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Simple Summary: Little is known on how free-range laying hens on commercial farms exploit their
offered resources. However, only when hen usage of the structural resources is understood, can
design improvements be made to optimize hen health and welfare. This study was conducted in
order to understand the extent to which free-range hens use the aviary system and range. With the
help of individual tracking technology, agglomerative, and K-means cluster analysis, we were able
to characterize various flock sub-populations. Regardless of the cluster group, hens used the nest
boxes and lower feeder tier more consistently compared to the outdoor range and the upper feeder
tier. Overall, hens that were more consistent with their average time spent at each location stayed
for longer duration at each location than those hens that had inconsistent movement patterns. The
identification of ‘routine’ behavior patterns can be essential for flock management, such as smothering
prevention and future shed design.

Abstract: This study aimed to identify sub-populations of free-range laying hens and describe
the pattern of their resource usage, which can affect hen performance and welfare. In three
commercial flocks, 3125 Lohmann Brown hens were equipped with radio-frequency identification
(RFID) transponder leg bands and placed with their flock companions, resulting in a total of 40,000
hens/flock. Hens were monitored for their use of the aviary system, including feeder lines, nest
boxes, and the outdoor range. K-means and agglomerative cluster analysis, optimized with the
Calinski-Harabasz Criterion, was performed and identified three clusters. Individual variation in
time duration was observed in all the clusters with the highest individual differences observed on the
upper feeder (140 ± 1.02%) and the range (176 ± 1.03%). Hens of cluster 1 spent the least amount
time on the range and the most time on the feed chain located at the upper aviary tier (p < 0.05). We
conclude that an uneven load on the resources, as well as consistent and inconsistent movement
patterns, occur in the hen house. Further analysis of the data sets using classification models based on
support vector machines, artificial neural networks, and decision trees are warranted to investigate
the contribution of these and other parameters on hen performance.

Keywords: aviary; eggs; individual; pasture; poultry; radio frequency identification (RFID); variation;
spatial; technology; time budget; welfare

1. Introduction

Automated monitoring of animal behavior and welfare using sensor technology can offer valuable
information in observing feeding, nest box usage, and ranging behavior. This is especially relevant
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for non-cage housing systems, where the opportunity for hens to express a wide range of behaviors
can result in welfare concerns, such as severe feather pecking, cannibalism, smothering, and/or major
injuries resulting in death [1]. The use of sensor technology, such as radio frequency identification
(RFID), accelerometers, optic flow patterns, or thermographic cameras, has offered objective solutions
to understand how birds use available infrastructure through the capability to collect hen movement
data with time stamps for every second of the day, for every day of a hen’s life [2–6]. The increasing
availability of these affordable tracking technologies has made it possible to collect very large,
multi-dimensional datasets that provide a rich insight into the behavior of hens in the production
system and their responses to physiological process that underpin their growth and development.
These larger, richer datasets (and the potential for these to be collected in real-time) allow for the
application of more sophisticated forms of analysis, such as the use of machine learning models for
prediction and classification tasks. The overarching aim of introducing the machine learning approach
to task monitoring the behavior/movement at the individual level is to provide producers with the
potential for real-time flock monitoring and decision support that can be extended for risk evaluation,
event prediction, and disease sensing [7].

The practicability of numerous technologic solutions to be adapted for poultry has been shown
in research facilities but also under semi-commercial conditions [3–8]. By matching individual hen
movement and body weight with nest box access, RFID systems have also demonstrated their value in
recording individual hen performance [5,9,10].

Cluster analysis is an example of an unsupervised machine learning approach that is designed to
assign random data into groups (clusters) to identify common patterns and improve understanding [11].
A cluster can be defined as a group of animals positioned or occurring closely together, also expressing
similar behaviors at various times. More specifically, high dimensional cluster analysis can identify
homogenous group behaviors not previously known because it is exploratory, which means it does not
differentiate between dependent and independent variables.

High dimensional clustering can, therefore, be used as a reliable tool to investigate the usage and
competition of resources, with direct implication to productivity and welfare of the hens. For example,
smothering, frequently occurring at nest boxes or other structures, has been observed to cause up to
40% of the total flock mortality and approximately 10% overall mortality, resulting of an economic loss
of up to 500,000 AUD/year (including loss of eggs) for an average egg producer in Australia with an
average of 350,000 hens on-farm [12,13]. Commercial layers tend to cluster around key resources (feed,
nest boxes) but also group according to their range use [4,14]. Hens can be described as low, medium,
and high range users, according to the time they spend on the range or the number of days they visited
the range. This time spent on the range is, however, correlated to the time that these hens spent at
various areas within the shed [6]. Little information about potential sub-populations regarding in-shed
resources or hens that exhibit specific movement patterns have been reported to-date. It is imperative
to understand the social dynamics of free-range hens as it has a direct implication on the welfare of hens.
Grouping of hens based on movement might be caused by social cohesion around using resources,
such as feeders, nest boxes, and the range, or simply due to the presence and leadership of “alpha-hens”
which are yet to be identified [14–18]. Insight in the dynamics and movement patterns of non-caged
layers will give flock managers the ability to develop strategies to intervene with unfavorable behavior,
prevent adverse events, and support positive choices that the hens are making. With near-real-time
data processing, as well as temporal change detection, intervention could be performed based on an
alert system. To further understand how hens use the aviary system and the outdoor provided to
them, a fundamental query is whether different sub-populations of hens have different production
performances, energy needs, behavioral repertoires, recognize resources in a different way, or have
spatial abilities to use resources effectively.
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Therefore, the aims of this study were (1) to identify hen clusters (based on movement data) in
commercial free-range flocks provided with horizontal and vertical space, and (2) to investigate the
variation of the movement patterns (duration) of the clusters regarding the various specific resources
(aviary feed chains, nest boxes and the range) throughout the different production periods.

2. Materials and Methods

2.1. Ethical Statement

All procedures carried out in this study were approved by the University of New England’s
Animal Ethics Committee (AEC 16-087).

2.2. Study Population and RFID Monitoring of Aviary and Range Usage

Hen movement of three commercial free-range layer flocks was investigated. In each of the
three flocks, 3125 Lohmann Brown hens aging 16 weeks were randomly selected, equipped with a
transponder leg band and placed with their flock companions in five pens, resulting in a total of 625
hens/pen. The leg bands contained a RFID transponder (Monza R6 UHF RFID Tags, Impinj, Seattle,
WA, USA) and a visual identification number printed on the outside. In each of three sheds, the
three-tier aviary systems (two systems running parallel next to each other across the lengths of the
shed) were modified with custom-made RFID antennae, which allowed monitoring of the tagged
hens [6]. All hens were obtained from the same hatchery, placed at the same age, and managed by
the same personnel in identical designed and equipped sheds. In the layer house, the 3125 tagged
hens were placed in a subdivided area, where lateral cross-sectional partitioning of the equipment
allowed equal access to all features of the shed, while at the same time being restricted to access the
entire shed. This was done to allow for RFID instalment and intensive monitoring of the 3125 research
hens, representing the movement of the entire flock. The restricted area was also extended to the
range, where hens could access the range in the same manner as their flock companions but could not
leave their enclosures to mix with un-tagged hens and enter an unmonitored area. The custom-built
RFID antennae were placed along the entire length of the pop holes (total monitored length = 18 m),
along the entire length of the partitioned range section (18 m), along the entire length of all nest box
entries (18 m for each row of nest boxes), and along the entire length of the feeder chains (18 m along
each side of the feeder chain). While the nest boxes were located in the middle tiers of the three-tier
aviary system, they could only be entered from one side. In contrast, feeder chains were located at
the bottom and top tiers and could be accessed from either the pop hole-facing side, as well as the
shed-centre facing side. Therefore, two antennae were placed within 15 cm distance to each other along
the right and left side of the feeder chain, which allowed the detection of hens that accessed the feeder
chain regardless from which side they approached the feed (Figure 1). Further details can be found
in Sibanda et al. (2019) [6]. The tagged hens in the monitored area experienced the same stocking
density (indoor: 9 hens/m2; outdoor 1500 hens/ha) and the same management resources (lighting, nest
box access, feed, feeding times, drinker set up, medications, etc.) as their flock companions. Hen
movement data was collected after the hens were acclimatized to their new environment, when being
18 weeks of age, until 22 weeks of age.
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Figure 1. A picture showing the hens at the lower feeder tier (A) and the pop hole antenna (B). RFID 
= Radio-Frequency Identification. 
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until June 2018. While, initially, 9375 individual hens were placed and monitored, only data obtained 
from 7244 hens were included in this research as these hens were still available at 74 weeks of age, 
when we obtained final body weight and egg follicle scores. The loss of experimental animals was 
due to RFID tag loss, RFID tag malfunction, and hen mortality. For the data analysis, we used eight 
variables for each hen, consisting of mean duration time at the lower feeder chain and the upper 
feeder chain, the nest box, the range (four variables), body weight at 16, 22, and 74 weeks of age (three 
variables), and egg follicle score at 74 weeks of age. The data were tested for normality using the 
Shapiro-Wilk test in JMP, version 14, SAS Institute Inc., Cary, NC, USA, 1989–2019, and non-
parametric statistics were used to analyze the data. 
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Figure 1. A picture showing the hens at the lower feeder tier (A) and the pop hole antenna (B). RFID =

Radio-Frequency Identification.

2.3. Primary Data Collection

The data used in the experiment were collected from three separate flocks during December 2016
until June 2018. While, initially, 9375 individual hens were placed and monitored, only data obtained
from 7244 hens were included in this research as these hens were still available at 74 weeks of age,
when we obtained final body weight and egg follicle scores. The loss of experimental animals was
due to RFID tag loss, RFID tag malfunction, and hen mortality. For the data analysis, we used eight
variables for each hen, consisting of mean duration time at the lower feeder chain and the upper
feeder chain, the nest box, the range (four variables), body weight at 16, 22, and 74 weeks of age (three
variables), and egg follicle score at 74 weeks of age. The data were tested for normality using the
Shapiro-Wilk test in JMP, version 14, SAS Institute Inc., Cary, NC, USA, 1989–2019, and non-parametric
statistics were used to analyze the data.

2.4. Cluster Optimisation

Before revealing hidden clusters of similar mean daily duration in the different areas, the optimum
number of clusters had to be established. In this study, the Calinski-Harabsz criterion was used to
determine the optimum number of clusters without external information [19]. The Calinski-Harabsz is
a variance ratio criterion that is maximized to provide an optimal clustering solution that takes into
account the variance for data points within a cluster and the distance between clusters. The mean
time each hen spent at each of the four different areas was used as the input for the calculation of
the Calinski-Harabasz criterion. The Calinski-Harabasz criterion is defined in Equation (1) [19,20],
as follows:

CHk =
BGSS
k− 1

÷
WGSS
(n − k)

, (1)

where BGSS is represented by Equation (2), the overall between-cluster variance,

BGSS =
k∑

i=1

ni||mi −m||2, (2)

and WGSS represented by Equation (3), the overall within-cluster variance,

WGSS =
k∑

i=1

k∑
x
||mi −m||2, (3)

where:
CH = Calinski-Harabsz critetion
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BGSS = between-group dispersion
WGSS = the pooled within-cluster sum of squares
k = the number of clusters;
N = the number of observations;
ni = number of observations in cluster i;
mi = the centroid of cluster i;
m = overall mean of sample data;
||mi − m|| = L2 norm (Euclidean distance);
x = data point;
ci = cluster i; and
||x − mi|| = L2 norm (Euclidean distance) between the two vectors.

2.5. Identifying Subpopulations Using K-Means and Agglomerative Clustering

Although the hens were monitored daily for 24 h, the calculation of the total daily access of the
different areas included only the time from 4 am when the lights were switched on to 8 pm when the
lights were switched off. The mean time that each hen spent at each one of the different zones was
calculated as:

xt =
total mins spent in each zone

total number of days an individual hen accessed each area
, (4)

where:
xt = cluster mean;
t = time
The mean time the hens spent in each zone per day was used for the clustering analysis, resulting

in a four-dimensional dataset. To validate the sub-populations composition, two clustering algorithms,
the K-means and agglomerative hierarchical cluster analysis, were performed based on the mean daily
duration data. The K-means algorithm is a well-established and widely used clustering approach
that uses iterative refinement to partition the dataset into k clusters such that the sum of the squared
distance between the data points of a cluster and its centroid is minimized [11].

K-means clustering uses a random initial state and will necessarily find the optimal solution. k
(the number of clusters) is selected by maximizing the Calinski-Harabsz criterion. The agglomerative
hierarchical clustering algorithm builds a hierarchy of clusters by starting with each data point as its
cluster and successively merging points (according to a linkage criteria) until the desired number of
clusters, k, is reached [21]. As with the K-means approach, the optimal solution is also selected by
maximizing the Calinski-Harabsz criterion. The optimal clustering solutions were generated using
built-in routines in MATLAB and Statistics Toolbox Release 2019a, (The MathWorks, Inc., Natick, MA,
USA). After clustering the hens, k agreement statistics and a contingency table were used to evaluate
the agreement between the two chosen methods by comparing individual hen clustering solution
using the agglomerative and K-means clustering algorithms (JMP statistical software, version 14, SAS
Institute Inc., Cary, NC, USA, 1989–2020).

2.6. Visualisation of the Clusters

To understand the data, the clustering solutions produced were analyzed using the dimensionality
reduction algorithm t-distributed Stochastic Neighbor Embedding (t-SNE). t-SNE is a technique for
visualizing high-dimensional data using a non-linear transformation algorithm [22]. t-SNE was used
to reduce the four-dimensional data points down to a two-dimensional representation so that they can
be easily visualized. The t-SNE 2D cluster visualization was completed using MATLAB and Statistics
Toolbox Release 2019a (The MathWorks, Inc., Natick, MA, USA). t-SNE is a dimensionality reduction
technique that is well suited to the task of visualization as it has a reduced tendency to ’crowd’ data
points in the center of the lower (transformed) dimension space and can visualize clustering patterns
ranging from local to global scale by maximizing the distance between dissimilar groups across the
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scale range. In this work, we use this approach to provide a qualitative visual assessment of the
clustering solutions discovered.

This approach was applied to the clustering solutions for both K-means and agglomerative
clustering algorithms to provide a comparison of the capability for each approach (Figure 2). In
addition to the visualization using the dimensionality reduction approach, a two-dimensional scatter
plot of an exemplar optimal clustering solution (K-means) was produced by plotting the data for the
lower feeder, upper feeder, nest box and the range. This visualization provides an un-transformed
view of the data within each cluster and demonstrates the groupings that are identified within the four
discriminative dimensions.
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Figure 2. Faceted, 2-dimensional scatter plots of the clustered data across the 4 dimensions that were
used to create the clustering solutions using agglomerative clustering (A) and K-means clustering
(B) for the pre-laying period. Each circle represents an individual hen. The black dots represent
the respective cluster centroids, plotted in the dimensions displayed for each scatter plot. Cluster
membership is denoted by the marker color (cluster 1 = orange, cluster 2 = dark blue, and cluster 3 =

dark red). Note the cluster distribution is different for each method.

2.7. Daily Feeder, Nest Box, and Range Usage

To understand whether sub-populations remained consistent over different production periods,
we further calculated the mean daily duration of different laying periods namely pre-laying period
(18–22 weeks of age), peak laying period (23–33 weeks of age), late laying period (34–54 weeks of age),
and end of laying period (55–74 weeks of age). To compare the daily mean duration between the
groups over time, the restricted estimated maximum likelihood (REML) model was used with cluster
groups, age of hens, and their interaction as the main effects and flock as a random effect.
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2.8. Coefficient of Variation

After clustering, the hens using the mean time duration on the four different areas at 18 to 22
weeks of age, the coefficient of variation (CV) of the daily average time duration at each zone per day
was used to determine the within-individual hen variability and consistency from 23 to 74 weeks of
age for each hen. To show the frequency of variation, histograms of the CV of the daily average time
duration at each zone were created using R software [23]. A bivariate correlation plot of the coefficient
of variation for the daily duration and mean daily duration in all the hens pooled was also created
using the ‘ggpubr’ package [24].

2.9. Bodyweight and Egg Follicle Score

To understand the differences between these clusters in the production performance, body weight
was measured at 16, 22, and 74 weeks of age, while egg follicle development was assessed at the
74 weeks of age. The egg follicle was assessed using a four score system where 1 represented no
active follicles, 2 represented the presence of follicles in late regression, 3 represented the presence of
follicles in early regression, and 4 represented full follicle production. To distinguish the difference of
sub-populations regarding their egg follicle scores, a nominal regression model was used in JMP (JMP
statistical software, version 14, SAS Institute Inc., Cary, NC, USA, 1989–2020).

3. Results

3.1. K-Means and Agglomerative Cluster Characteristics

The Calinski-Harabasz criterion can be used in any number of dimensions in the dataset regardless
of the distribution of the data and is therefore suitable for non-normal data as relevant for this
study. Using the Calinski-Harabasz criterion and selecting the maximum index, three clusters were
determined as the optimum number of clusters. The K-means algorithm selected 1470, 3473, and 2301
hens as clusters 1, 2, and 3, respectively, while the agglomerative algorithm classified 979, 3501, and
2764 as clusters 1, 2, and 3 (Table 1).

In K-means clustering method, hens of cluster 1 (n = 1470 hens) spent significantly more time on
the upper feeding chain (498.0 ± 4.16 min/hen/day) compared to hens of cluster 2 (n = 3473; 143.8 ±
1.57 min/hen/day) and hens of cluster 3 (n = 2301; 46.28 ± 1.17 min/hen/day), respectively (p < 0.05).
Hens of cluster 3 spent 648.5 ± 2.50 min/hen/day at the lower feeder chain compared to hens of clusters
1 and 2 (108.7 ± 2.28 and 302.4 ± 1.80 min/hen/day, respectively; p < 0.05). The hens from all the
clusters spent least time at the range and at the nest box. Clusters 1 and 2 spent comparable time on the
range (p > 0.05), while cluster 3 hens spent the least amount of time on range (6.18 ± 0.32 min/hen/day;
p < 0.05). Similarly, using the agglomerative clustering method, hens of cluster 1 (n = 979 hens) spent
significantly more time on the upper feeding chain (571.8 ± 4.60 min/hen/day) compared to hens of
cluster 2 (n = 3501; 178.7 ± 1.94 min/hen/day) and hens of cluster 3 (n = 2764; 55.3 ± 1.11 min/hen/day),
respectively (p < 0.05). Hens of cluster 3 spent 611.7 ± 2.6 min/hen/day at the lower tier feeder chain
compared to hens of clusters 1 and 2 (88.9 ± 2.45 and 264.1 ± 1.86 min/hen/day, respectively; p < 0.05).
The hens from all the clusters spent the least time at the range and at the nest box. Clusters 1 and 2
spent comparable time on the range (p > 0.05), while cluster 3 hens spent the least amount of time on
range (4.8 ± 0.36 min/hen/day; p < 0.05).
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Table 1. The descriptive statistics of the K-means and agglomerative clusters of the free-range flocks using daily mean time duration in each zone from 18–22 weeks of
age (pre-laying period). CV = coefficient of variation.

Summary Statistics
Average Lower Feeder Time

(Min/Hen/Day)
Average Upper Feeder Time

(Min/Hen/Day)
Average Nest Box Time

(Min/Hen/Day)
Average Range Use Time

(Min/Hen/Day)

K-Means Agglomerative K-Means Agglomerative K-Means Agglomerative K-Means Agglomerative

Cluster 1

Mean ± SEM 108.7 ± 2.28 88.9 ± 2.45 498.0 ± 4.16 571.8 ± 4.60 71.9 ± 1.37 68.2 ± 1.58 6.18 ± 0.32 4.80 ± 0.36
SD 87.4 76.7 159.7 144.1 52.5 49.3 12.1 11.4

Skewness 0.85 0.99 0.89 0.87 1.41 0.79 3.07 3.88
CV 80.3 0.48 32.1 0.14 73.0 0.44 196.2 19.4

Median 89.7 65.3 458.3 539.6 63.1 60.5 0.01 0.00
N 1470 979 1470 979 1470 979 1470 979

Cluster 2

Mean ± SEM 302.4 ± 1.80 264.1 ± 1.88 143.8 ± 1.57 178.7 ± 1.94 78.1 ± 1.16 72.88 ± 0.89 30.0 ± 0.45 26.59 ± 0.43
SD 106.2 109.9 92.7 114.6 68.4 52.6 26.6 25.4

Skewness −0.31 −0.17 0.42 0.32 3.54 2.64 1.02 1.10
Kurtosis −0.66 −0.436 −0.55 −0.865 18.70 12.2 1.19 1.39
Median 312.1 273.5 132.2 164.9 61.2 61.1 26.1 22.4

N 3473 3501 3473 3501 3473 3501 3473 3501

Cluster 3

Mean ± SEM 648.5 ± 2.50 611.7 ± 2.61 46.3 ± 1.17 55.3 ± 1.11 59.0 ± 1.05 69.1 ± 1.38 26.8 ± 1.20 27.9 ± 0.57
SD 119.8 137.2 56.2 58.5 50.2 72.4 29.6 30.1

Skewness 0.70 0.47 1.80 1.03 2.61 3.57 1.20 1.17
Kurtosis 0.32 0.001 4.89 0.178 11.9 18.5 0.94 0.866
Median 635.1 602.1 26.1 37.0 48.0 51.4 16.9 18.8

N 2301 2764 2301 2764 2301 2764 2301 2764

SD represents standard deviation; SEM represents standard error of the mean.
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3.2. The Agreement between the K-Means and Agglomerative Subpopulations

Of the hens classified by the K-means as clusters 1, 2, and 3 hens, the agglomerative algorithm
identified 66.6%, 86.2%, and 99.2% of the hens as clusters 1, 2, and 3. Clusters were aligned between
the two different approaches using the minimum distance between cluster centroids (e.g., cluster 1
from the K-means solution was aligned to the cluster from agglomerative clustering solution with
the closest centroid for assessment). This deals with the random initial state used in the K-means
algorithm. There was a strong agreement in the classification of hens into clusters 1, 2, and 3 between
K-means and agglomerative as indicated by a kappa coefficient of 0.7794 (Table 2).

Table 2. Contingency table of the hen classification by the agglomerative and K-means clustering
algorithms with Kappa agreement statistics.

Clustering Algorigthm Agglomerative Clustering
Total

NCluster 1
N (%)

Cluster 2
N (%)

Cluster 3
N (%)

K-means

Cluster 1 979 (66.6) 491 (33.4) 0 (0) 1470
Cluster 2 0 (0) 2992 (86.2) 481 (13.9) 3473
Cluster 3 0 (0) 18 (0.78) 2283 (99.2) 2301

Total 979 3501 2764 7244

Kappa coefficient Kappa SEM Lower 95% Upper 95%

0.7794 0.0065 0.7667 0.7922

3.3. Visualisation of the Clusters

To qualitatively assess the clustering solutions produced by the K-means and agglomerative
approaches, the set of 2-dimensional scatter plots were produced that cover the 4 dimensions that were
used by the clustering algorithms to create the groupings. As an exemplar for the visual assessment,
data and groupings from the pre-laying period are presented in Figure 2. Figure 2A shows the scatter
plots for the agglomerative clustering solution, and Figure 2B shows the K-means clustering solution.
It can be observed that the K-means algorithm produced a solution with more discrete boundaries
between clusters; however, the centroids of the clusters from both approaches largely agree, indicating
that the use of the Calinski-Harabasz criterion is resulting in the selection of solutions that reflect
natural groupings within that data. Figure 3 provides a set of two-dimensional visualizations that
have been created using the t-SNE approach across the pre-laying period datasets that were used
to create the clustering solutions in Figure 2. The clustering solution groupings have been overlaid
(e.g., using corresponding colors with the clusters aligned using the nearest centroid) to provide
an assessment of how clustering solutions follow natural groupings that are revealed by the t-SNE
dimensionality reduction transformation. The t-SNE plots demonstrate that there is structure and
nature grouping within the underlying data that are not evident in the multi-faceted plots. It is
immediately evident that both clustering approaches produce solutions that have large contiguous
blocks, with the groupings based around high-level structural elements uncovered by the t-SNE
transform, rather than smaller scale, local, structural elements. This is important as is demonstrates
that the choice of cluster selection criteria is suitable for the nature of the dataset (e.g., the scale and
shape of natural groupings). The agglomerative solution in Figure 3 shows more fragmentation, with
each cluster split into two components, when compared with the K-means solutions across the t-SNE
transform. This indicates (qualitatively) that the K-means approach should provide a better reflection of
the natural groupings within the data; therefore, K-means solution was used for comparing differences
of the clusters in the rest of the paper.
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3.4. Daily Feeder Usage, Nest Box and Range Access during Different Laying Periods

The mean daily duration of the K-means cluster groups at different production periods are
presented in Figure 4. There was a significant main effect of cluster groups, location, and age of
hens, as well as a significant interaction between the cluster groups and hen age (p = 0.0001). During
all the production periods, cluster 1 hens spent the highest time on the upper feeder tier compared
to hens of clusters 2 and 3, with mean daily upper feeder duration of 311 ± 5.02 min/day/hen, 276
± 5.01 min/day/hen, and 257 ± 4.96 min/day/hen at the peak, late, and end of laying, respectively
(Figure 4). On the contrary, hens of cluster group 3 preferred to spend more time on the lower feeder
with mean daily upper feeder duration of 540 ± 4.32 min/day/hen, 503 ± 4.44 min/day/hen, and 492 ±
4.51 min/day/hen at the peak, late, and end of laying, respectively, compared to clusters 1 and 2. On the
contrary, there was no significant difference in the time spent on nest box tier and the outdoor range by
all the cluster groups and they spent the least amount of time on the nest boxes and the range in all
production periods (Figure 4).

3.5. Individual Variation in Daily Feeder Usage, Nest Box and Range Access

The distribution of the CV of the mean daily duration on the lower feeder tier, upper feeder tier,
nest box tier, and outdoor range usage for the three cluster groups is shown in Figure 5. Overall, when
all hens were pooled together, the highest within-individual hen variability for the daily duration as
determined by the CV was observed on the upper feeder tiers and the range, a mean of 140 ± 1.02%
(26–499%) and 176 ± 1.03% (55–500%) (Table 3, Figure 5), while there was a fairly lower variation of
the within-individual hen variability for the daily duration observed at the lower feeder tiers and on
the nest boxes with a mean of 77.5 ± 0.59% (21–452%) and 116 ± 0.57% (55–500%). Cluster 1 and 3
hens had the numerically lowest within-individual hen variability for the mean daily duration at the
lower feeder of 72.2 ± 0.74% and 70.7 ± 1.03% compared to 101 ± 1.59% of cluster 2. On the other hand,
cluster 3 hens had the highest within-individual hen variability on the upper feeder tier with a mean of
175 ± 2.20% compared to 132 ± 1.28% and 113 ± 1.85% of cluster 1 and 2. The hens from all the clusters
had almost similar low within-individual hen variability at the nest box, while cluster 1 hens had the
lowest within-individual hen variability of 164 ± 1.35% compared to 196 ± 2.64% and 185 ± 1.85% of
cluster 1 and 2 hens (Table 3).



Animals 2020, 10, 855 11 of 18

Animals 2020, 10, x 10 of 17 

 

Figure 3. Two-dimensional scatter plot of t-Distributed Stochastic Neighbor Embedding (t-SNE) 
visualizing cluster assignments of individual hens by agglomerative (A) and K-means algorithm (B), 
where cluster 1 hens (orange circles), cluster 2 hens (dark blue star), and cluster 3 hens (dark red 
square), grouped according to their similarity of time duration at the feeders, nest boxes, and on the 
range. 

3.4. Daily Feeder Usage, Nest Box and Range Access During Different Laying Periods 

The mean daily duration of the K-means cluster groups at different production periods are 
presented in Figure 4. There was a significant main effect of cluster groups, location, and age of hens, 
as well as a significant interaction between the cluster groups and hen age (p = 0.0001). During all the 
production periods, cluster 1 hens spent the highest time on the upper feeder tier compared to hens 
of clusters 2 and 3, with mean daily upper feeder duration of 311 ± 5.02 min/day/hen, 276 ± 5.01 
min/day/hen, and 257 ± 4.96 min/day/hen at the peak, late, and end of laying, respectively (Figure 4). 
On the contrary, hens of cluster group 3 preferred to spend more time on the lower feeder with mean 
daily upper feeder duration of 540 ± 4.32 min/day/hen, 503 ± 4.44 min/day/hen, and 492 ± 4.51 
min/day/hen at the peak, late, and end of laying, respectively, compared to clusters 1 and 2. On the 
contrary, there was no significant difference in the time spent on nest box tier and the outdoor range 
by all the cluster groups and they spent the least amount of time on the nest boxes and the range in 
all production periods (Figure 4). 

 
Figure 4. The box plots represent the time duration that hens of each cluster spent on the different tiers
from during pre-laying period (18–22 weeks), peak-laying period (23–33 weeks), late laying period
(34–54 weeks), and end of laying period (55–74 weeks) based on the K-means analysis.

Animals 2020, 10, x 11 of 17 

Figure 4. The box plots represent the time duration that hens of each cluster spent on the different 
tiers from during pre-laying period (18–22 weeks), peak-laying period (23–33 weeks), late laying 
period (34–54 weeks), and end of laying period (55–74 weeks) based on the K-means analysis. 

3.5. Individual Variation in Daily Feeder Usage, Nest Box and Range Access 

The distribution of the CV of the mean daily duration on the lower feeder tier, upper feeder tier, 
nest box tier, and outdoor range usage for the three cluster groups is shown in Figure 5. Overall, 
when all hens were pooled together, the highest within-individual hen variability for the daily 
duration as determined by the CV was observed on the upper feeder tiers and the range , a mean of 
140 ± 1.02% (26–499%) and 176 ± 1.03% (55–500%) (Table 3, Figure 5), while there was a fairly lower 
variation of the within-individual hen variability for the daily duration observed at the lower feeder 
tiers and on the nest boxes with a mean of 77.5 ± 0.59% (21–452%) and 116 ± 0.57% (55–500%). Cluster 
1 and 3 hens had the numerically lowest within-individual hen variability for the mean daily duration 
at the lower feeder of 72.2 ± 0.74% and 70.7 ± 1.03% compared to 101 ± 1.59% of cluster 2. On the other 
hand, cluster 3 hens had the highest within-individual hen variability on the upper feeder tier with a 
mean of 175 ± 2.20% compared to 132 ± 1.28% and 113 ± 1.85% of cluster 1 and 2. The hens from all 
the clusters had almost similar low within-individual hen variability at the nest box, while cluster 1 
hens had the lowest within-individual hen variability of 164 ± 1.35% compared to 196 ± 2.64% and 
185 ± 1.85% of cluster 1 and 2 hens (Table 3). 

 

Figure 5. Frequency histograms of the CV for daily duration and number of visits to the range in 
cluster 1 (orange), 2 (dark blue), and 3 (dark red) for free-range laying hens based on the K-means 
cluster analysis for lower feeder zone (A), upper feeder zone (B), nest box (C) and outdoor range (D). 

Table 3. The descriptive statistics of the CV for the daily duration of the three clusters detected in 
commercial free-range flocks. 

Cluster 
Summary 
Statistics 

CV of Mean 
Lower Feeder 
Duration (%) 

CV of Mean 
Upper Feeder 
Duration (%) 

CV of Mean Nest 
Box Duration (%) 

CV of Mean 
Range Use 

Duration (%) 

Cluster 1 
(n = 979) 

Mean ± SEM 72.2 ± 0.74 132 ± 1.28 115 ± 0.77 164 ± 1.35 
SD 42.2 73.4 44.2 77.2 

Maximum 360 499 461 500 
Minimum 21.0 31.5 32.4 55.3 

Figure 5. Frequency histograms of the CV for daily duration and number of visits to the range in
cluster 1 (orange), 2 (dark blue), and 3 (dark red) for free-range laying hens based on the K-means
cluster analysis for lower feeder zone (A), upper feeder zone (B), nest box (C) and outdoor range (D).
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Table 3. The descriptive statistics of the CV for the daily duration of the three clusters detected in
commercial free-range flocks.

Cluster Summary
Statistics

CV of Mean
Lower Feeder
Duration (%)

CV of Mean
Upper Feeder
Duration (%)

CV of Mean
Nest Box

Duration (%)

CV of Mean
Range Use

Duration (%)

Cluster 1
(n = 979)

Mean ± SEM 72.2 ± 0.74 132 ± 1.28 115 ± 0.77 164 ± 1.35
SD 42.2 73.4 44.2 77.2

Maximum 360 499 461 500
Minimum 21.0 31.5 32.4 55.3

Median 55.4 113 105 147

Cluster 2
(n = 3501)

Mean ± SEM 101 ± 1.59 113 ± 1.85 114 ± 1.44 196 ± 2.64
SD 55.3 64.6 50.2 92

Maximum 452 496 471 500
Minimum 23.8 26.1 38.5 59.6

Median 84.9 98.7 103 175

Cluster 3
(n = 2764)

Mean ± SEM 70.7 ± 1.03 175 ± 2.20 120 ± 1.02 185 ± 1.85
SD 43.0 91.9 42.8 77.4

Maximum 416 497 432 500
Minimum 21.0 44.3 43.9 65.0

Median 53.6 155 113 167

Pooled
(n = 7244)

Mean ± SEM 77.5 ± 0.59 140 ± 1.02 116 ± 0.57 176 ± 1.03
SD 46.8 80.8 45.11 81.4

Maximum 452 499 471 500
Minimum 21.0 26.1 32.4 55.4

Median 60.7 123 107 158

The correlation between the CV of daily mean average duration and the daily mean average
duration on the different the feeders, nest boxes, and on the outdoor range of the K-means clusters
is illustrated in Figure 6. Overall, the mean daily duration that hens accessed the lower feeder tier,
upper feeder tier, nest box tier, and outdoor range was negatively correlated with the CV for the daily
duration (Spearman’s rho = −0.66, −0.84, −0.55, and −0.88, p < 0.001), respectively. The CV of daily
mean average duration and the daily mean average duration at the nest box had the lowest negative
correlation coefficient compared to all other areas (Figure 6).
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Figure 6. The bivariate correlation plot of coefficient of variation for the daily duration and mean daily
duration for cluster 1 (orange), 2 (dark blue), and 3 (dark red) based on K-means solution for lower
feeder zone (A), upper feeder zone (B), nest box (C) and outdoor range (D). Each dot represents each
hen in clusters 1, 2, and 3, while the shaded area around the correlation line represents the confidence
interval. All correlation coefficients are significant with p-values < 0.0001.
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3.6. Bodyweight Distributions of Each Cluster

The difference in body weight for the three clusters is presented in Figure 7 at 16, 22, and 74 weeks
of age. For bodyweight, there was an overall observed significant effect of the cluster group and age of
the hens on mean body weight (p = 0.0001). At 16 weeks of age, cluster 1 had significantly lower body
weight (1.28 ± 0.003 kg) compared to clusters 2 and 3, with mean body weights of 1.31 ± 0.002 kg and
1.31 ± 0.003 kg, respectively. This pattern was also observed at 22 weeks of age, where cluster 1 hens
had a significant lower body weight of 1.63 ± 0.010 kg compared to clusters 2 and 3 with mean body
weights of 1.71 ± 0.006 kg and 1.71 ± 0.008 kg, respectively. (p = 0.0001; Figure 7). On the contrary,
there was no significant difference of body weight between the hen clusters at 74 weeks of age (p >

0.05; Figure 7).
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3.7. Egg Follicles

The results for egg follicles conditions are presented in Table 4. There was a flock effect on the egg
follicle score (p = 0.0092, Table 4). There was no main effect of the flock sub-population on their egg
follicle scores (p = 0.4133) nor any interaction detected.

Table 4. The proportion of hens with different egg follicle scores of clusters 1, 2, and 3 in free-range
laying hens at 74 weeks of age based on the K-means analysis.

Sub-Population Egg Follicle Observation; N (%)

No Follicles Late Regression Early Regression Full Egg Production

Cluster 1 55 (1.58) 43 (1.24) 107 (3.08) 3266 (94.1)
Cluster 2 35 (2.38) 19 (1.29) 50 (3.40) 1366 (92.9)
Cluster 3 44 (1.92) 34 (1.48) 75 (3.27) 2144 (93.3)
Pooled 134 (1.85) 96 (1.33) 232 (3.21) 6776 (93.6)
p-value Cluster 0.4133
p-value Flock 0.0092
p-value Flock × Cluster 0.7167

The numbers with bold face represent the percentage proportion of the hens while the numbers without bold face
represent the actual count of hens.
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4. Discussion

The automated classification of animals, such as laying hens, is a novel method that can support
farmers in decision-making to optimize their egg production, taking the behavior and needs of
the different flock sub-populations (clusters) into account, rather than relying on the conventional
information based on observing the performance of the flock average. In this experiment, we used
visualization based upon the t-SNE dimensionality reduction technique to reveal the natural groupings
within the flock data and demonstrated the ability of the clustering algorithms to automatically assign
hen data points according to these natural groupings. The results demonstrated that the behavior
between individual hens, as well as between sub-population, can be significantly different when
accessing the outdoor range but also key resources, such as the nest boxes and feeder chains. The
formation of the distinct clusters was associated with the location of hens in different areas of the aviary
system, which would allow for different management strategies based on hen location to manage an
even use of resources. For example, in order to optimize range and aviary usage, it is important to
identify hen movement patterns and space usage of individual inside the shed to avoid competition
and smothering. For hens that spent most of their time on the upper tier, access to ramps may be
provided to encourage the use of the lower tier and the range. In addition, allowing for additional
resources on the upper feeder tier, such as drinker lines or even nest boxes, may significantly improve
hen welfare and performance and further research in this area might significantly change the current
design of aviaries for the benefit of the hens. We previously described statistically significant differences
in egg production, health, and welfare of various range use flock sub-populations, which allowed for
determining hens that are economic more beneficial compared to under-performing groups [25,26].
Access to resources alone can be a significant contributor to inadequate performance, whereas the
genetic potential of the animal cannot be utilized. One major limitation of this study was that, due
to the commercial nature of the study and the use of feeder chains that ran throughout the shed, we
were not able to quantify the amount of feed intake, including the impact of daily feed intake on
body weight/egg performance. This is relevant as malnourished hens, non-productive hens, or egg
misplacement can be a sign of compromised health but will also affect the economic return of the egg
producer. While it has been shown previously that range use could be associated with increased egg
performance at the beginning but not the end of lay, clusters 2 and 3 (hens that initially spent the
longest duration on the range) had the lowest percent of hens in full lay at 74 weeks of age, but this
was not statistically significant (Table 4) [26]. Rationale for this may include that range usage did not
differ significantly between the clusters at the end of the laying period and, as such, impact of UV light
exposure on ovulation rate might be comparable [27].

Alternatively, the high variation of movement patterns observed may have reduced the impact
that extreme range use/shed use may have had on performance parameters, leading to non-significant
findings in the present study. However, we previously detected a positive correlation between range
use and lower feeder chain use, which can be confirmed using the K-mean clustering, whereas hens of
cluster 3 that spent the most time on the range were also the predominant users of the lower feeder
chain [6]. Interestingly, the investigation of movement patterns provides new insight into the flock
dynamics and, to our best knowledge, have not been reported to date: Hens that were more consistent
with their average time spent at each location stayed for longer duration at each location compared to
those hens that had inconsistent movement patterns. The identification of ‘routine’ behavior patterns
can be essential for flock management, using temporal change detection algorithms to generate alerts
when hen dynamics change may allow management to intervene to prevent uncoordinated mass
movements that lead to smothering [12]. In addition, dysregulated individual hen movement and
time budgets increase the likelihood of hen injury due to competition for resources, such as perching
space or feed, leading to severe welfare implications, such as keel bone and toe fractures, inter-hen
aggression, and, subsequently, hen death [28–34]. The data represented in this study demonstrates that
clustering the hens according to their time budgets had no impact on individual movement variation,
indicating the large variety of how hens express their choice of movement. For example, the CV for the
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duration that hens accessed the range varied from 55.4 to 500% with a mean of 176 ± 1.03% (Table 3).
Similar findings have been observed by Larsen et al., 2017 [4], where the variation was 18 to 361% for
layers exposed to the range for 12 consecutive days at 21 and 41 weeks of age. Regardless of the cluster
group, some hens showed variation in their average time spent on the different zones, which might
suggest that hens have spatial preferences, while some individual hens were more adventurous and
rarely followed the same movement pattern [35,36]. The formation of hen clusters with consistent
time budgets may indicate that some flock sub-populations prefer certain resources, while being less
orientated toward territorial behaviors. Individual hen preferences for the different resources may
be explained by the individual difference in their physiology, phenotypic appearance, epigenetics,
early-life experience, or learning abilities [37].

Understanding the individual’s motivation to access or avoid certain resources will be paramount
to train hens to use the available equipment and space to optimize welfare and production outcomes [38].
Being able to trace and monitor hen behavior and recognize patterns, as well as investigating causalities,
allows the identification of vulnerable individuals and sub-population in the future. These may
include hens subject to keel bone damage, severe feather pecking, cannibalism, or smothering [39,40].
Furthermore, offering different diets or feed additives through different feeder lines may directly target
the different requirements for hens that favor these specific locations.

In the ever-increasing farm size and increased consumer awareness, producers are often challenged
with having to project how flock management decisions will affect production performance and welfare
outcomes in a complex system. This work has demonstrated that hen movement data has the potential
to be used for prediction of health and welfare outcomes, especially when hens are showing consistency
in their movement patterns. With the development of predictive models, we should also recognize the
complexity inherent in behavior, physiological, and biological systems. In order not to be blindsided
by unforeseen outcomes, a methodical, all-inclusive technique of analyzing, modeling, and simulating
complex behavioral data to predict anticipated outbreaks is warranted. However, the availability of
comprehensive models of behavior, physiological, and biological systems combined with RFID data
are currently limited [41].

Feeding and nesting are highly motivated behaviors, thus being able to determine the maximal
percentage of hens that are accessing the resources at any given time can allow for adequate changes in
flock management, such as feeding time manipulations or adjusting the nest box opening and closing
times. It is not only of the highest degree of interest to investigate how technology can be used to
support underperforming sub-populations but also how to ensure that over-performing hens are truly
nurtured to their best long-term care. Consequently, it is crucial to develop and test approaches to
continuously monitor hen movement and activity, which can then turn into solutions that allow for
real-time decision-making and alert systems if unusual patterns and overcrowding are observed.

5. Conclusions

Three flock sub-populations were identified in the aviary system, and these sub-populations
expressed an uneven load on the resources (e.g., feed chains, nest boxes, range use). Unsupervised and
machine learning algorithms and data visualization (based on dimensionality reduction) identified
hen groupings related to time budgets. While we demonstrated a technique that could be the basis
for autonomous monitoring systems, further understanding of the impact of the variable use of the
resource within and between individuals can improve management practices, shed design, and hen
welfare, allowing for a vital opportunity for forthcoming investigation. Additional analysis of the data
using classification models based on support vector machines, artificial neural networks and decision
trees is warranted to detect the contributions of other relevant parameters for hen performance.
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