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Classification and mutation prediction based on
histopathology H&E images in liver cancer using deep learning
Mingyu Chen 1,2,3, Bin Zhang 1, Win Topatana 4, Jiasheng Cao1, Hepan Zhu1, Sarun Juengpanich4, Qijiang Mao1, Hong Yu1✉ and
Xiujun Cai 1,2,3✉

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, and assessing its histopathological grade requires
visual inspection by an experienced pathologist. In this study, the histopathological H&E images from the Genomic Data Commons
Databases were used to train a neural network (inception V3) for automatic classification. According to the evaluation of our model
by the Matthews correlation coefficient, the performance level was close to the ability of a 5-year experience pathologist, with
96.0% accuracy for benign and malignant classification, and 89.6% accuracy for well, moderate, and poor tumor differentiation.
Furthermore, the model was trained to predict the ten most common and prognostic mutated genes in HCC. We found that four of
them, including CTNNB1, FMN2, TP53, and ZFX4, could be predicted from histopathology images, with external AUCs from 0.71 to
0.89. The findings demonstrated that convolutional neural networks could be used to assist pathologists in the classification and
detection of gene mutation in liver cancer.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the fourth leading cause of
cancer-related mortality and is currently the main cause of liver-
related death, leading to more than one million deaths annually
worldwide1–3. Over several decades, substantial progress had
been made in the understanding of HCC risk factors, epidemiol-
ogy, and molecular pathogenesis. The early detection of HCC
increases the chance of curative therapies in high overall survival.
Unfortunately, most HCC patients are diagnosed at the inter-
mediate to late-stage, which significantly decreases the overall
survival4. Various predominant clinical risk factors for the
development of HCC have been defined, including alcohol abuse,
cirrhosis, metabolic syndrome, and hepatitis B and/or C virus
infection5–8. However, multiple genetic alternation and signaling
cascades also have a great influence on tumor progression and
overall survival9.
The understanding of HCC molecular pathogenesis has been

significantly improved over the past decade10. The development
of genomic analysis has identified the major drivers that are
responsible for cancer development and progression. HCC has
been reported to have around 40 genomic aberrations, some of
which are deemed as drivers. Several frequent HCC genomic
alternations have been identified, including mutations in the
CTNNB1 (β-catenin WNT pathway activation), TP53, telomere
reverse transcriptase (telomere maintenance), AT-rich interaction
domain 1A (ARID1A; chromatin remodeling), mammalian target of
rapamycin signaling, RAS signaling, oxidative stress pathway
activation, and aberrations in DNA methylation11. Previous studies
have reported that the heterogeneity of HCC at both molecular
and histological levels are correlated with gene mutations and
oncogenic pathways12. The mutually exclusive CTNNB1 (40%) and
TP53 (21%) mutations have been identified as two major groups of
HCC according to its distinct phenotype. CTNNB1 mutated HCC is
generally well-differentiated and large, with pseudoglandular and

microtrabecular patterns, and lacks inflammatory infiltrates;
whereas TP53 mutated HCC is generally poor-differentiated, with
compact patterns, frequent vascular invasion, and pleomorphic,
multinucleated cells13. The deeper understandings of the HCC
phenotypes are essential for improving targeted therapies and
clinical translation.
Pathologists could provide limited information regarding cancer

reorganization from normal liver tissue and assess its histopatho-
logical grade via visual inspection, but it still lacks the underlying
biological differences in HCC gene mutations associated with
overall survival. The recent advances in artificial intelligence (AI)
provided a novel way to assist clinicians to classify medical
information and images14–17. Recently, Lin et al.18 used multi-
photon microscopy with deep learning in the automated
classification of HCC differentiation. Furthermore, Li et al.19

combined extreme learning machine with multiple convolutional
neural network methods for nuclei grading in HCC. The
development of graphics processing units allows the possibility
to train a more complex neural network to satisfy the requirement
of accomplishing complex visual recognition tasks, such as
distinguishing tumors from normal tissue slides and classifying
subtypes of tumors20,21. To the best of our knowledge, a previous
study by Coudray et al.20 utilized the deep convolutional neural
network on histopathological images to automatically classify the
type and subtype of lung tumors. In addition, a promising result
for the classification of colorectal22,23 and breast tumors24 using
deep learning was also reported. Therefore, deep-learning models
could be used to assist pathologists to effectively detect gene
mutations and cancer subtypes. However, it remains unclear
whether deep learning can be applied to solid tumors, especially
for HCC. In addition, advances in AI tools in digital pathology have
resulted in an increased demand for predictive assays in frozen
slides that enable the selection and stratification of patients for
additional treatment during surgery25.

1Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China. 2Key Laboratory of Endoscopic Technique Research of Zhejiang
Province, Sir Run-Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China. 3Engineering Research Center of Cognitive Healthcare of Zhejiang Province, 310003
Hangzhou, China. 4Zhejiang University School of Medicine, 310000 Hangzhou, China. ✉email: 3195016@zju.edu.cn; srrsh_cxj@zju.edu.cn

www.nature.com/npjprecisiononcology

Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-020-0120-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-020-0120-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-020-0120-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-020-0120-3&domain=pdf
http://orcid.org/0000-0001-5113-754X
http://orcid.org/0000-0001-5113-754X
http://orcid.org/0000-0001-5113-754X
http://orcid.org/0000-0001-5113-754X
http://orcid.org/0000-0001-5113-754X
http://orcid.org/0000-0002-6888-811X
http://orcid.org/0000-0002-6888-811X
http://orcid.org/0000-0002-6888-811X
http://orcid.org/0000-0002-6888-811X
http://orcid.org/0000-0002-6888-811X
http://orcid.org/0000-0001-8580-1920
http://orcid.org/0000-0001-8580-1920
http://orcid.org/0000-0001-8580-1920
http://orcid.org/0000-0001-8580-1920
http://orcid.org/0000-0001-8580-1920
http://orcid.org/0000-0002-6457-0577
http://orcid.org/0000-0002-6457-0577
http://orcid.org/0000-0002-6457-0577
http://orcid.org/0000-0002-6457-0577
http://orcid.org/0000-0002-6457-0577
https://doi.org/10.1038/s41698-020-0120-3
mailto:3195016@zju.edu.cn
mailto:srrsh_cxj@zju.edu.cn
www.nature.com/npjprecisiononcology


Herein, based on the inception V3 network developed by
Google26 and some packaging code from Coudray et al.20 via EASY
DL platform and whole-slide images (WSIs) of H&E stained liver
tissue, we have established a model to classify liver tissue and
predict certain gene mutations. The model was externally
validated by an independent cohort.

RESULTS
The distribution of WSIs and tiles
There were 491 WSIs of H&E stained liver tissue from the Genomic
Data Commons portal (GDC-portal, https://portal.gdc.cancer.gov/),
including 402 WSIs of HCC and 89 WSIs of normal liver tissue. The
information on histopathological grade was not available in 19 of
402 WSIs of HCC. According to the histopathological grade, they
were then sorted into well (G1, n= 55), moderate (G2, n= 187),
and poor group (G3/G4, n= 141) in the remaining 383 WSIs of
HCC. A total of 387 WSIs of HCC with corresponding gene
mutation information were available. Besides, 67 WSIs of HCC with
histopathological grade and related gene mutation information
and 34 WSIs of normal liver tissue were selected from Sir Run-Run
Shaw Hospital (SRRSH). After each WSI was cropped into small
“Tiles”, there are 119,596 “Tiles” (HCC vs. normal liver tissue, 87,422
vs. 32,174), 84,149 “Tiles” with histopathological grade (well vs.
moderate vs. poor, 14,713 vs. 41,370 vs. 28,066) and 86,323 “Tiles”
with corresponding gene mutation information. The distribution
of WSIs and tiles was summarized in Table 1.

Deep learning framework
Patients from GDC-portal were selected and identified as the
primary cohort. Based on a random split-sample approach, a total
of 377 patients were then randomly divided into a training cohort
(consisting of testing cohort) and an internal validation cohort
with a ratio of 3:1. In addition, 67 patients from our medical center

were identified as an external validation cohort. All WSIs were
cropped into multiple small “tiles” at a magnification of 20×.
Finally, the training and testing set consisting of a large collection
of tiles were used to train a neural network (inception V3) for the
classification of liver tissue via EASY DL. The internal and external
validation was performed by the remaining tiles from internal and
external validation sets, respectively (Fig. 1).

Performance of classification
The high-performance level of our models at recognizing tumors
from normal liver tissue (AUC= 0.961; 95% CI 0.939–0.981) was
observed in the validation set (Fig. 2a). Based on the class-
imbalanced problem, the precision-recall curves (PR-curves) and
Matthews correlation coefficient (MCC) were also used to evaluate
its performance (Fig. 2b). The MCC was up to 0.82 for benign or
malignant classification, and 0.738 for assessing histopathological
grade (well, moderate, or poor). Compared to three pathologists
with 2-year, 5-year, and 10-year experience in respective, the
performances of our classifiers nearly reached the ability of
pathologists with 5-year experience (Table 2).

Performance of mutation prediction
Our models were trained and validated based on the ten most
significantly mutated genes to estimate the possibility of
mutation. The performances, including accuracy, precision, and
recall rate, F1-score, and MCC, were summarized in Table 3. In
order to reduce heterogeneity, the performance was assessed
both the average predicted probability on region (tiles)-level
and the probability of predicted tile (P > 0.5) on slide-level in
the external validation set. On the region(tiles)-level, we found
that five of which, including ARID1A (P= 0.036), CTNNB1 (P <
0.0001), FMN2 (P= 0.0003), TP53 (P= 0.0011) and ZFX4 (P=
0.0054), showed significant differences between mutation and
wild type group (Fig. 3a), with the area under the receiver

Table 1. The distribution of patients, histopathological images/WSIs, and tiles in each subset.

Patients Histopathological images Tiles

Tr Te IV EV Tr Te IV EV Tr Te IV EV

Normal and HCC

HCC 208 41 128 67 225 47 130 67 41,578 8157 24,294 13,393

Normal 53 9 27 34 53 9 27 34 12,614 2204 9493 7863

Histopathological grade

Well (G1) 31 7 14 17 33 8 14 17 6967 1893 2654 3199

Moderate (G2) 98 17 60 38 106 20 61 38 18,754 3862 10,953 7801

Poor (G3/G4) 69 14 48 12 76 16 49 12 13,701 3189 8783 2393

CTNNB1 mutation

Yes 60 13 26 21 63 15 26 21 11,283 3218 5329 4120

No 142 29 96 46 153 32 98 46 28,437 6321 18,342 9273

FMN2 mutation

Yes 31 7 9 10 32 7 9 10 6335 1632 2143 2736

No 171 35 113 57 184 40 115 57 34,103 7963 20,754 10,657

TP53 mutation

Yes 64 14 42 20 68 14 43 20 12,537 2873 7794 4341

No 138 28 80 47 148 33 81 47 26,521 6359 16,646 9052

ZFX4 mutation

Yes 35 5 20 15 36 6 20 15 7273 1468 3892 3224

No 167 37 102 52 180 41 104 52 33,219 7845 19,233 10,169

Tr training subset, Te test subset, IV internal validation subset, EV external validation subset.
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operating characteristic curves (AUCs) from 0.71 to 0.89 in the
external validation set. In addition, similar differences were
observed on the slide-level, except for ARID1A (Fig. 3b). The
per-slide AUCs after aggregation by average predicted prob-
ability and percentage of tiles with positive classification were
listed in Table 4.

DISCUSSION
In this study, the deep-learning classifiers displayed a high-level
performance at recognizing cancer apart from normal liver tissue
and assessing histopathological grade (well, moderate, or poor).
The performances nearly reached the ability of pathologists with
5-year experience. Interestingly, the model found 9 out of 13 WSIs
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Fig. 2 The performance of the model at automated recognizes tumors from normal liver tissue. a The receiver operating characteristic
curve. TPR represents true positive rate, and FPR represents false positive rate. b Precision-recall curve.

Wild type

Fig. 1 Deep-learning framework for training and evaluating the model to classify and predict mutation. Patients from TCGA were
randomly divided into training cohorts (training and test) and internal validation cohort. Some patients had multiple virtual slides, and each
slide was sliced into smaller “tiles”. The training, test, and internal and external validation sets were made up of multiple tiles from related
cohorts. Model selection was done based on the performance in the test set. After learning and selection, the model was applied to tiles in the
internal and validation sets to assess their performances.
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from our center with grading misclassified by at least a
pathologist. Although the sensitivity and accuracy still need to
be improved to be on par with a 10-year experience pathologist, it
could be used to assist young pathologists at diagnosing with
shorter learning curve period, faster speed, and higher accuracy.
Moreover, the prediction of the four genes mutation (CTNNB1,
FMN2, TP53, and ZFX4) is beyond the ability of pathologists.
The prediction of mutation based on histopathological H&E

images using deep learning may have a positive influence on the
diagnosis and treatment of patients with cancer given the
importance of gene mutation21,27. For example, the mutations in
CTNNB1 occurred at a relatively high frequency in HCC, with a high
expression of the protein kinase human monopolar spindle 1
(hMps1/TTK), and TTK inhibitors regarded as one of the potential
targeted drugs for CTNNB1 mutant HCC28–30. Interestingly, our
models showed a high-performance level of predicting CTNNB1
mutation. The prediction of CTNNB1 mutation using deep learning
may make a great contribution to select patients who are most
likely to respond to TTK inhibitor targeted therapy.
Due to the unclear AI algorithmic data processing in a “black

box”, developers and users do not know how computers arrive at
conclusion, thereby making it difficult to find out the detail of
evidence resulting in a conclusion31,32. Therefore, as a novel tool

for diagnosis and treatment, AI should be validated against
current quality standards to ensure clinical effectiveness and
safety in clinical practice33,34. In this study, an independent
database from our center was used to validate the performance of
our models. It was demonstrated that convolutional neural
networks could be used to assist in the classification and mutation
prediction, based on histopathological H&E slides in liver cancer.
However, the model still needs to be improved and validated by
larger studies in the future. Even though it is impossible for AI to
completely replace humans in practice nowadays, it is still a useful
and effective tool to assist clinicians in dealing with repetitive
work to provide important prognostic and therapeutic informa-
tion. For example, mutation prediction could serve as pre-
screening to improve cost-efficiency before immunohistochem-
istry or next-generation sequencing.
Overall, the study demonstrates that convolutional neural net-

works can predict histopathological grade and mutation in liver
cancer. Although AI is likely to be a useful tool to assist surgeons and
pathologists in classification of WSIs of HCC, the black box that how
to get the conclusion is unclear and should be further studied.
Besides, it is the first study to predict the gene mutation in HCC,
meanwhile, internal and external validation cohorts were utilized to
improve the accuracy of the model. In addition, the information on
pathology and gene mutations may potentially be significant in
applying the appropriate targeted therapy to HCC patients, thereby
improving the performance of precision medicine.
The present study has several limitations to discuss. On the one

hand, the size of the validation cohort is small. On the other hand,
the model is not a complete replacement for pathologists’
examination, which included the diversity and heterogeneity of
tissues that pathologists typically inspect (e.g., inflammation,
necrosis, and blood vessels) and some clinical factors. Therefore,
further validation of our model is necessary in a larger dataset
with multiple centers and clinical factors or characteristics should
be considered in further study. Moreover, EASY DL platform is
exclusively available in Chinese which considerably limits the
scope and audience targeted. To address the limitation, we
provided the step-by-step instruction (figures and detailed English
descriptions) for training deep-learning models via EASY DL, which
was available at GitHub (https://github.com/drmaxchen-gbc/HCC-
deep-learning/) named “How_to_use_EASY DL”.
In conclusion, our study demonstrated that the convolutional

neural networks could assist pathologists in the classification of liver
cancer and the detection of gene mutation. It also revealed that this
method might be successfully adopted for other types of solid
tumors.

METHODS
Prepare histopathological tiles dataset of liver cancer
The frozen slide images and the corresponding cancer information were
obtained from the GDC-portal (https://portal.gdc.cancer.gov/). On slide-
level, there were 491 WSIs (HCC vs. normal liver tissue, 402 vs. 89), 383 WSIs
of HCC with available histopathological grade (well vs. moderate vs. poor,
55 vs. 187 vs. 141) and 387 WSIs of HCC with corresponded gene mutation
information. Besides, 67 WSIs of HCC with completed information and 34
WSIs of normal liver tissue were selected from Sir Run-Run Shaw Hospital.
All WSIs should be cropped into multiple small “tiles” at a magnification of
20×. The majority of slides could be cropped into more than 200 “tiles” on
region (tiles)-level (Supplementary Fig. 1). Each tile was saved as a JPG
format by nonoverlapping 256 × 256-pixel windows. In order to avoid
heterogeneity, each tile, where less than 80% of the surface was covered
by tissue, should be removed (Fig. 4). Finally, the liver cancer tiles dataset
consisted of four subsets, including the training, testing, internal validation,
and external validation sets. The data in the training and internal validation
cohorts from the Genomic Data Commons portal (https://portal.gdc.cancer.
gov/) were publicly available without restriction, authentication or
authorization. The independent external validation cohort we used
consisted of slide images without identifiable information and all

Table 3. The performances of our models for gene mutation
prediction.

GENE Accuracy Precision Recall F1-score MCC

ARID1A 0.925 0.833 0.769 0.800 0.755

ASH1L 0.896 0.778 0.583 0.667 0.615

CSMD1 0.910 0.714 0.556 0.625 0.581

CTNNB1 0.910 0.895 0.810 0.850 0.788

EYS 0.925 0.800 0.500 0.615 0.596

FMN2 0.925 0.727 0.800 0.762 0.719

MDM4 0.925 0.750 0.429 0.545 0.532

RB1 0.940 0.800 0.571 0.667 0.646

TP53 0.925 0.895 0.850 0.872 0.820

ZFX4 0.910 0.846 0.733 0.786 0.732

MCC Matthews correlation coefficient.

Table 2. The performance of our models and pathologists’ ability for
classification.

Classifiers Performance Our models Pathologists with
different years’
experience

2-year 5-year 10-year

Normal
vs. tumor

Accuracy 0.960 0.911 0.970 0.990

Precision 0.945 0.926 0.957 0.985

Recall 1.000 0.940 1.000 1.000

F1-score 0.971 0.933 0.978 0.993

MCC 0.912 0.799 0.934 0.977

Well (G1) vs.
moderate(G2)
vs. poor (G3/
G4)

Accuracya 0.896 0.851 0.910 0.955

Precisiona 0.879 0.831 0.869 0.944

Recalla 0.771 0.758 0.807 0.895

Micro F1-score 0.820 0.754 0.836 0.914

MCCa 0.738 0.637 0.764 0.882

MCC Matthews correlation coefficient.
aAverage value.
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participants had provided written informed consent. Our study was
approved by the SRRSH of Medicine Institutional Review Board
(KY20181209-5).

Technical detail on frozen slides in the external validation cohort
The obtained specimens (e.g., liver tissues) were macroscopically examined,
measured, sectioned through their longest axis, and then midsections were

examined. The material was frozen at−28 °C, cut into 5–10 µm thick sections,
Hematoxylin-Eosin (H&E) stained, and then analysed by pathologists with the
light microscope. There were 67 out of 70 patients diagnosed as HCC and the
related frozen slide were collected. Notably, normal liver tissues cannot be
available in half of the obtained specimens, because normal liver tissues
should be at least 2 cm away from tumors. Therefore, there were only 34
WSIs of normal liver tissues. In order to obtain digital pathology images, each

Fig. 4 Strategy of preparing tiles dataset. First, each WSI of liver tissue was selected from GDC-portal or SRRSH. Then, they were cropped
into lots of tiles. Finally, the tiles less than 80% area of surface with tissue were removed, and the remaining tiles were used for further analysis.
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Fig. 3 Prediction of the ten most common mutated genes in liver cancer using our deep-learning model and histopathology images.
a comparison of the mutation and wild type in the distribution of the mutation probability in genes from tiles. b comparison of the mutation
and wild type in the distribution of the mutation probability (Predicted P > 0.5) in each slide. P values were estimated with the two-tailed
Mann–Whitney U-test (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001). For the two box plots, the middle line within the box represents the median; box
limits represent 95% upper and lower quartiles; and whiskers represent the minima and maxima.

Table 4. The performance of our models at mutation prediction in the external validation set.

Mutations Per-tile AUC Per-slide AUC after aggregation by

Average predicted probability Percentage of positive tiles

CTNNB1 0.805 (0.759–0.851) 0.898 (0.810–0.986) 0.817 (0.713–0.922)

FMN2 0.727 (0.666–0.789) 0.737 (0.613–0.861) 0.838 (0.742–0.935)

TP53 0.736 (0.696–0.777) 0.770 (0.650–0.890) 0.715 (0.591–0.840)

ZFX4 0.720 (0.675–0.765) 0.724 (0.591–0.858) 0.751 (0.614–0.888)
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slide was scanned at a magnification of 20× by using digital pathology
scanner VS120 (Olympus).

Deep-learning with convolution neural networks
Typical convolutional neural networks contain several levels of convolution
filters, pooling layers, and fully connected layers. In our study, we primarily
used inception V3 architecture, which makes use of inception modules
which are made from a spread of convolutions having different kernel sizes
and a max-pooling layer. The initial five convolution nodes are combined
with two max-pooling operations and followed by 11 stacks of inception
modules. A fully connected layer to the end of the inception modules was
then added to permit us to utilize the pre-trained model and finetune the
parameters for our own task. Finally, a softmax layer was added as a
classifier outputting a probability for every class, and the one with the
highest probability was chosen as the predicted class.
We used the pre-trained model offered by TensorFlow and finetuned it

using histopathological images. It was pre-trained on the ImageNet dataset
and available at the TensorFlow-Slim image classification library (http://
tensorflow.org). We initialized the parameters from the pre-trained model
because pre-training can speed up the convergence of the network. Most
importantly, it was difficult to train a deep network with a small number of
images due to the massive number of network parameters.

Comparison with pathologists
One hundred and one WSIs of liver tissues without a label from the external
validation cohort were used to test pathologist’s performance and compared
with our model performance. All pathologists should report whether there is
HCC, and if there is HCC, they should report histopathological grade via
digital pathology images. The outcomes reported by six pathologists with 2-
years, 5-years, and 10-years experience (two pathologists in each category)
and our model were collected and analyzed by the R 3.6.0 (https://www.r-
project.org). Cohen’s Kappa analysis was performed to assess inter-observer
agreement. Good inter-operator agreements were observed in pathologists
with 2-year experience (Kappa= 0.894; 95% CI, 0.837–0.944), pathologists
with 5-year experience (Kappa= 0.933; 95% CI, 0.888–0.975), and patholo-
gists with 5-year experience (Kappa= 0.967; 95% CI, 0.930–0.992).

Identification of significantly mutated genes
The gene mutation data for the matched patient sample were downloaded
from the cancer genome atlas (TCGA). The gene mutated at least 10% of the
available liver cancer samples were selected from the 283 cancer-related genes
(Supplementary Fig. 2). The least absolute shrinkage and selection operator
(LASSO) regression with a 10-fold cross-validation method was then performed
to identify significant prognosis-related gene mutations by using R software
packages (http://www.r-project.org). Finally, the ten most significant prognosis-

related gene mutations, including ARID1A, ASH1L, CSMD1, CTNNB1, EYS, FMN2,
MDM4, RB1, TP53, and ZFX4 were identified (Fig. 5).

Training deep-learning network
Pathological diagnosis was the primary endpoint of interest for the classifier
that recognizes tumors from normal liver tissue and the assessment of the
histopathological grade. The status of gene mutation (mutation or wild type),
based on the next-generation sequencing results, was the primary
prerequisite in the classifier of mutation prediction. The model’s training
strategy was based on an easy-to-use platform called EASY DL (https://ai.
baidu.com/easydl/) that uses PaddlePaddle deep learning framework V3.0
created by Baidu Brain AI technology, inception V3 network developed by
Google, and packaging code form Coudray20 and co-workers. The training set
was used for training, and the testing set was used to evaluate the
performances, finetune those parameters, and improve the models. A final
model was selected according to the results of the testing set, where the F1-
scores as a stopping rule. Notably, the subsets were grouped based on HCC
patients rather than the WSIs. This method could maximize the size of the
training set and avoid training and testing on tiles originating from the same
human subjects. Thereby preventing the classifier from relying on intra-
subject correlations between samples and resulting in inflated estimates of
accuracy. In order to reduce selection bias, the performance of our model
was then validated in the internal and external validation sets.

Statistical analysis
The ten most common and prognostic mutated genes were identified
using the LASSO Cox regression model, and any differences of overall
survival were evaluated by the Kaplan–Meier method with a log-rank test.
The performance of those models was evaluated with F1-scores, MCC, and
AUC. The F1-scores, ranging from 1 (perfect) to 0 (bad), is the harmonic
average of the precision and recall21. MCC ranges from 1 (perfect) to −1
(bad). In addition, the probability of gene mutation was estimated and
compared using the two-tailed Mann–Whitney U-tests. A P value of less
than 0.05, was considered as statistical significance.

DATA AVAILABILITY
The slide images and the corresponding cancer information were uploaded from the
Genomic Data Commons portal (https://portal.gdc.cancer.gov/) and were in whole or in
part based upon data generated by the TCGA Research Network (http://cancergenome.
nih.gov/). These data were publicly available without restriction, authentication, or
authorization. The datasets for the independent cohorts generated and/or analyzed
during the current study are available from the corresponding author (X.J.C.) upon
reasonable request and through collaborative investigations.
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CODE AVAILABILITY
The codes that were used to train and validate the deep-learning model in the
manuscript are available at https://github.com/drmaxchen-gbc/HCC-deep-learning. It
also used other open-source codes (inception V3), which were available at https://
github.com/openslide/openslide-python.
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