manner by which MSCs exert a beneficial effect upon injured cells is a source of continued
study.

Methods: After the isolation and identification of exosomes from MSCs, the expression of miR-210 was determined
by microarray chip. Subsequently, gain- and loss-function approaches were conducted to detect the role of
exosomes and exosomal-miR-210 in cell proliferation and apoptosis of cardiomyocytes, as well as the Ml in vivo.
Dual-Luciferase Report Gene System was used to demonstrate the target gene of miR-210.

Results: We tested the hypothesis that MSC-derived exosomes transfer specific miRNA to protect cardiomyocytes
from apoptotic cell death. Interestingly, direct cardiac injection of MSC exosomes reduced infarct size and improved
heart function after coronary ligation. In vitro, the MSC exosomes enhanced cardiomyocyte survival to hypoxia.
Confirmation of exosome uptake in myocytes was confirmed. Dual-luciferase reporter assay implicated miR-210 as a
mediator of the therapeutic effect and AIFM3 as a downstream target. Treatment with miR-210 overexpressing MSC
exosomes improved myocyte protection to both in vitro and in vivo stress. Furthermore, the endogenous and
exogenous mMiR-210 had the same therapeutic effects.

Conclusion: These results demonstrated that the beneficial effects offered by MSC-exosomes transplantation after
MI are at least partially because of excreted exosome containing mainly miR-210.
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Background

Ischemic heart disease is a significant cause of morbidity
and mortality [1]. Percutaneous coronary thrombolytic
therapy improves clinical outcomes. However, nearly
25% of patients are not re-perfused in a timely manner
[2]. Furthermore, cardiomyocytes have little to no regen-
erative capacity. Cell-based therapies, such as stem cells,
which have regenerative potential, are being applied to
individuals with cardiac disease [3]. Stem cells can secret
quantities of growth, anti-apoptotic, and anti-
inflammatory factors that may improve heart function.
However, technical issues have shown stem cells them-
selves to be inefficient [4]. Mesenchymal stem cells
(MSCs) are prototypic adult stem cells [5] that produce
paracrine growth factors that may increase survivability
of cardiomyocytes and stimulate angiogenesis [6].

All cell types secrete membrane vesicles, including
exosomes, that contain bioactive substances such as pro-
teins, mRNAs, and miRNAs, and enzymes, among others
[7]. During uptake by neighboring cells, exosome-
delivered cargo has the potential to alter cell response
[8]. Embryonic stem cell exosomes were reported to
drive cardiac regeneration [9]. Others noted exosomes
provided remote pre-conditioning to limit kidney injury
[10]. Since prior studies have noted that MSC exosomes
are cardio-protective, they are being tested as an off-the-
shelf therapy for MI [11].

At the same time, MSC exosome treatment can alter
miRNA levels [7]. miRNAs activated pro-survival kinases
and induced a glycolytic switch to increase cellular re-
sistance to hypoxic stress [12]. Post-MI individuals were
found to have increased serum and decreased infarct tis-
sue levels of miR-1 and miR-133a [13]. Parenthetically,
miR-210 and miR-744 were found increased in exo-
somes in response to hypoxia. However, there was no
miR-744 gene of rat in NCBI Gene. We chose miR-210
as our key role in myocardial protection. Furthermore, a
number of studies have linked exosomal-miR-210 to
protection from ischemic injury [14—16]. We hypothe-
sized that MSCs secrete miRNA-210-enriched exosomes
that, in a paracrine manner, protect cells and organs
from injury. Herein, we show that exosome miR-210
limits hypoxia-driven myocyte apoptosis and tissue
death following coronary ligation.

Methods

Animals

Animal experiments were approved by the Ethics Com-
mittee of Fudan University (reference number: 20140226-
095). Wild type, male SD rats aged 10-12 weeks and new-
born male SD rats were purchased from Shanghai Sippr-
BK Laboratory Animal Co. Ltd. (Shanghai, China) and
maintained under pathogen-free conditions.
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Rat model of myocardium infarction and assessment of
heart functions

Male SD rats (~250g) were anesthetized with 10%
chloral hydrate (w/v; Acros, Japan) by intraperitoneal in-
jection. The heart was exposed and the left anterior de-
scending artery ligated. Sham-ligated rats served as
controls. Animals underwent injection of the cardiac
muscle close to the area of arterial ligation with the fol-
lowing agents: PBS, exosomes derived from MSCs, exo-
somes derived from MSCs cultured in 10 pM GW4869
that could inhibit exosome production sufficiently with-
out toxic effects on cells [17], exosomes derived from
MSCs infected with anti-miR-210, and exosomes from
MSCs infected with empty lentivirus. The exosomes ac-
quired from 1 x 10° MSCs were delivered in 20 ul of
PBS. Echocardiography was performed on days 0 and 28
after coronary ligation using a Vevo 2100 system
(VisualSonics Inc., Toronto, ON, Canada) with an 80-
MHz probe. Upon study completion, animals were eu-
thanized, and tissues were harvested.

Cell isolation and culture

Bone mesenchymal stem cells were isolated from the fe-
murs of SD rats and seeded onto culture dishes. Then
they were cultured in DMEM/F12 supplemented with
10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA,
USA) at 37°C and 5% CO, until confluent. Medium was
replaced every 2 days. At passage 3, the phenotype of
MSCs was confirmed by flow cytometry using antibodies
against rat CD90-APC and CD45-PEcy7 (#553080, BD
Bioscience, San Diego, CA, USA). The SD Rat MSC
Osteogenic Differentiation Basal Medium and Adipo-
genic Differentiation Basal Medium (Cyagen Bioscience,
Guangzhou, China) were used to promote the differenti-
ation of MSCs to further confirm differentiation

capacity.

Exosome isolation

Exosomes from culture supernatants were isolated by
ultracentrifugation. Collected cell culture supernatant
was subjected to several centrifugations (300, 2000, and
10,000¢ for 15, 15, and 40 min, respectively). After each
centrifugation, the supernatant was filtered through
0.22 um filters and the resultant was collected. Then the
resultant was subjected to centrifugation at 110,000g for
75 min to yield a pellet that was suspended in PBS and
then centrifuged again at 110,000g for 75 min. The pellet
obtained with the final centrifugation was considered the
€xosomes.

A BCA assay kit (Beyotime, China) was used to
analyze the protein level of lysed exosomes (50ul RIPA
lysis buffer, Beyotime, China). CD63 and TSG101 pro-
tein levels were detected by Western blot. A mirVana
miRNA isolation kit (Invitrogen, Austin, TX, USA) was
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used to isolate exosome miRNA, and relative expression
levels of miR-210 were determined by q-PCR.

Transmission electron microscopy

For electron microscopy analysis, exosome suspensions
were absorbed onto formvar carbon-coated EM grids.
Three grids were prepared for each exosome sample. An
absorbing page was used to gently remove excess liquid.
Then, the exosome suspension was subjected to 2.5% ur-
anyl acetate staining for 7 min. Grids were washed three
times with PBS and maintained in a semi-dry state. Sam-
ples were observed using a Hitachi-8100IV transmission
electron microscope (Hitachi, Tokyo, Japan) at 100 kV.

Quantitative real-time PCR analysis

Total RNA was extracted from cells using TRIzol re-
agent (Invitrogen, Austin, TX, USA) following the man-
ufacturer’s instructions. Reverse-transcript reactions
were conducted using the PrimeScript RT reagent kit
(Takara, Japan). qPCR primers were purchased from
Tiangen Biotech Co. Ltd. (Beijing, China). The has-miR-
210 primers were CTGTGCGTGTGACAGCGGCTGA.
qPCR was conducted using a standard SYBR Green PCR
kit (Toyobo, Osaka, Japan) protocol on an Applied Bio-
systems 7500 Real-Time PCR System (Applied Biosys-
tems, Foster City, CA, USA). The relative mRNA
expression level was analyzed by the 204" method.

Co-culture of cardiomyocytes and exosomes
Cardiomyocytes were isolated from newborn male SD
rats with 1 mg/mL collagenase II (Invitrogen, Austin,
TX, USA). After 3 days, the isolated cardiomyocytes
were co-cultured with exosomes derived from MSCs,
MSCs treated with GW4869, and MSCs transfected with
miR-210 agomir, miR-210 antagomir, or negative ve-
hicle. After 48 h, cardiomyocytes were collected for sub-
sequent analyses.

Viability assay

Cell viability was evaluated by LDH-release assay (Beyo-
time, China) and CCKS8 assay (Beyotime, China). Cardio-
myocytes in 6-well plates were challenged with hypoxia
+ the indicated treatment. Culture supernatants were
aliqouted to fresh 96-well plates with LDH-release assay
buffer. Absorbance at 492 nm and 630 nm was measured
with a Multi-Mode Microplate Reader (BioTek, Winoo-
ski, VT, USA) controlling for background signal. In
other experiments, cells were treated as above and
CCKS8 reagent was added and absorbance at 450 nm
measured.

Colocalization of miR210 and exosomes
Rat BMSCs P3 generation cells in good condition were
digested with trypsin then centrifuged. The cells were
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resuspended in complete medium and were spread in 4
wells of 6-well plate. The cell density will reach 80% next
day. The cells were transfected with miR210 mimics.
The transfection systems were (a) 125 pl Opti-MEM +
7 ul Lipofectamine3000; (b) 125 pl Opti-MEM + 50 nM
miR-210 mimics + 10 ul P3000 Reagent. Twenty-four
after transfection, the medium was replaced with low-
glucose DMEM without FBS. The cells in 2 wells were
placed in a 5% CO, incubator at 37 °C for 24 h; the cells
in the other 2 wells were placed in an anoxic incubator
for 24 h. The next day, the exosomes were isolated from
the cell culture medium by ultracentrifugation. Then the
exosomes were incubated with CD63 (1:100) and CD81
(1:100) at 4 °C overnight. After 24 h, the secondary anti-
bodies were added and incubated in room temperature
for 1h in the dark. The secondary antibody correspond-
ing to CD63 was goat anti-rabbit (1;100), blue fluores-
cence (Alexa Fluor 350); the secondary antibody
corresponding to CD81 was donkey anti-mouse(1;100),
red fluorescence (Alexa Fluor 555); and miR210 mimics
come with green fluorescence (5’FAM). Finally, we used
laser confocal microscope to observe and take pictures.

Exosomes endocytosis into cardiomyocytes

Rat Bone MSCs (BMSCs) P3 generation cells in good
condition, were digested with trypsin then centrifuged.
The cells were resuspended in complete medium and
were spread in 2 wells of 6-well plate. The cell density
will reach 80% the next day. The cells were transfected
with miR210 mimics. The transfection systems and exo-
somes isolation procedures have been mentioned above.
The exosomes were resuspended with high-glucose
DMEM to make conditioned medium for cardiomyo-
cytes. The cardiomyocytes were divided into 0 and 24 h
culture groups. After reaching the time, the cell slides
were removed and rinsed twice with PBS. It was treated
with 4% paraformaldehyde under room temperature for
10 min and then rinsed with PBS three times, each 5
min. Then the 0.5% Txiton X-100 was added for 5 min
under room temperature and rinsed with TBST three
times, each 5min. Next, the DAPI was treated for 10
min away from light and then rinsed with PBS three
times, each 5min. Finally, we used mount slides and
took pictures under laser confocal microscope.

Dual-luciferase reporter assay

In order to construct the overexpression vector PGL3-
AIFM3 promoter region, PCR primers were designed
and synthesized based on the sequence information of
the AIFM3 (NM_001013977.3) promoter region in the
NCBI (see Supplemental Table 1). The AIFM3 promoter
region was used for the PCR target gene, plus Kpn I/
Xho I restriction sites at the 5 UTR of the AIFM3 pro-
moter region-F and AIFM3 promoter region-R primers
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to ligate to the vector PGL3. For analysis of luciferase ac-
tivity, human embryonic kidney cells (HEK293T, ATCC)
were cultured in 6-well plates and transfected. The trans-
fection systems were (a) 150 pl Opti-MEM + 4 pl Lipofec-
tamine2000 and (b) 150 pl Opti-MEM + 3 pl plasmid/50
nM miR-210/0.3 pl RL-TK. The four groups were PGL3 +
RL-TK, miR-210+PGL3 +RL-TK, miR-210 + PGL3-
AIFM3 + RL-TK, and miR-210 control + PGL3-AIFM3 +
RL-TK. After growing 24 h, the cells were collected for ap-
plication in the Dual-Luciferase Reporter Assay System
(Beytime) using a GloMax 20/20 Luminometer (Promega,
Winooski) under recommended condition. After lysed for
15 min at room temperature, renilla luciferase activity was
employed as internal control, and the ratios of firefly lucif-
erase luminescence relative to control were measured.

Western blot

All proteins from cells or myocardial tissue were extracted
and quantified. Micro BCA™ Protein Assay Kits (Thermo
Fisher Scientific, Waltham, MA) were used to quantify pro-
tein levels. Equivalent amounts of protein was electropho-
resed through 12% SDS-PAGE (stacking gel, 70V;
separating gel, 110V) and transferred to nitrocellulose
membranes (200 mA, 50 min). Blots were incubated for 1 h
at room temperature with the indicated antibodies (CD63:
ab108950, 1:1000, Abcam, CA, USA; TSG101: ab125011, 1:
5000, Abcam; Cleaved-Caspase-3: ab2302, 1:500, Abcam;
Bcl-2: ab 196,495, 1:1000, Abcam; Bad: ab32445, 1:5000,
Abcam; Bax: ab32503, 1:5000, Abcam), and then incubated
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with goat-anti-rabbit/mouse HRP-linked secondary anti-
body (Abcam, Cambridge, MA, USA). Chemiluminescence
substrate (Pierce Chemical, Rockford, IL, USA) was used to
visualize protein signals. The intensity of the protein bands
was analyzed by Image] software (NIH, USA).

Statistical analysis

All experiments were repeated at least three times. Data
is shown as the mean * standard error. Statistical ana-
lysis was carried out using GraphPad Prism software
(version 5.01; San Diego, CA, USA). The unpaired ¢ test
was used to compare data between groups. A P value <
0.05 was regarded as statistically significant.

Results

Preparation and characterization of hypoxia-challenged
exosomes

Rat bone-derived MSCs were cultured for 72 h under
hypoxia (1% O,). Exosomes were isolated from MSC-
conditioned medium and characterized by transmission
electron micrography (TEM), Nanosight Tracking Ana-
lysis (NTA), and expression of the exosome surface
markers (Fig. la—c). TEM showed that MSC-derived
exosomes displayed a characteristic cup-shaped struc-
ture. NTA demonstrated exosome sizes ranged from 30
to 150 nm. Finally, Western blotting analysis of lysed
exosomes detected the exosome markers, CD63 and
TSG101. Furthermore, the secretion of exosome in the
supernatant of MSCs cultured under hypoxia was
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significantly increased compared with that in normoxic
culture (Supplemental Fig. 1A).

MSC exosomes protect against cardiomyocyte death

To test the potential of MSC exosomes to provide cardio-
protection, we established a rodent model of MI. Upon cor-
onary ligation, animals received the described treatments
directly to the ischemic myocardium. Seven days post-
injury, animals were euthanized and heart tissues were
assessed for protein expression of several apoptosis-related
genes (Cleaved-CASPASE-3, BAD, BAX, BCL-2). Cleaved-
CASPASE-3 and BAX were increased in tissue samples
from post-MI animals compared to sham-operated con-
trols. Post-MI animals treated with MSC exosomes showed
a decrease in levels of Cleaved-CASPASE-3, BAD, and
BAX compared to controls. However, exosomes from
MSCs cultured with GW4869, which limits exosome for-
mation [17], did not decrease Ml-related elevations in
apoptosis proteins (Fig. 2a), suggesting a dose-dependent
effect. Immunohistochemistry confirmed a significant de-
crease in the number of apoptotic cardiomyocytes in tissue
samples from animals treated with exosomes versus those
given MSCs-GW4869-exosomes or PBS (Fig. 2b).

MSC exosomes increase cardiomyocyte viability

Based on the above in vivo studies, we assessed the effects
of MSC exosomes on cultured neonatal cardiomyocytes.
MI is associated with profound cellular hypoxia. Therefore,
we challenged cardiac neonatal myocytes with hypoxia and
determined LDH levels as a maker of cell injury. Interest-
ingly, hypoxic myocytes treated with exosomes released less
LDH compared to hypoxia myocytes; this effect was lost in
cells treated with exosomes from GW4869-exposed MSCs
(Fig. 3a). Furthermore, MSC exosomes prevented the
hypoxia-mediated decrease in myocyte viability. As ex-
pected, exosomes from GW4869-exposed MSCs did not
limit the hypoxia-mediated decrease in myocyte viability
(Fig. 3b). We hypothesized that hypoxia induced apoptosis
in cultured myocytes. As seen in the micrographs, the num-
ber of TUNEL-positive myocytes was increased by hypoxia,
which was abated when cells were co-treated with MSC
exosomes (Fig. 3c). In this case, exosomes from GW4869-
trated MSCs did not limit hypoxia-induced apoptosis
(Fig. 3c). Similar to results in tissue samples from cardiac
infarct regions, hypoxic cardiomyocytes showed increased
protein expression of multiple apoptotic-associated genes
as well as the programed cell death mediator, caspase 3.
These changes were abrogated when hypoxic myocytes
were treated with MSC exosomes (Fig. 3d).

miR-210 is abundant in MSC exosomes and has protective
effects

To identify the exosome cargoes possibly responsible for
the therapeutic effects, we analyzed exosomal miRNAs.
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Microarray screening found miR-201 to be differently
increased in exosomes from hypoxic MSCs compared to
normoxic MSC-derived exosomes (Supplemental
Fig. 1B). Microarray results were confirmed by q-PCR
(Fig. 4a). To determine if miR-201 was sufficient or ne-
cessary to the therapeutic exosome effect, we pretreated
MSCs with a miR-210 oligonucleotide (MSC-exo™iR-210),
anti-miR-210 oligonucleotide (MSC-exo®™R210) or 5
scrambled control (MSC-exo™¢) and harvested exo-
somes as described. Hypoxic myocytes treated with ei-
ther regular MSC exosomes of MSC-exo™">!* showed
less LDH release and increased cell viability (on CCK8
assay) consistent with less injury (Fig. 4b). Conversely,
cells treated with MSC-exo™™R21% experienced in-
creased cell injury and less viability (Fig. 4a, b). Similar
results were observed on CCK-8 analysis and TUNEL
assay among the cell treatment groups (Fig. 4c, d). Fur-
thermore, BAX, BAD, and Cleaved-CASPASE 3 expres-
sion were higher in the hypoxia group compared to the
MSC exosomes and MSC-exo™"?'? groups (Fig. 4e).

MSC-secreted exosomal-miR-210 provides increased cellular
survival against the hypoxia-induced myocardium injury

To validate the protective effects of miR-210 in vivo, we
induced cardiac ischemia via coronary ligation and
injected at risk myocardium with either PBS, MSC-
exo™ R0 MSC-exo™ i ™R210" 5r MSC-exo™©. As de-
tailed above, BAX, BAD, and Cleaved-CASPASE 3 levels
were increased in tissue samples from the MI group.
However, these effects were abolished when rats were
treated with MSC-exo™® > (Fig. 5a). Conversely, treat-
ment with MSC-exo®™™®210 did not alter injury-
mediated increases in apoptotic-associated proteins
(Fig. 5a). Apoptotic cells were increased in tissue samples
from infarcted zones; this was less so in similar samples
from animals treated with MSC-exo™®*'° (Fig. 5b).

Exosomal-miR-210 improves heart function and reduces
cardiac fibrosis following coronary ligation

To further evaluate the protective effects of miR-210, we
used echocardiography and PET-CT to assess the left
ventricular ejection and changes in ventricular remodel-
ing 4 weeks after myocardial infarction. Echocardiog-
raphy revealed that the MSC-exo™®?'® treatment
group, similar to the sham surgery animals, had im-
proved cardiac performance and less dysfunctional ven-
tricular remodeling compared to the MI-PBS group and
the MSC-exo™"™R21 group (Fig. 6a—c). Figure 6a
shows that post-injury MSC-exo™"*'%-treated rats had
a significantly less decrease in ejection fraction (EF)
(44.36% * 3.34% vs. 25.21% + 1.80%, p <0.05) and less
fractional shortening (FS) (30.03% + 1.68% vs.
15.41% + 1.53%, p < 0.05), with decreased left ventricular
diastolic volume (LVIDd) (7.81 +0.50mm vs.
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and Cleaved-CASPASE-3 were evaluated in cardiac tissue sections from sham-operated rats and coronary-ligated rats that received either no
therapy (PBS), MSC exosomes, or exosomes from MSCs treated after vessel occlusion with GW4869 immediately (N =5 per group). Western blot
analysis of protein lysates obtained from the infarct border zone. Quantitative analysis of BAD, BAX, BCL-2, and Cleaved-CASPASE-3 is shown in
the lower panel. b Cell injury was determined by TUNEL assay. Fluorescence staining with vital dyes shown in blue indicates live cardiomyocytes,
whereas ethidium homodimer-1 staining labels dead cells green. The percentage of cardiomyocytes death is shown in the right panels. Each
experiment was repeated 3 times. *p < 0.05, **p < 0.01, ***p < 0.001 for Ml vs. sham. *p < 0.05 for MI + exosome vs. Ml
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than in the MSC-exo group (Fig. 5e). Lastly, infarct-
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by Western blot and expression quantified. Each experiment was

miR-210 regulates PI3K/AKT and p53 signaling by
targeting AIFM3

While and especially miR-201 over-
expressing exosomes, improved cell and organ responses
to stress, it was not clear if miR-201 was actually deliv-
ered to myocytes. Based on immunofluorescence mi-
croscopy, we detected co-localization of miR-210 within
exosomes (Fig. 7a). Further confirmation of exosome
endocytosis was obtained using continuous live cell

exosomes,

imaging of cardiomyocytes treated with conditioned
medium enriched for MSC-exo™R210 (Fig. 7b). miRNAs
work at the post-transcriptional levels to regulate gene
expression. According to the previous literatures and
TargetScanHuman, an online prediction of microRNA
targets (http://www.targetscan.org/), AIFM3 might be a
target of miR-210 [18]. To test this hypothesis, dual-
luciferase reporter assay was performed (Supplemental
Fig. 2 and Table 1). Dual-luciferase reporter gene
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analysis of myocytes treated with MSC-exo™® 2% re-

vealed that firefly luciferase activity was significantly
inhibited when co-transfected with miR-210, indicating
that AIFM3 as a down-stream target of miR-210 (Fig. 7c).
We confirmed this result via Western blotting and q-
PCR in miR-210 mimic-transfected cardiomyocytes.
RNA levels of AIFM3 were significantly reduced in car-
diomyocytes transfected with the miR-210 mimic

(Fig. 7d). Studies have linked AIFM3/p53 and PI3K/Akt
signaling pathways in the setting of MI [18]. Therefore,
we investigated the crosstalk between these two signal-
ing pathways. Western blotting analysis suggested that
levels AIFM3 were upregulated and levels of p-AKT, p-
PI3K, and p-p53 were downregulated (Fig. 7c). After
transfection with the miR-210 mimic, similar results
were obtained (Fig. 7d).
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The comparison of regulatory activity between
endogenous and exogenous miR-210

To compare the regulatory activity between endogenous
miR-210 and exogenous miR-210, we overexpressed the
miR-210 in cardiomyocytes. Western blotting analysis
revealed that expression levels of AIFM3, p-AKT, p-

PI3K, and p53 were downregulated in cardiomyocytes
overexpressing ~ miR-210  versus  cardiomyocytes
knocked-down for miR-210 (Fig. 8). Also, expression
levels of BCL-2 were significantly upregulated, while the
levels of Cleaved-CASPASE-3, BAD, and BAX were
downregulated (Fig. 8).
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Discussion
Over the past decade, pioneering preclinical research
into the use of cell therapy for cardiac regeneration has
been completed [19]. However, cell therapy remains
challenging for a number of reasons including the selec-
tion of cell types, the minimal potency of injected cells,
and the limited engraftment and retention of adminis-
tered cells [19-21]. A recent study demonstrated that al-
though transplanted, cells could not differentiate into
cardiac myocytes [22]. In this study, we have identified a
mechanism by which the hypoxia-injured MSC “signals”
to decrease apoptosis of ischemic cardiomyocytes. We
have demonstrated that following MI, exosomes from
MSC and their cargo miRNAs were protective for the
cardiomyocytes. Notably, the transferred miR-210 down-
regulates PI3K/Akt expression in the cardiomyocytes,
resulting in apoptosis.

Not unexpectedly, exosomes, which have identified
paracrine signaling capacities, are being considered as

possible therapies for a range of diseases. Consistent
with our results, exosomes derived from MSCs pre-
vented ventricular remodeling and reduced scarring in a
mouse model of MI [11]. Extending these reports, we
explored the possibility that exosome-mediated repair
under these conditions relies on the transfer of miRNA.
In support of this idea, others found that adipose tissue
macrophages from obese mice secrete exosomal-miR-
155 to promote glucose intolerance and insulin resist-
ance [23]. miR-105 has been linked to sustained tumor
growth [24]. Also, cancers can transfer activated epider-
mal growth receptor via exosomes to host macrophages
and suppress innate antiviral immunity [25]. In this
study, we used a miRNA array and found that MSC exo-
somes were enriched for miR-210. Of relevance to this
finding, hypoxia has been reported to increase miR-210
[26]. In addition, it was reported that miR-210 promotes
stabilization of carotid plaques via directly targeting the
tumor suppressor gene adenomatous polyposis coli [16].
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Similarly, increased expression of miR-210 enhanced the
protective effects on Hypoxia/reoxygenation-injured
endothelial cells [14]. Consistent with this, we observed
that the treatment with MSC exosomal-miR-210 im-
proved the survival of cardiomyocytes under the hypoxic
condition in vitro and improved heart function in vivo
and this was associated with changes in expression of
the miR-210 target genes PI3K/Akt and p53. These re-
sults are in accordance with several studies suggesting
that miR-210 has a protective function in cardiovascular
disease through several mechanisms including SOCS1-
STAT3-VEGE-C signaling [27]. Consistent with this
finding, blocking the activity of nSMase2 lead to a re-
duction in miR-210 and abrogated any cardio-protective
actions.

The regulation of AIFM3 by miR-210 has been re-
ported in cardiomyocytes [28]. Likewise, we found that
upregulation of exosomal-miR-210 decreased AIFM3, p-
AKT, and p-p53. These effects were eliminated by the

knockdown of miR-210. Studies have found that miR-
210 has other targets including PLK1, ISCU, Toll-like re-
ceptor, and Kruppel-like factor 7 [29-32]. Expanding on
this data, we identified AIFM3 as a novel target of miR-
210.

The relative contributions of endogenous and exogen-
ous miRNAs in regulating cell responses are controver-
sial. Most studies fail to demonstrate a function for
endogenous exosomal miRNAs [33]. We directly overex-
pressed miR-210 in cardiomyocytes to compare the dif-
ference between the endogenous and induced miR-210
[34]. While our results suggest a possible role for en-
dogenous exosomal miRNA, additional exploration of
this is required.

This study has a number of limitations. First, the
standardization of exosome harvest, handling, and
characterization is ongoing [35]. As such, we selected
one of several published approaches. While comparison
of techniques would be ideal, this was not practical for
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Fig. 8 Comparison of the uptake of exosomal miR-210 with the regulatory activity of endogenous miR-210. The protein levels of AIFM3, p-AKT/
AKT, p-PI3K/PI3K, p-p53/p53, BAD, BAX, BCL-2, and Cleaved-CASPASE-3 were evaluated by Western blotting in cardiomyocytes treated with
overexpressed miR-210. Quantifications are shown in the lower panel. N =3 independent experiments. **p < 0.01, ***p < 0.001, ****p < 0.0001 for
miR-210 agomir and miR-210 antagomir vs. con. *p < 0.01, **p <0001 for miR-210 agomir NC vs. miR-210 agomir. *p < 0.05, *"*p < 0.001,

o+

p <0.0001 for miR-210 antagomir NC vs. miR-210 antagomir

this study. Second, confocal imaging is not able to dis-
tinguish molecular proximity from interaction. Finally,
exosomes express cell surface proteins, such as anti-
angiogenic thrombospondin-1, that have profound sin-
gling effects in the cardiovascular system. Thus, we can-
not exclude the possible role of exosome membrane
expressed molecules in our assays.

Conclusions

In conclusion, our study demonstrated the benefits asso-
ciated with MSC exosomes after MI as well as a novel
mechanism responsible for their anti-apoptotic effect via
miR-210. Collectively, these results provide new insights
into the mechanism of cell therapy and might be lever-
aged for the treatment of ischemic heart diseases.
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