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Cerebral macro- and 
microcirculatory blood flow 
dynamics in successfully treated 
chronic hypertensive patients with 
and without white mater lesions
Martin Müller1 ✉, Mareike Österreich1, Lehel Lakatos1 & Alexander von Hessling2

The mechanisms of high blood pressure (HBP) -related brain pathology progression remain relatively 
unclear. We investigated whether lowering BP in chronic HBP patients normalizes cerebral perfusion 
dynamics at resistance vessel and capillary levels. Sixty-seven patients with HBP and 49 age- and sex-
matched healthy controls underwent simultaneous recordings of middle cerebral artery blood flow 
velocity (CBFV), BP, and end-tidal CO2 concentration. Thirty-four controls and 28 patients underwent 
additional near-infrared spectroscopy recordings (oxygenated [O2Hb] and deoxygenated [HHb] 
hemoglobin). Degree of microcirculatory white matter lesions was graded by Fazekas scale. Dynamic 
cerebral autoregulation (dCA) was assessed by transfer function analysis. BP was successfully lowered 
(patients = 89 ± 15 mm Hg, controls = 87 ± 17), but cerebrovascular resistance was higher in BP 
patients (p < 0.05). BP-CBFV phase was lower in very low frequency (VLF) (left/right: 48 ± 20°/44 ± 17; 
controls: 61 ± 20/60 ± 21; p < 0.001) and low frequency (LF) (34 ± 14/35 ± 14; controls: 
48 ± 20/44 ± 17; p < 0.05) ranges. Gain was higher in VLF range (in %/ mm Hg 0.56 ± 0.44/0.59 ± 0.49; 
controls: 0.32 ± 0.29/0.34 ± 0.32; p ≤ 0.005). BP-CBFV phase and gain did not differ across Fazekas 
groups. Across all patients, the capillary phases and gains (CBFV-[O2Hb], CBFV-[HHb]) were comparable 
to controls. Successfully treated chronic HBP results in normal brain capillary hemodynamics while the 
resistance vessel state is disturbed (phase decrease, gain increase).

The cerebral consequences of chronic high blood pressure (HBP) are manifold: the most frequent are hemor-
rhagic and nonhemorrhagic stroke, cerebral small vessel disease with white matter lesions (WML), microbleeds, 
or brain atrophy which can lead to cognitive decline and dementia1. Small vessel disease has also been reported 
to contribute to the pathogenesis of Alzheimer’s disease2,3. The pathological mechanisms of HBP-related brain 
pathology progression, however, are unclear. Among others, a constant elevated level of mean systolic or dias-
tolic BP and their variabilities4,5, autonomic BP regulation disturbances6, increased pulse pressure amplitudes7, 
ischemic effects on the brain due to cerebral autoregulation (CA) failure8–11, and capillary dysfunction12 are 
proposed mechanisms of continuous cerebral tissue damage. More recently, aging is assumed to accelerate the 
HBP-driven pathologies3,13.

Cerebral blood flow is determined by BP-dependent regulatory effects and by metabolic influences on the 
resistance vessels via feedback mechanisms. These regulatory mechanisms can be observed noninvasively by 
cerebral blood flow velocity (CBFV) and its wave form, and by changes in the microcirculatory concentrations of 
oxygenated and deoxygenated hemoglobin (Hb) via near-infrared spectroscopy (NIRS)14–16. Anatomically, CBFV 
mirrors the regulatory effects in front of the resistance vessel in the large (macrocirculatory) brain supplying 
arteries such as the middle cerebral artery, while the concentration changes in oxygenated and deoxygenated Hb 
indicate effects behind the resistance vessel predominantly in the capillary bed. For clarification, the resistance 
vessels are part of the cerebral microvasculature and cannot directly be assessed noninvasively but only deducibly 
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in the upstream macrocirculatory vessels. The other part of cerebral microvasvulature is the capillary bed which is 
approachable via NIRS. Together with noninvasive estimation of BP, CBFV and NIRS parameters offer sufficient 
resolution to analyze the dynamics of the regulatory processes from BP to the venous capillary bed.

A frequently-used approach to describe these dynamics is the estimation of phase shift and gain derived from 
transfer function analysis (TFA)15–21: at a given cycle of BP and CBFV changes, e.g. BP and CBF changes with a 
cycle duration of 10 seconds (=0.1 Hz) gain describes the power transformation from BP to CBFV, and phase 
shift indicates how much earlier or later in time the BP cycle will be found in the CBFV. A characteristic finding 
is that BP cycles around 0.1 Hz are delayed by approximately 1.10–1.70 seconds compared to the corresponding 
CBFV cycle. In patients with recently diagnosed, untreated HBP, or in subjects in which BP was elevated by phe-
nylephrine, gain was shown to be reduced and the phase was either unchanged or decreased22–24; after lowering 
BP in these two populations, the phase shift and gain normalized. However, this reversibility might not be present 
in patients with chronic HBP25. We used this dynamic approach in accordingly treated chronic HBP patients and 
hypothesize that the regulatory effects of the resistance vessels as indicated by phase and gain are normalized 
in the macrocirculatory system BP - CBFV (assessed in the middle cerebral artery). Consequently, if treatment 
normalizes these resistance vessel measures, the capillary blood flow compartment should then be responsible 
for small vessel disease propagation. Our second hypothesis, therefore, is that the TFA parameters and/or the 
capillary transit time between CBFV and the concentrations of oxygenated Hb or deoxygenated Hb demonstrate 
pathological results which ideally should additionally demonstrate a relationship with the amount of WMLs as 
classified by the Fazekes scale26 score.

Material and Methods
Study sample and design.  The study was approved by the Ethics Committee of Northwest and Central 
Switzerland and was performed in accordance with the Declaration of Helsinki, using good standards of clinical 
practice. Written informed consent was obtained from all participants. All data is available on request from the 
authors.

The control population consisted of 49 healthy individuals (females 15/males 34, mean age ± standard devi-
ation [SD], 62 ± 11 years, range 42–87 years) (Table 1). Bilateral transcranial Doppler ultrasound recordings 
were not possible for all controls, so we report left (n = 49) and right (n = 47) middle cerebral arteries separately. 
All controls were free of known diseases and were non-smokers. The controls were recruited from hospital staff 
members after advertising the study among them.

The patient group consisted of 67 consecutive HBP patients (females 18/males 49; mean age 65 ± 13, range 
39–88 years, Table 1), who were referred to our neurovascular facilities for diagnosis of cerebrovascular diseases 
and met the study inclusion criteria (see below). Apart from dedicated stroke syndroms other reasons for referral 
were, e.g., unsystematic dizziness, the patient’s wish to estimate his/her general stroke risk, or unclassified visual 
disturbances with normal ophthalmologists findings. Our routine work-up of such patients consists of 2 stages: 
on stage 1 all necessary investigations are made to reach a definite diagnosis; stage 2 is a clinical re-evaluation after 
3 months focusing on the controlling of the vascular risk factors. At the end of stage 1 eligible patients were then 
asked to participate in the study. We considered this time point the time point of study enrollment. To generate 
a homogeneous group of HBP patients, patients were eligible for the study when they met the inclusion criteria: 
known history of essential (not secondary) HBP (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) for ≥2 
years, a complete medical history and medical examination, presence of a cranial magnetic resonance imaging 
(MRI; Philips Achiva 3 Tesla [Philips, Netherlands] device or Siemens Magnetom 3T [Siemens, Germany], using 
DWI-, T2- and Flair-sequences]), presence of a duplex ultrasound examination of the brain supplying extra- and 
intracranial arteries (Acuson Antares S2000, Siemens, Germany), whereby ≥50% stenosis or occlusion of the 
large extra- or intracranial arteries was excluded, absence of other (than HBP) vascular risk factors such as smok-
ing, diabetes mellitus, obesity (body mass index >30 kg/m2), absence of cardiac arrhythmias (atrial fibrillation), 
or a clinically manifest heart failure, no new symptoms suggestive for a ischemia relapse. Only treated dyslipi-
demia was allowed as an additional risk factor. After enrollment BP was controlled by regular follow-up visits 
to general physicians for 3 months. The study investigations were performed after these 3 months time periods 
at stage 2. Upon enrollment, the final diagnoses were microangiopathic minor stroke in 18 patients, transient 
ischemic attack in 12, and 37 patients were asymptomatic. All MRIs were examined by the same neuroradiolo-
gist (AvH), who made assessments about the presence of WML according to the grading schema by Fazekas et 
al.26: WML originate from microvascular changes, and the amount of WML correlate with the severity of small 
vessel disease (grade 1 slight, 2 = moderate, 3 = severe WML/small vessel disease); the Fazekas grading schema 
is robust, exhibits a good inter-rater reliability when grading is based on MRIs, and is clinically widely used. We 
graded MRIs without any WML as Fazekas 0.

Experimental setting and instrumentation.  All investigations were performed in the late morning with 
subjects in a supine position with approximately 30° head elevation in a dimly lit room. Coffee or tea was last 
ingested a ≥4 hours before to the beginning of the investigation.

As described in detail in a previous report18, we assessed

•	 The capillary blood flow by recording the concentration changes in oxygenated and deoxygenated Hb over 
time using the NIRO-200NX NIRS device (Hamamatsu Photonics, Herrsching, Germany). Infrared light 
is emitted at 3 frequencies (735, 810, 850 nm) through the skull and absorpt in the upper cortical layers 
by oxygenated Hb and deoxygenated Hb. Both Hbs backscatter the light with different intensities which 
correlate with the concentrations of oxygenated and deoxygenated Hb. We used self-adhesive NIRS probes: 
the detecting probe was placed at the lateral frontotemporal skull to ensure it was above the MCA territory, 
and the emitting probe was placed at a fixed distance of 4 cm at the frontal skull. After initial adjustments to 
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determine the baseline hemoglobin concentration (in µmol/L), the NIRS device provided continuous per-
centage changes in oxygenated and deoxygenated Hb concentrations.

•	 The cerebral blood flow velocity in the middle cerebral artery using transcranial Doppler (TCD) ultrasound 
(MultidopX, DWL; Compumedics, Germany, 2 MHz probes). After attaching the NIRS probes, a head holder 
to affix the TCD probes was positioned and both middle cerebral arteries were identified using common cri-
teria (CBFV directed towards the probe; depth of insonation 45–60 mm). End-tidal CO2 was measured via a 
small nostril tube connected to a capnograph embedded in the TCD device.

•	 Blood pressure by finger plethysmography (Finometer Pro; Finapres Medical Systems, Netherlands) placed 
at the fingertip of the right index finger with special attention to calibrate it to the brachial artery. The blood 
pressure signal was imported into the TCD device and simultaneously recorded along with the cerebral blood 
flow velocity and End-tidal CO2.

After all probes were placed and participants were familiar with their surroundings and the experimental 
setting, we began recordings of ≥5 min.

Data preparation and analysis.  Cerebral blood flow velocity, blood pressure, and End-tidal CO2 data were 
collected at 100 Hz. Oxygenated and deoxygenated Hb concentration changes via NIRS were collected at 5 Hz. 
The data were analyzed using Matlab (2018b; Math Works Inc., Natick, MA, USA). Only artifact-free 5 min peri-
ods were used. After aligning the common starting point, each raw data time series was resampled by averaging 
over 1 s intervals (one second = 100 data points for cerebral blood flow velocity, blood pressure, and End-tidal 
CO2, and 5 data points for oxygenated/deoxygenated Hb, respectively). The mean of the data series was then 
subtracted in each data series. Form these resampled and mean subtracted time series, the coherence and the TFA 
estimates of phase (in degrees) and gain between the different time series were extracted from their respective 
power auto-spectra or cross-spectra using Welch’s averaged periodogram method with a Hanning window length 
of 100 s, a window overlap of 50%, and a total Fast Fourier Transformation data length of 300 s, thereby allowing 
for calculations over a frequency range of 0.02–0.40 Hz.

Blood pressure - cerebral blood flow velocity TFA results are reported over the total frequency range (very 
low frequency range [VLF]: 0.02–0.07 Hz; low frequency range [LF]: 0.07–0.15 Hz; high frequency range [HF]: 
0.15–0.40 Hz). Because coherence has been shown to be low in frequency ranges >0.15 Hz when oxygenated and 
deoxygenated Hb concentrations are involved18, we decided to use the frequency range of 0.02–0.15 Hz only for 
analysis which included NIRS parameters. To calculate means over each frequency range, we averaged phase and 

Controls 
(n = 49)

Patients 
(n = 67) T-Test

Age (years) 62 ± 11 65 ± 13 ns

Female/male 15/34 18/49 ns

Mean blood pressure (mm Hg) 87 ± 17 89 ± 15 ns

Systolic blood pressure 
(mmHg) 115 ± 16 118 ± 21 ns

Diastolic blood pressure 
(mmHg) 64 ± 16 63 ± 17 ns

Mean Blood pressure 
variability (mm Hg)

L, 17 ± 4
R, 16 ± 3

L, 19 ± 5
R, 19 ± 5

L, df 115, t = −2.38,
p < 0.05,d = 0.44
R, df 113, t = −2.88,
p < 0.005, d = 0.72

Heart rate (beats/min) 68 ± 9 lL, 66 ± 10
R, 66 ± 11

ns
ns

ETCO2 (mm Hg) 40 ± 3.9 39 ± 5.0 ns

Cerebral blood flow velocity 
(cm/s)

L, 45 ± 10
R, 57 ± 13

L, 53 ± 13
R, 52 ± 12

L, ns
R, ns

Cerebrovascular resistance 
(mm Hg / cm/s)

L, 
1.43 ± 0.43
R, 
1.46 ± 0.41

L, 
1.75 ± 0.52
R, 
1.77 ± 0.44

L, df 115, t = −1.95,
p = 0.05, d = 0.67
R, df 113, t = −3.66,
p < 0.005, d = 0.72

Antihypertensive Drug class 
used

Ca-Antagonists 23

ACE inhibitors 29

AT1 receptor inhibitors 16

Diuretics 18

β-Blockers 12

Patient therapy with drugs 
from

1 class 32
2 classes 12
3 classes 10
4 classes 3

Table 1.  Comparison of baseline characteristics between control and the patient group. ETCO2: end-tidal 
carbon dioxide concentration.
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gain values with a coherence ≥0.3417. Cerebral mean transit times were calculated as phase differences between 
phase (cerebral blood flow velocity –[deoxygenated Hb]) – phase (cerebral blood flow velocity - [deoxygenated 
Hb]). In addition, cerebrovascular resistance was calculated as mean blood pressure /mean cerebral blood flow 
velocity, and heart rate was derived from the blood pressure signal trace.

Controls 
(n = 49)

Patients
Left: n = 66; right: n = 65) T-Test

Coherence

-VLF L, 0.51 ± 0.15
R, 0.49 ± 0.15

L, 0.54 ± 0.17
R, 0.56 ± 0.16

ns
ns

-LF L, 0.72 ± 0.14
R, 0.71 ± 0.13

L, 0.68 ± 0.17
R, 0.50 ± 0.17

ns
ns

-HF L, 0.62 ± 0.15
R, 0.65 ± 0.13

L, 0.62 ± 0.15
R, 0.65 ± 0.13

ns
ns

Gain (cm/s / mm Hg)

-VLF L, 0.24 ± 0.22
R, 0.21 ± 0.25

L, 0.33 ± 0.27
R, 0.32 ± 0.29

df 115, t = −1.94,
p = 0.05, d = 0.36
df 113, t = −2.23;
p < 0.05, d = 0.40

-LF L, 0.52 ± 0.25
R, 0.52 ± 0.22

L, 0.50 ± 0.23
R, 0.49 ± 0.21

ns
ns

-HF L, 0.58 ± 0.31
R, 0.59 ± 0.35

L, 0.59 ± 0.23
R, 0.59 ± 0.25

ns
ns

Gain (%/mm Hg)

-VLF L, 0.32 ± 0.29
R, 0.34 ± 0.32

L, 0.56 ± 0.44
R, 0.59 ± 0.49

df 115, t = −3.156,
p < 0.005, d = 0.64
df 113, t = −2.99,
p < 0.005, d = 0.60

-LF L, 0.84 ± 0.46
R, 0.86 ± 0.38

L, 0.89 ± 0.37
R, 0.87 ± 0.34

ns
ns

-HF L, 0.91 ± 0.50
R, 0.96 ± 0.51

L, 1.09 ± 0.40
R, 1.11 ± 0.36

df 115,t = −2.161, 
p < 0.05, d = 0.36
df 113, t = −1.801, 
p = 0.07, d = 0.29

Phase (°)

-VLF L, −61 ± 20
R,−60 ± 21

L, −48 ± 20
R, −44 ± 17

df 115, t = 3.696,
p < 0.001, d = 0.65
df=113, t = 4.290,
p < 0.001, d = 0.83

-LF L, −48 ± 20
R, −44 ± 17

L, −34 ± 14
R, −35 ± 14

df 115, t = 2.769,
p < 0.01, d = 0.81
df 113, t = 2.013,
p < 0.05, d = 0.57

-HF L, −16 ± 22
R, −10 ± 20

L, −13 ± 13
R, −13 ± 13

ns
ns

Table 2.  Transfer function estimates in the macrocirculatory blood pressure – middle cerebral artery blood 
flow velocity system in controls and patients. VLF: very low frequency; LF: low frequency; HF: high frequency; 
L: left; R: right.

Figure 1.  Phase shift (Phi) between controls and all high blood pressure (HBP) patients in the very low (VLF) 
and low frequency (LF) range. Statistical analysis performed by t-test. Error bars indicate standard deviation.
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Statistical analysis.  Matlab Statistical Toolbox was used for all data analyses. Using a Kolmogorov-Smirnov 
test, all data were shown to have a normal distribution, and the data are reported as mean ± SD. We used the t-test 
for comparisons between the 2 participant groups, and one-way analysis of variance (ANOVA), which includes 
a correction for multiple comparisons (Tukey-Kramer procedure) for within-group comparisons. A regression 
analysis was used to test whether the results showed any dependency on End-tidal CO2, BP variability (as calcu-
lated by the SD of mean BP), cerebrovascular resistance, or age. If 2 or more variables predicted a target variable, 
stepwise regression analysis was used to determine their effects. P-values ≤ 0.05 were considered statistically 
significant.

Results
Patient and control groups were not different regarding age, sex, mean BP levels, End-tidal CO2, and heart 
rate. BP variability and cerebrovascular resistance were significantly larger in the HBP patients than in controls 
(Table 1). In the controls, increasing age was associated only with increasing cerebrovascular resistance (left: 
F(1,48) = 9.07, R2 = 0.162, t = 3.01, p < 0.01; right: F(1,46) = 8.20, R2 = 0.148, t = 2.86, p < 0.01) and decreasing 
CBFV (left: F(1,48) = 7.90, R2 = 0.144, t = −2.81, p < 0.01; right: F(1,46) = 11.5, R2 = 0.196, t = −3.38, p < 0.01); 
all TFA parameters were unrelated to age. In the patient group, neither cerebrovascular resistance, nor CBFV, nor 
TFA parameters were age-related.

In the HBP patients, 66 left and 65 right middle cerebral arteries could be assessed by transcranial Doppler 
ultrasound. In TFA of the BP-CBFV systems (Table 2), the phase was significantly decreased (mathematically, 
however, becoming less negative) in patients from the VLF (0.02–0.07 Hz) and LF (0.07–0.15 Hz) ranges (Fig. 1). 
Gain (measured in cm/s/mm Hg and in %/ mm Hg) was significantly increased in the VLF range (Fig. 2); %/ 
mmHg gain was increased by trend in the HF range. Using ANOVA within the patient group (Table 3), there were 
no significant differences between the Fazekas groups regarding phase (all frequency ranges), gain (all frequency 
ranges), cerebrovascular resistance, and BP variability (both sides). In univariate regression models, increasing 
Fazekas group severity was not associated with any of these variables except age (left: F(1,66)=24.0, R2 = 0.24, 
t = 4.09, p < 0.005, d = 0.93; right: F(1,64) = 22.6, R2 = 0.26, t = 4.75, p < 0.005, d = 0.90). Regarding the ini-
tial clinical presentation, there were no differences in TFA parameters between asymptomatic patients, formerly 
symptomatic patients with transient ischemic attack, or those with minor stroke.

We used the CBFV-NIRS parameter to characterize the capillary dynamics. For all patients, concentration 
changes in oxygenated Hb followed CBFV about 50°; the concentration changes in deoxygenated Hb followed 
about 260–280° without many differences between VLF and LF ranges. These phase values did not differ from the 
corresponding values in controls (Table 4). %/% gain (measured as %NIRS parameter change / %CBFV change) 
also did not differ between patients and controls in both frequency ranges. Mean transit times in the LF range 
were calculated at 0.1 Hz (for comparison with the literature15) also did not differ between controls and the patient 
group (range: 4.14–4.84 s).

Discussion
Physiologically, the main purpose of the cerebral resistance vessel is to provide a relatively constant blood sup-
ply to the brain’s capillary bed. These efforts can be characterized by functional/dynamical parameters such as 
phase and gain, or by static CBF measurements via e.g. perfusion computed tomography or perfusion MRI tech-
nology10,11. High BP leads to changes in the dynamics (functional capacity) of the resistance vessel which can 
be derived from analyzing the (macrocirculatory) BP-CBFV relationship. Sufficient treatment of HBP should 
consecutively normalize any disturbances in the BP-CBFV relationsship. We, therefore, hypothesized that the 
propagation of small vessel disease could be allocated at the capillary level of cerebral blood flow regulation by 
demonstrating disturbed TFA parameters here. In contrast to our hypotheses however, we found that, despite 

Figure 2.  Comparison of gain (in %CBFV change/ mm Hg) between controls and all high blood pressure 
(HBP) patients in the very low frequency (VLF) and high frequency (HF) ranges. Statistical analysis performed 
by t-test. Error bars indicate standard deviation.
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normalizing BP, the cerebral blood flow regulating system is still disturbed at the resistance vessel level as indi-
cated by the BP-CBFV system, and that the cerebral blood flow regulating system is normal at the capillary level 
indicating that the main task of the resistance vessel is still achieved.

The elevated cerebrovascular resistance in our patient group was not normalized and dynamic CA remained 
disturbed despite sufficient BP lowering. This suggests that the continuously-elevated cerebrovascular resistance 
trended toward (1) either an incomplete structural recovery of resistance vessels from vessel rarefication, (2) 
lumen narrowing, or (3) an ongoing and not necessarily pressure-dependent vessel dysfunction as a reason for 
the elevated resistance (e.g. endothelial dysfunction, humoral influences)3,9,27–33. If we consider structural vessel 
changes only, then our cohort represents patients at a disease stage with irreversible resistance vessel changes. In 
this condition, dynamic CA responded with gain increase and phase decrease. Similar findings were reported by 
Immink et al.34 in a small number of patients with long-term hypertension who also presented with secondary 
hypertensive ocular complications. Together, these findings may hint towards a suggestion that the dynamic CA 
response of patients at an advanced disease stage is distinctly different from that of healthy subjects or patients 
with recently diagnosed HBP; in these latter patients, gain decreases and normalizes after treatment, and phase 
changes are usually not present22–24,35. A low gain in an arterial vessel indicates a good ability to buffer (BP ele-
vations, for example), and a high gain indicates a loss of this ability36. Thus, at an early HBP disease stage, the 
CA responds at the resistance vessel level with a gain decrease indicating an adequate capability to buffer BP 
increases; and at an advanced stage, CA responds with a phase decrease and a gain increase indicating a poor 
buffer capability leading to a high amount of energy to be transported transmurally. Speculatively, the increased 
BP variability in our patient group is also less well-buffered and could contribute to further brain damage.

The second result of our study was that, irrespective of the exact mechanism for the cerebrovascular resist-
ance increase, the mechanisms of the cerebrovascular system consisted of compromised dynamics of CA in the 
BP-CBFV system, and normal dynamics of cerebral blood flow regulation at the capillary level. If HBP patients 
are sufficiently treated, our overall findings indicate that the extent of the hemodynamic compromise of the resist-
ance vessels does not exceed a point at which the capillary compensatory mechanisms become effective, such as 
shortening of the mean transit time by opening up of functional shortcuts due to capillary transit time homog-
enization9,12,37 or of prolongation the mean transit time15,38,39 via delaying venous outflow15. Our results at the 

Fazekas group 0 1 2 3 ANOVA

Left (n = 27)
Right 
(n = 27) Left (n = 16)

Right 
(n = 15) Left (n = 12)

Right 
(n = 11) Left (n = 12)

Right 
(n = 12) Left Right

Age (years) 58 ± 11 58 ± 11 65 ± 11 65 ± 11 70 ± 15 69 ± 15 76 ± 8 76 ± 8

F(3,65)=7.88
p < 0.005,
d = 1.38

F(3,63)=7.33
p < 0.005, f = 0.57
d = 1.38

significant for

0 vs 2,3
1 vs 3

0 vs 2,3
1 vs 3

Mean BP 
(mm Hg) 95 ± 15 95 ± 15 84 ± 13 85 ± 13 92 ± 15 92 ± 16 87 ± 12 86 ± 12 ns ns

BP variability 
(mmHg) 18 ± 5 18 ± 5 19 ± 4 19 ± 4 22 ± 7 21 ± 7 18 ± 4 18 ± 4 ns ns

Heart rate 
(beats/min) 64 ± 10 64 ± 10 65 ± 11 66 ± 10 66 ± 9 66 ± 10 67 ± 11 67 ± 11 ns ns

ETCO2 (mm 
Hg) 40 ± 5 40 ± 5 38 ± 5 38 ± 5 39 ± 5 40 ± 6 38 ± 5 38 ± 5 ns ns

CVR (mm 
Hg/cm/s) 1.8 ± 0.5 1.8 ± 0.5 1.6 ± 0.4 1.7 ± 0.4 1.9 ± 0.7 1.8 ± 0.5 1.7 ± 0.5 1.8 ± 0.5 ns ns

Gain (cm/s / mm Hg)

-VLF 0.38 ± 0.34 0.41 ± 0.35 0.31 ± 0.20 0.27 ± 0.22 0.32 ± 0.27 0.26 ± 0.21 0.23 ± 0.19 0.24 ± 0.24 ns ns

-LF 0.53 ± 0.22 0.48 ± 0.17 0.52 ± 0.17 0.52 ± 0.28 0.43 ± 0.30 0.43 ± 0.27 0.47 ± 0.27 0.51 ± 0.26 ns ns

-HF 0.61 ± 0.26 0.59 ± 0.23 0.61 ± 0.17 0.64 ± 0.32 0.50 ± 0.22 0.54 ± 0.20 0.61 ± 0.27 0.59 ± 0.28 ns ns

Gain (% / mmHg)

-VLF 0.70 ± 0.56 0.75 ± 0.59 0.51 ± 0.36 0.50 ± 0.49 0.42 ± 0.29 0.45 ± 0.33 0.43 ± 0.30 0.48 ± 0.35 ns ns

-LF 0.97 ± 0.33 0.88 ± 0.29 1.01 ± 0.28 0.91 ± 0.36 0.59 ± 0.41 0.78 ± 0.35 0.87 ± 0.44 0.95 ± 0.37 ns ns

-HF 1.13 ± 0.36 1.12 ± 0.31 1.22 ± 0.36 1.20 ± 0.39 0.88 ± 0.42 1.01 ± 0.34 1.15 ± 0.42 1.18 ± 0.43 ns ns

Phase (°)

-VLF −48 ± 17 −48 ± 12 −48 ± 25 −39 ± 18 −46 ± 22 −44 ± 26 −53 ± 21 −48 ± 16 ns ns

-LF −33 ± 13 −35 ± 15 −34 ± 14 −32 ± 16 −39 ± 18 −36 ± 13 −34 ± 11 −36 ± 12 ns ns

-HF −15 ± 15 −15 ± 15 −17 ± 12 −11 ± 15 −12 ± 11 −15 ± 10 −7 ± 10 − 7 ± 11 ns ns

Table 3.  Comparison of baseline characteristics and the transfer function estimates in the blood pressure-
cerebral blood flow velocity system stratified according to Fazekas grade. BP: Blood pressure; ETCO2: end-tidal 
carbon dioxide concentration; CVR: cerebrovascular resistance; VLF: very low frequency; LF: low frequency; 
HF: high frequency.
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capillary level support recent CBF studies which demonstrate that cerebral hypoperfusion is not always present 
in patients with HBP29,40,41, and that an intensive BP lowering was tolerated well by patients with severe SVD41.

Neither the findings at the BP-CBFV level nor the findings at the capillary level demonstrated a correlation 
to the amount of WMLs. This contradicts our hypothesis that CBF regulation at the capillary level would be the 
more disturbed the lager the WML amount is. Our results are surprising and may favor the view that the primary 
location of small vessel disease propagation is at the resistance vessel level due to CBF regulation failure. However, 
Birns et al.42 used another method to test dynamic CA between BP and CBFV, and also found that dynamic CA 
disturbances did not correlate with the total amount of WML. Thus, BP-CBFV dynamic CA disturbances are 
quite similar across all Fazekas groups, making it difficult to attribute dCA at the resistance vessel level with the 
responsibility for the different SVD stages. Age and other factors (not investigated by us) may therefore be more 
relevant. Nevertheless, one has cautiously to keep in mind that our number of patients with severe WML was low, 
a fact that could have hindered the detection of relevant hemodynamic relationships.

Limitations
In our patients CVR was still increased despite adequate BP lowering therapy. We assumed that this CVR increase 
is present in every patient irrespectively of its underlying condition such as an anatomical vessel rarefication, 
an increased vessel stiffness or an unknown metabolic change. Each of the used drug class influences the vas-
cular tone/resistance differently43: Ca-Antagonist dilate the resistance vessel, ACE inhibitors and AT1- receptor 

Controls (n = 34) Patients (n = 28)
T-Test
P

CBFV-[O2Hb]

Coherence

-VLF L, 0.48 ± 0.08
R, 0.48 ± 0.10

L, 0.47 ± 0.10
R, 0.54 ± 0.13

ns
ns

-LF L, 0.51 ± 0.11
R, 0.54 ± 0.13

L, 0.53 ± 0.12
R, 0.51 ± 0.11

ns
ns

Gain (%/%)

-VLF L, 0.46 ± 0.37
R, 0.48 ± 0.35

L, 0.40 ± 0.29
R, 0.53 ± 0.25

ns
ns

-LF L, 0.29 ± 0.18
R, 0.33 ± 0.22

L, 0.33 ± 0.20
R, 0.40 ± 0.37

ns
ns

Phase (°)

-VLF L, 52 ± 37
R, 43 ± 38

L, 54 ± 29
R, 45 ± 32

ns
ns

-LF L, 48 ± 20
R, 51 ± 33

L, 54 ± 29
R, 45 ± 32

ns
ns

CBFV-[HHb]

Coherence

-VLF L, 0.48 ± 0.09
R, 0.48 ± 0.10

L, 0.49 ± 0.19
R, 0.50 ± 0.13

ns
ns

-LF L, 0.47 ± 0.13
R, 0.49 ± 0.10

L, 0.48 ± 0.08
R, 0.48 ± 0.10

ns
ns

Gain (%/%)

-VLF L, 0.21 ± 0.13
R, 0.18 ± 0.12

L, 0.22 ± 0.27
R, 0.22 ± 0.15

ns
ns

-LF L, 0.10 ± 0.09
R, 0.16 ± 0.19

L, 0.13 ± 0.14
R, 0.14 ± 0.10

ns
ns

Phase (°)

-VLF L, 258 ± 44
R, 256 ± 44

L, 268 ± 49
R, 279 ± 45

ns
ns

-LF L, 284 ± 38
R, 259 ± 36

L, 279 ± 36
R, 280 ± 44

ns
ns

Mean transit time (°)

CBFV-[O2Hb] – CBFV-[HHb]

-VLF L, 204 ± 51
R, 214 ± 39

L, 214 ± 56
R, 242 ± 58

ns
ns

-LF
L, 242 ± 46
(4.84 ± 0.92)
R, 207 ± 51
(4.14 ± 0.11)

L, 223 ± 47
(4.46 ± 0.94
R, 223 ± 54
(4.46 ± 1.08)

ns
ns

Table 4.  Comparison of microcirculatory transfer function estimates between controls and patients. BP: 
blood pressure; [O2Hb]: concentration of oxygenated hemoglobin; [HHb]: concentration of deoxygenated 
hemoglobin; Coh: Coherence; CBFV: cerebral blood flow velocity; L: left; R: right. Mean transit time in phase (°) 
and, for comparison with the literature, in s after transforming to time domain at 0.1 Hz (in parenthesis). VLF: 
very low frequency; LF: low frequency.
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blockers can vasodilate larger arteries but can also vasoconstrict small vessels; diuretics, ACE-inhibitors and AT1 
receptor blockers lower BP additionally by reducing the intravascular volume. Thus, our results might be based 
on different pathophysiological conditions which met the different effects of each individual drug class. To this 
end, we cannot differentiate by our used methods which underlying condition meets which drug effect. In an 
additional multiple regression analysis with all drug classes as the independent variables in the model and phase 
and gain as the dependent (to be predicted) variable, the models did not reveal that any drug class predicted either 
gain nor phase. However, we consider the number of patients too low to allow for an analysis of such drug effects.

Given the penetration depth of NIRS wavelengths, it is assumed that the dynamic CA patency in the upper 
cortical layer was comparable to the deep white matter conditions. Whether this assumption is correct has not 
been demonstrated, as clinical experience suggests that the lesion load of WML in the deep white matter is higher 
than that in the subcortical brain tissue. Immink et al.35 (and the current study) used TFA on spontaneous CBF 
oscillation for analysis. Birns et al.42 used the thigh cuff test for dCA evaluation in their HBP patients, and also did 
not find any dependency of WML severity on dCA results. Thus, both analysis methods seemed comparable in this 
respect42,44 and might not fully portray the progression of HBP-related small vessel disease. We investigated roughly 
half of our patients 3 months after a clinical event, which may have influenced our results. Clinical events, especially 
strokes, can lead to a disturbed dynamic CA, although this is usually transient and resolves after 2 weeks45,46.

Conclusions
In successfully treated patients with an HBP history of ≥2 years, BP lowering therapy results in an overall normal 
brain capillary hemodynamic state at the expense of the resistance vessel system that shows a disturbed dynamic 
autoregulation ability with phase decrease and gain increase. The increased gain indicates that the vessel’s ability 
to buffer pressure or flow across the vessel wall is compromised at CBF period lengths between 13 and 50 s. This 
dynamic approach to CA should be evaluated further to determine whether it could play a role in guiding HBP 
treatment in the future.
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