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abstract

PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to
CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen,
represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric
antigen receptor (CAR) T cells.

PATIENTS AND METHODS We conducted a single-center, phase I, 3 1 3 dose-escalation trial with a large
expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory
CD221 malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives
included efficacy, CD22 CAR T-cell persistence, and cytokine profiling.

RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release
syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were
minimal and transient. Hemophagocytic lymphohistiocytosis–like manifestations were seen in 19/58 (32.8%) of
subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR
T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The
complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months).
Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1
to 6.5 months). Thirteen participants proceeded to stem-cell transplantation.

CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on
the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and
toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as
a therapeutic option in patients resistant to CD19-targeted immunotherapy.

J Clin Oncol 38:1938-1950. © 2020 by American Society of Clinical Oncology

INTRODUCTION

CD19-targeted chimeric antigen receptor (CAR) T cells
and bispecific T-cell–engaging antibodies have trans-
formed the treatment of relapsed or chemotherapy-
refractory B-cell malignancies, and are now US Food
and Drug Administration approved for B-cell leuke-
mias and lymphomas.1-4 Despite a 70%-90% remission
induction rate in acute lymphoblastic leukemia (ALL)
after CD19-directed CAR T cells and potential for du-
rable response, growing experience suggests that
approximately 50% of patients may experience re-
lapse within the first year,3,5-9 the majority with CD19
loss.1-3,8,10 In addition, second CD19 CAR T-cell in-
fusions are frequently unsuccessful for CD191 relapse,

which further limits therapeutic options in these highly
refractory patients.11

We developed a novel CD22-targeted/4-1BB CAR
T cell12,13 and tested it in a phase I dose-escalation trial
in children and young adults with relapsed/refractory
CD221 hematologic malignancies. In our initial report of
the first 21 participants with ALL,14 we described a dose-
dependent antileukemic response in patients with CD19-
negative/dim or CD191 relapsed ALL, with an acceptable
toxicity profile consisting of limited cytokine release
syndrome (CRS), minimal neurotoxicity,15 and an effi-
cacy signal not affected by prior CD19 targeting.14

With ongoing enrollment, the remission induction rate
remained high, validating CD22 CAR T cells as an
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effective salvage regimen, which is particularly important
for patients in whom CD19 targeting fails. The expanded
experience also revealed novel insights into distinct, not
previously appreciated toxicities of CD22 CAR T cells,
which demonstrates that toxicities of CAR T cells that target
a different antigen, even if on the samemalignancy, may be
unique. These observations led to incorporating unique
toxicity mitigation strategies that have provided insight into
CAR T-cell therapy optimization. In addition, after the initial
report, we modified selection procedures of the apheresis
product to systematically improve the consistency and
reduce inherent interpatient variability of the starting ma-
terial. This minor modification enhanced manufacturing
feasibility but led to a direct increase in inflammatory
toxicities, which prompted dose de-escalation with pre-
served efficacy at a dose that we previously declared as
suboptimal.14 Collectively, these observations broadly in-
form the field of CAR T-cell therapy and are particularly
relevant as novel immunotherapies target alternative anti-
gens in other refractory cancers.

PATIENTS AND METHODS

Participants and Study Design

This phase I dose-escalation study tested CD22 CAR T cells
in patients with relapsed/refractory CD221 B-cell malig-
nancies. Dose levels (DLs), on the basis of transduced CAR
T cells per kilogram, included DL1, 3 3 105/kg; DL2, 1 3
106/kg; and DL3, 3 3 106/kg. All patients received flu-
darabine 25 mg/m2/d on days 24, 23, and 22 and cy-
clophosphamide 900 mg/m2 on day 22, with CD22 CAR
T-cell infusion on day 0. Primary objectives evaluated safety
and toxicity amid dose finding and manufacturing feasi-
bility. Secondary objectives included efficacy, CAR T-cell
persistence, evaluation of reinfusion strategies, and cyto-
kine profiling.

Eligibility criteria included CD221 malignancy, age 3-30
years, and adequate performance status and organ func-
tion. Patients receiving prior CAR T cells were required to
have , 5% circulating CAR T cells. Initial enrollment ex-
cluded patients with isolated CNS disease or CNS3 disease;
however, with experience, enrollment of those with active
CNS disease was in a separate cohort. All participants
provided written informed consent or parental permission
with minor assent when appropriate. All were treated in the
National Institutes of Health (NIH) Clinical Center, and the
protocol was approved by the National Cancer Institute
institutional review board and the NIH Recombinant DNA
Advisory Committee. This report incorporates data from all
participants who received CD22 CAR T cells in the study
before April 3, 2019, and through a minimum of 30 days
postinfusion. Data were locked as of May 8, 2019.

Per protocol, participants who relapsed following an interval
allogeneic hematopoietic stem-cell transplantation (HSCT)
after a first infusion and had a new apheresis product

collected could be re-enrolled and considered as a unique
participant. Accordingly, participants 5 and 35 and par-
ticipants 26 and 46 contributed only once to overall survival
(OS) and twice for all other analyses.

CAR T-Cell Manufacturing

The initial dose escalation was previously described with
DL2 (1 3 106/kg) expanded (n 5 18).14 To enhance CAR
T-cell manufacturing feasibility and reduce interpatient
product variability, we incorporated CD4/CD8 T-cell se-
lection (CD4/8-TCS) of all starting apheresis material as
a single manufacturing change with no further downstream
modifications. After this modification, participants experi-
enced heightened inflammatory responses, and the dose
was de-escalated for all subsequent patients to DL1-TCS
(3 3 105/kg; n 5 25).

Toxicity and Efficacy Evaluations

Adverse events were captured using Common Terminology
Criteria for Adverse Events (version 4.0) through 30 days
post-CAR infusion or resolution. CRS was prospec-
tively graded using the Lee scale.16 American Society for
Transplantation and Cellular Therapy CRS consensus
grading was retrospectively incorporated.17 Augmented
grading for hemophagocytic lymphohistiocytosis (HLH)/
macrophage activation syndrome (MAS)–like manifes-
tations was retrospectively performed and modified from
definitions used by Neelapu et al.18 Specifically, this was
defined by peak ferritin . 100,000 mg/L with at least two
of the following criteria:

• Hepatic aminotransferases or bilirubin grade $ 3
• Creatinine grade $ 3
• Pulmonary edema grade $ 3
• Evidence of hemophagocytosis on bone marrow as-

pirate/biopsy.

Disease evaluation and neurotoxicity monitoring method-
ologies are provided in the Data Supplement (online only).

Statistical Analysis

Descriptive statistics were computed to summarize par-
ticipant and disease characteristics. Mann-Whitney U test
was used to compare unpaired data sets, using a two-tailed
P value. Wilcoxon signed rank test was used to compared
paired data sets. Fisher’s exact tests were used to compare
binary outcomes between two groups. Kaplan-Meier sur-
vival curves were used to show event-free survival (EFS)
and OS for all participants and relapse-free survival (RFS)
limited to those who achieved complete remission (CR).
EFS used the earliest of no response, relapse, or death as
events, with patients considered to have experienced
treatment failure on day 28 if they did not have a CR by that
date. Patients who did not have one of these events were
censored on their date of last follow-up. OS was calculated
from the date of CAR infusion until date of death or last
follow-up. RFS was calculated from the date of CAR in-
fusion until the date of relapse or last follow-up among those
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who went into CR. The patients who died as a result of
sepsis or transplant-related causes and were in remission at
their death were censored with respect to RFS at their dates
of death. Paired t tests compared cognitive test scores pre-
to postinfusion. Additional methods are provided in the
Data Supplement.

RESULTS

Participant and Disease Characteristics

Sixty-four participants were enrolled; 58 received infusion
and were evaluable for toxicity (Table 1). Reasons for
noninfusion are provided in the Data Supplement. Out-
comes for the first 22 participants have been previously
described.14,19 All but 2 participants had ALL. One had
diffuse large B-cell lymphoma19; another had chronic
myelogenous leukemia with ALL blast crisis. The median
age was 17.5 years (range, 4.4-30.6 years). Prior therapy
included CD19-targeted therapy in 51 (87.9%), HSCT in 39
(67.2%), inotuzumab ozogamicin in 14 (24.1%), and prior
CD22 CAR T-cell exposure in 5 (8.6%; incorporating 3
alternative constructs). Thirty-three participants (56.9%)
were CD19-negative/partial/dim of whom 2 were partial
CD19-expressing with no prior CD19-targeted immu-
notherapy. All participants had detectable disease: 44
(75.9%) had $ M2 marrow, and the median bone marrow
involvement was 52%; 11 had extramedullary disease; 1
had isolated CNS disease (CNS2).

Toxicity

Fifty (86.2%) of 58 participants developed CRS, which was
grade 1-2 in 45 (90%; Table 2). The average time to CRS

onset was day 7 postinfusion (range, days 3-16); the
median duration was 5 days. Two grade 5 events occurred
at DL2, one in the setting of gram-negative sepsis and
multiorgan dysfunction19 and the other from fulminant
capillary leak syndrome (CLS) during CRS, which led to
grade 5 acute respiratory distress syndrome. The protocol
was transiently halted and modified to incorporate earlier
use of tocilizumab and/or corticosteroids in patients with
evidence of pulmonary toxicity, with no additional grade 5
events.

Neurotoxicity in the first 22 participants was generally mild
with no seizures, encephalopathy, or more severe toxicity.15

Among 58 participants, 19 (32.8%) had one or more re-
ported neurologic manifestation, all of which were grade 1
and 2 toxicities except in one patient who had grade 4
intracranial hemorrhage (ICH). This participant was treated
at DL1-TCS and was recovering from CRS without neuro-
toxicity when he developed a sudden-onset grade 4 ICH
on day 17, which required emergent neurosurgical in-
tervention. Laboratory findings at that time revealed normal
prothrombin time/partial thromboplastin time and mild
thrombocytopenia (platelet count $ 100,000/mL for the
5 days preceding the event and was 47,000/mL at the time
of ICH). Of note, this participant had concurrent Bacillus
cereus bacteremia during CRS—an established risk factor
for ICH—and was found to have multifocal hemorrhage
concerning for a potential infectious etiology. ICH was at-
tributed to both CRS and infection.20-22 Other symptoms of
neurotoxicity were of limited duration or resolved by day 28.
We found no substantial change from pre- to postinfusion
on tests of attention, executive function, working memory,
or processing speed (Data Supplement).

TABLE 1. Participant Demographics

Demographic
All Participants

(treated)
DL1

(3 3 105/kg)
DL2a

(1 3 106/kg)
DL3

(3 3 106/kg)
DL2-TCS

(1 3 106/kg)
DL1-TCSb

(3 3 105/kg)

No. of participants 58 6 (10.3) 18 (31.0) 2 (3.4) 7 (12.1) 25 (43.1)

Median age, years (range) 17.5 (4.4-30.6) 21.3 (7.3-22.7) 16.7 (8.0-30.6) 17.1 (7.9-26.4) 12.8 (4.4-28.9) 15.8 (4.7-30.4)

Prior HSCT 39 (67.2) 6 (100) 13 (72.2) 2 (100) 6 (85.7) 12 (48)

Prior CD19-targeted therapy 51 (87.9) 6 (100) 13 (72) 2 (100) 7 (100) 23 (92)

Prior CD19 CAR 36 (62.0) 6 (100) 11 (61.1) 1 (50) 5 (71.4) 13 (52)

Prior blinatumomab 23 (39.7) 1 (16.7) 4 (22.2) 2 (100) 2 (28.6) 14 (56)

Prior inotuzumab 14 (24.1) 1 (16.7) 4 (22.2) 1 (50) 3 (42.9) 5 (20)

Prior CD22 CAR exposurec 5 (8.6) 0 0 0 2 (28.6) 3 (12)

Any CD19-negative
populationd

33 (56.9) 4 (66.7) 9 (50) 0 5 (71.4) 15 (60)

$ M2 marrow 44 (75.9) 4 (66.7) 11 (61.1) 2 (100) 6 (85.7) 21 (84)

Isolated CNS diseasee 1 (1.7) 0 1 (5.6) 0 0 0

NOTE. Data presented as No. (%) unless otherwise indicated. DL represents dose of transduced CAR T cells/kilogram.
Abbreviations: CAR, chimeric antigen receptor; DL, dose level; HSCT, hematopoietic stem-cell transplantation; TCS, T-cell selection.
aOne participant with diffuse large B-cell lymphoma.
bOne participant with chronic myeloid leukemia who evolved to acute lymphoblastic crisis.
cIncludes any participant who had received CD22 CAR T cells elsewhere or had been treated with CD19/CD22 CAR T cells.
dAny CD19 population captures patients who are fully and partially CD191 with a cutoff of , 90% positive.
eAll participants had CNS1 disease at the time of infusion.
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Other toxicities included ocular manifestations (conjunc-
tivitis, photophobia, blurred vision or dry eyes; n5 12); CLS
(n 5 3); and atypical hemolytic uremic syndrome (aHUS;
n 5 3), which manifested as hypertension and hemolysis
with elevated terminal membrane attack complex requiring
eculizumab therapy (2 of whom did not have a prior HSCT).
No participant developed sinusoidal obstructive syndrome.
Additional toxicities are listed in the Data Supplement.

HLH/MAS-Like Toxicity

After incorporation of CD4/8-TCS at DL2, more participants
developed HLH/MAS-like manifestations (DL2, 3 of 18;
DL2-TCS, 5 of 7; P5 .017), despite a similar incidence and
grade of CRS, with a higher frequency of participants at
DL2-TCS developing coagulopathy. Thus, we electively de-
escalated to DL1-TCS, which effectively decreased the

incidence of HLH/MAS-like features and coagulopathy
without reducing efficacy (Table 2).

HLH/MAS-like toxicities occurred only in participants who
experienced CRS; 19 (38%) of 50 participants with CRS
developed HLH/MAS-like manifestations. The average time
to onset of HLH-like features was 14 days (range, 7-26
days) post-CAR, and CRS was generally resolved or re-
solving before the onset of HLH-like manifestations. The
incidence of HLH/MAS-like toxicities was higher in those
who underwent CD4/8-TCS (16 [55.2%] of 29 v 3 [14.3%]
of 21; P 5 .0039). Peak ferritin was substantially higher in
those at DL2 versus DL2-TCS (Fig 1A) and among all who
received a product with CD4/8-TCS (Fig 1B), with a median
ferritin of 163,200 mg/L (range, 5,769-565,510 mg/L) v
14,349 mg/L (range, 106-590,100 mg/L; P 5 .0007).

TABLE 2. Toxicity, CRS Management, and Response Profile

Variable
All

Participants
DL1

(3 3 105/kg)
DL2

(1 3 106/kg)
DL3

(3 3 106/kg)
DL2-TCS

(1 3 106/kg)
DL1-TCSa

(3 3 105/kg)

Total No. of participants 58 6 18 2 7b 25

Participants with CRS 50 (86.2) 3 (50) 16 (88.9) 2 (100) 6 (85.7) 23 (92)

CRS grades 1-2 45 (90) 3 (100) 15 (93.8) 2 (100) 6 (100) 19 (82.6)

CRS grades $ 3 5 (10) 0 1 (6.3) 0 0 4 (17.4)

CRS grades $ 3 ASTCT CRS scale 12 (24) 1 (33.3) 3 (18.8) 0 1 (16.7) 7 (30.4)

Any neurotoxicity 19 (32.8) 2 (33.3) 4 (22.2) 1 (50) 3 (42.9) 9 (36)

Severe neurotoxicity 1 (1.7) 0 0 0 0 1 (4)

Received tocilizumab 23 (39.7) 0 3 (16.7) 0 4 (57.1) 16 (64)

Received corticosteroids 18 (31.0) 0 2 (11.1) 1 (50) 4 (57.1) 13 (52)

Developed DIC 14 (24.1) 0 6 (33.3) 0 4 (57.1) 4 (16)

Developed symptomatic coagulopathy 9 (15.5) 0 3 (16.7) 0 4 (57.1) 2 (8)

Developed HLH 19 (32.7) 0 3 (16.7) 0 5 (71.4) 11 (44)

Developed CLS 3 (5.2) 0 1 (5.6)c 0 0 2 (8)

Developed aHUS 3 (5.2) 0 0 0 1 (14.3) 2 (8)

Grade 5 events 2 (3.4) 0 2 (11.1) 0 0 0

CRd 40 (70.2)e 1 (16.7) 13 (76.5)f 1 (50) 6 (85.7) 19 (76)

MRD-negative CR rate, among those with CRd 35 (87.5) 1 (100) 10 (76.9) 0 (0) 6 (100) 18 (94.7)

NOTE. Data presented as No. (%) unless otherwise indicated. CRS as graded per Lee et al.16 HLH retrospectively identified and defined by
modified criteria, including retrospectively performed and defined as present if the following criteria were met: peak ferritin . 100,000 with at
least two of the following criteria: hepatic aminotransferases or bilirubin grade $ 3, creatinine grade $ 3, pulmonary edema grade $ 3, or
evidence of hemophagocytosis on the bone marrow evaluation.

Abbreviations: aHUS, atypical hemolytic uremic syndrome; ASTCT, American Society for Transplantation and Cellular Therapy; CLS, capillary
leak syndrome; CR, complete response; CRS, cytokine release syndrome; DIC disseminated intravascular coagulation; HLH, hemophagocytic
lymphohistiocytosis; MRD, minimal residual disease.

aImplementation of preemptive tocilizumab dosing initiated in this cohort.
bParticipant 27 had stable disease with the first infusion, with grade 1 CRS not requiring corticosteroids or tocilizumab and limited chimeric

antigen receptor (CAR) expansion. Of note, he had received a CD22 CAR construct at an outside hospital before treatment on this protocol. Data
presented in this table reflect the response and toxicity profile after the second infusion because they informed the toxicity and response profile at
this dose.

cCLS developed into fatal acute respiratory distress syndrome.
dReflects the best response at any time point without any interval therapy; MRD-negative status is based on those who achieved a CR.
eFifty-seven participants were evaluable for response. One participant had a grade 5 toxicity before disease restaging.
fSeventeen participants evaluable for response. One participant had a grade 5 toxicity before disease restaging.
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HLH/MAS-like toxicities included laboratory abnormalities
(eg, hepatic transaminitis; n 5 19) and hemophagocytosis
on the day 28 bone marrow evaluation (n 5 9). HLH/MAS
self-resolved in 5 participants. HLH/MAS-directed treat-
ment was initiated in 14 participants because of worsening
laboratory parameters or clinical symptoms (eg, pulmo-
nary edema; renal dysfunction; worsening coagulopathy;
steadily increasing inflammatory markers concerning for
a worsening trajectory or symptomatic global inflammation,
such as noninfectious cholecystitis). Systematic use of
anti-interleukin-1 (IL-1) receptor antagonist (anakinra) at
starting doses of 5-8 mg/kg/d subcutaneously was in-
corporated to treat or prevent worsening of HLH/MAS-like
manifestations in participants with clinically relevant find-
ings on the basis of data in treatment of secondary HLH/
MAS.23,24 Treatment was initiated with anakinra alone (n5
3), corticosteroids plus anakinra (n 5 5), or corticosteroids
alone (n 5 6). All treated participants had resolution of
HLH/MAS-like toxicities without any apparent negative
impact on response or CAR T-cell expansion (Data

Supplement). In one participant, HLH-like manifesta-
tions developed at day 28 after bone marrow restaging
revealed a minimal residual disease (MRD)–positive
CR. With 1 month of anakinra monotherapy, all labo-
ratory abnormities normalized, and subsequent restaging
demonstrated ongoing CAR activity with eradication of MRD
(Fig 2).

Cytokine profiling revealed that IL-6, interferon gamma, IL-
8, IL-15, IL-10, tumor necrosis factor-a, and IL-1B were all
higher in those with CD4/8-TCS than in those with CD3/
CD28 enrichment (each P , .05, two-tailed; Figs 1C and
1D; Data Supplement). This included IL-1B, which sup-
ports the use of anakinra in these patients.

CAR Expansion and Persistence

Peak CAR expansion occurred between days 14 and 21
postinfusion. The median percentage CAR-positive T cells
at peak expansion was 77%, with a median absolute
CAR T cells/mL of 480.5 (range, 39.7-11,346/mL; Figs 1E
and 1F) and generally higher in those who underwent
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CD4/8-TCS. In participants with residual lymphomatous
disease, bimodal CAR T-cell expansion was occasionally
seen; one such case was associated with clonal expansion.25

Response

Fifty-seven participants who underwent infusion were
evaluable for response; one participant with grade 5 CLS
died before disease restaging. Forty (70.2%) of 57 par-
ticipants achieved a CR of whom 35 (87.5%) were MRD-
negative by flow cytometry (Fig 3A). This includes one
participant whose best response (CR) was with a second
successive infusion. Response was unaffected by prior
CD19-targeted therapy (P 5 .24) or HSCT (P 5 .76).
Limited to those with ALL, the overall CR andMRD-negative
CR rates were 40 (72.7%) of 55 and 35 (63.6%) of 55,
respectively. Two CD191 nonresponders to prior CD19-
targeted therapies each achieved an MRD-negative CR
with CD22 CAR T cells, which demonstrates that non-
response of CD19-based immunotherapy did not preclude
response to CD22 targeting. CR rates . 70% were seen at
DL2, DL2-TCS, and DL1-TCS. Of note, before incorporation

of CD4/8-TCS, DL1 (3 3 105/kg), was previously deemed
biologically ineffective yet was ultimately chosen as the
expansion dose.14

Participants with prior CD22-targeted therapy (either ino-
tuzumab [n 5 14] or CD22 CAR [n 5 5]) had decreased
MRD-negative CR rates (P 5 .039), were more likely to
have residual CD22-dim/partial disease at restaging (6 of
17 v 2 of 40; P 5 .006), and had shorter remission du-
rability (3 months [range, 2-6 months] v 6 months [range,
2-14 months]) than those who did not receive prior CD22-
targeted therapy, with approximately one half experiencing
relapse with CD22-dim/negative disease. The median
baseline CD22 antigen density was higher among those
who achieved MRD-negative CR than those who did not
(P5 .02; Fig 3B). CD22 expression was lower in those with
residual disease or at the time of relapse (P # .001),
consistent with our observation that CD22 modulation is an
important mechanism of immune escape14 (Fig 3C). Ap-
proach and response to second infusions are provided in
the Data Supplement.
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Fourteen participants (13 individual patients) proceeded to
HSCT, including all who achieved an MRD-negative CR
and not had a prior HSCT, except for the participant who
developed ICH (Fig 3D). Nine participants had CD19-
negative/partial expression. In 10 participants, this repre-
sented a first HSCT; decisions with regard to a second
HSCT were based on individual patient and provider
preferences. The median time from CAR T-cell infusion to
HSCT was 72 days (range, 49-126 days). All but 1 par-
ticipant proceeded to HSCT while in MRD-negative CR. Six
participants experienced post-HSCT relapse, including 2
for whom this represented a second transplant.

With amedian potential follow-up of 24months, themedian
OS and RFS (restricted to those in CR) were 13.4 months
(95% CI, 7.7 to 20.3 months) and 6.0 months (95% CI, 4.1
to 6.5 months), respectively (Fig 3E). Median EFS for all
participants, including nonresponders and deaths before
day 28, was 3.2 months (95% CI, 1.4 to 5.5 months). Thirty
participants (75%) experienced relapse, the majority with
CD22-negative/dim disease. Using a time-varying covariate
analysis, receipt of HSCT was somewhat favorably asso-
ciated with OS (P5 .09) and very favorably associated with
RFS (P 5 .0083) and EFS (P 5 .016; Fig 3F). Twenty-one
participants remain alive, with a median follow-up of

C

0

10

20

30

40

50

 60 P = .045

CD3/CD28
Enriched 

CD4/CD8
Selected

TD
 E

ffi
ci

en
cy

 (%
)

D

0

10

20

30

40

50

60
P = .0013

CD3/CD28
Enriched

CD4/CD8
Selected

FE

E

0

20

40

60

80

100

CD3/CD28 Enriched

P = .02

Apheresis Post
Selection

CD
3 

(%
)

0

20

40

60

80

100 P = .004

CD3/CD28
Enriched

CD4/CD8
Selected

Re
co

ve
ry

 o
f C

D3
 (%

)

GF CD4/CD8 Selected

0

20

40

60

80

100

P <  .0001

Apheresis Post
Selection

CD
3 

(%
)

FIG 4. (Continued). (bottom right). FE was calculated by dividing the final total cell number by the starting cell number on the day of transduction (day 2).
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9.7 months (range, 1.1-43.9 months), and 11 remain in
remission of whom 3 received additional therapy for re-
lapsed disease. One participant is in an ongoing CR
$ 3.5 years postinfusion without any interval therapy.

Dose Escalation and Product Manufacturing

Product manufacturing was successful in 63 of 64 par-
ticipants. High peripheral leukemia burden and/or high
monocyte frequencies negatively affected CAR T-cell
manufacturing by inhibiting transduction and expansion
of CAR T cells (Fig 4A). Incorporation of CD4/8-TCS ef-
fectively salvaged apheresis material unable to be used for
CAR T-cell manufacturing using previously described se-
lection methods26 (Fig 4B). Transduction efficiency, fold
expansion, and CD3 percent consistency and recovery
were all improved after TCS (Figs 4C-4G). Details of product
characteristics are listed in the Data Supplement.

DISCUSSION

With growing use of CD19-targeted therapies,3,7,11,27 CD19-
negative relapse is increasingly recognized as a cause of
therapeutic failure,19,28-31 and treatment options are limited.
In this expanded experience with the first, to our knowl-
edge, successful CAR to target an alternative antigen on
ALL, we establish CD22 CAR T cells as an effective salvage
therapy for patients who have experienced relapse after or
are refractory to CD19-targeted therapies. The ability to
render this highly refractory population into MRD-negative
remission effectively enabled patients to proceed to
a consolidative HSCT, an established treatment paradigm
for patients with relapse/refractory ALL.32,33 Remission
durability was adversely affected by prior CD22-directed
therapies and antigen downregulation, which suggests that
durability might be improved by avoidance of prior CD22
targeting and antigen upregulation.34

CRS rates after CD22 CAR T cells was comparable to re-
ports with CD19 CAR T cells. However, toxicities distinct
from CD19 CAR T cells included aHUS, severe CLS (out of
proportion to CRS), and ocular manifestations, reminiscent
of other CD22-targeted approaches.35,36 Despite these
associations with endothelial injury, neurotoxicity seemed

to be less severe than with CD19 CAR T cells, which
warrants additional study, particularly with endothelial acti-
vation postulated as a mechanism for CAR T-cell–mediated
neurotoxicity.37-39 Nonetheless, these results suggest that
CD22 CAR T cells may represent an alternative option in
those at higher risk for neurotoxicity but will require a larger
experience to conclusively establish.

HLH/MAS toxicities were seen at a relatively high frequency
and heightened after a manufacturing modification that
improved expansion and transduction efficiency. There are
multiple CAR T-cell manufacturing processes currently
being used, with a suggestion that the platform can affect
product potency. This is the first clear demonstration that
a single minor manufacturing change in the context of one
trial was clinically effective, which illustrates the importance
of manufacturing modifications in outcomes.19

HLH/MAS-like manifestations have typically been consid-
ered in the spectrum of severe CRS. In this study, HLH/
MAS generally developed outside the temporal context of
CRS, which suggests a unique pathophysiology. Additional
efforts, both clinically and preclinically, are ongoing to
further explore this toxicity. Use of anakinra for treatment of
HLH-like manifestations, independent of neurotoxicity, has
been incorporated into our toxicity management, and on
the basis of preliminary experience, additional study of the
role of anakinra is warranted. Collectively, the toxicity
profile that emerged from this relatively large experience
with CD22 CAR T cells in the same disease for which
there is extensive experience with CD19 CAR T cells
indicates that target and/or construct differences will
affect outcomes.

In summary, this report confirms CD22 CAR T cells as
a highly effective salvage option while providing novel in-
sights into CAR T-cell therapy broadly. These results
strongly support further development of CD22 CAR T cells
in a pivotal phase II trial and provide a foundation for the
first combinations of targeted immunotherapy using clini-
cally validated CAR constructs with the potential to improve
upon response and remission durability after targeted
immunotherapy for B-cell malignancies.
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