
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Science of the Total Environment 740 (2020) 140093

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Short-term effects of specific humidity and temperature on COVID-19
morbidity in select US cities
Jennifer D. Runkle a, Margaret M. Sugg b,⁎, Ronald D. Leeper a, Yuhan Rao a, Jessica L. Matthews a, Jared J. Rennie a

a North Carolina Institute for Climate Studies, North Carolina State University, 151 Patton Avenue, Asheville, NC 28801, United States of America
b Department of Geography and Planning, Appalachian State University, P.O. Box 32066, Boone, NC 28608, United States of America
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We studied daily temperature and hu-
midity in COVID-19 morbidity.

• We used a case-crossover and distrib-
uted lag nonlinear model.

• We observed non-linear associations
with humidity and temperature.

• Humidity was the best predictor of
COVID-19 transmission.

• Results varied across select US cities de-
spite accounting for social distancing
measures.
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Little is known about the environmental conditions that drive the spatiotemporal patterns of SARS-CoV-2. Pre-
liminary research suggests an association with meteorological parameters. However, the relationship with tem-
perature and humidity is not yet apparent for COVID-19 cases in US cities first impacted. The objective of this
study is to evaluate the association between COVID-19 cases and meteorological parameters in select US cities.
A case-crossover design with a distributed lag nonlinearmodel was used to evaluate the contribution of ambient
temperature and specific humidity on COVID-19 cases in select US cities. The case-crossover examines each
COVID case as its own control at different time periods (before and after transmission occurred). We modeled
the effect of temperature and humidity on COVID-19 transmission using a lag period of 7 days. A subset of 8 cities
were evaluated for the relationship with meteorological parameters and 5 cities were evaluated in detail. Short-
term exposure to humidity was positively associated with COVID-19 transmission in 4 cities. The associations
were small with 3 out of 4 cities exhibiting higher COVID19 transmission with specific humidity that ranged
from 6 to 9 g/kg. Our results suggest that weather should be considered in infectious disease modeling efforts.
Future work is needed over a longer time period and across different locations to clearly establish the
weather-COVID19 relationship.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental and observational studies demonstrate the influence
of meteorological parameters on the seasonal transmission of influenza,
human coronavirus (HCoV), and human respiratory syncytial virus
(RSV), which are often characterized by distinct increases in incident
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cases and detection frequency in the winter months (Lowen and Steel,
2014; Tamerius et al., 2013; Tamerius et al., 2011; Midgley et al.,
2017; Killerby et al., 2018; Landes et al., 2013; Morikawa et al., 2015).
An accumulating evidence-base suggests that seasonal changes in in-
door and outdoor environmental factors exert a modifying effect on
both the transmission efficiency and viability of the respiratory virus
and the host's airway immune defense (Moriyama et al., 2020). These
environmental factors are then compounded by human behavior, social
interactions, or hygiene practices that enhance viral transmission be-
tween individuals who are infected and those who are susceptible.

Like these seasonal viruses, SARS-CoV-2 can be transmitted through
aerosols, large respiratory droplets, or direct contact with fomites
(Lipsitch et al., 2020). SARS-CoV, responsible for the SARS outbreak in
2003, and SARS-CoV-2 responsible for COVID-19, rely on the same
receptor-angiotensin-converting enzyme 2 (ACE2)-for infecting
humans (Sun et al., 2020). Both made their debut in the winter months
giving further credence to the role of the winter environment as an im-
portant contributor in transmission, particularly in temperate regions
(Li et al., 2020; Paules et al., 2020; Kuiken et al., 2003; Peiris et al.,
2003). Scientists conjecture that low humidity and temperature likely
promote the viability of SARS-CoV-2 in respiratory droplets and it's
plausible that airborne transmission is highly likely among COVID-19
caseswith severe pneumonia. A recent population-based study examin-
ing the daily incidence of COVID-19 and daily temperature and relative
humidity across Chinese provinces observed that in addition to dry and
cold locations, locations with low absolute humidity also experienced
increased virus transmission rates (Luo et al., 2020).

Little is known about the environmental conditions that drive the
spatiotemporal patterns of SARS-CoV-2/COVID-19 and preliminary re-
search suggests an association with meteorological parameters (Chen
et al., 2020; Luo et al., 2020; Sajadi et al., 2020; Luo et al., 2020). How-
ever, the relationship between temperature and humidity is not yet ap-
parent for COVID-19 cases in the US. As the US begins its public health
response to COVID-19, the implementation of extensive public health
interventions are needed at appropriate time scales to mitigate the
health and economic impacts of the COVID-19 pandemic. Research on
the seasonality and influence of meteorological parameters on COVID-
19, such as temperature and specific humidity, can be used to inform
the timing of effective interventions to mitigate SARS-CoV-2/COVID-
19 transmission at the local scale to save countless lives and resources.

The objective of this research is to examine the association between
meteorological variables and COVID-19 in US cities. Unlike previous
studies, we will use a high-resolution spatiotemporal meteorological
dataset to answer the following: Is there an association with meteoro-
logical parameters and COVID-19? If so, which meteorological parame-
ters predict COVID-19 transmission? Is the association stronger after
accounting for locally implemented social distancing measures? How
does this relationship vary spatially across the US? By answering these
questions, the knowledge gained on the contribution of environmental
factors like temperature and humidity on transmission can be paired
with other nonpharmaceutical interventions related to behavioral
(e.g., wearing face mask, washing hands) factors that boost immunity
or the timing of social distancingmeasureswith seasonal spikes in influ-
ential environmental parameters to reduce transmission.
2. Methods

2.1. Study design and location

This retrospective case-crossover study examined the nonlinear and
delayed association between environmental factors and COVID-19
transmission. We selected the following US locations that exhibited
high relative caseloads of COVID-19 in the early stages of the pandemic
for their underlying populations: Seattle, Washington; New York, NY;
Albany GA; New Orleans, LA.; Bridgeport-Stamford-Norwalk, Conn.;
Pittsfield, Mass; Detroit, MI; Chicago, IL. Fig. 1 is a map of the 8 study
locations.

2.2. COVID-19 cases

The primary health outcome of interest was incident cases. Daily
confirmed new cases of COVID-19 for all cities were abstracted from
the Johns Hopkins Center for Systems Science and Engineering
repository (source: https://github.com/CSSEGISandData/COVID-19).
The repository continually assembles global COVID-19 cases from mul-
tiple sources including the World Health Organization, the Center for
Disease Control, and the COVID-19 Tracking Project (Dong et al.,
2020). We assumed at least a median incubation period of 5.2 days
(Lauer et al., 2020). Case counts were log-transformed, and time series
were created when cities had N2 new daily cases. Because deidentified
and anonymized data on case morbidity were obtained from a publicly
accessible data portal this research did not involve participant consent
and institutional review was not warranted.

2.3. Environmental parameters

Meteorological data were derived from the European Center for Me-
dian Range Weather Forecast (ECMWF) atmospheric reanalysis dataset
(ERA-5) (C3S, 2017). ERA-5 provides a suite of hourly weather parame-
ters thatmay affect local COVID-19 transmissions at a 30-kmspatial res-
olution.While not commonly used in environmental health studies, the
advantage that ERA-5 data provides over individual weather station
data is that spatial heterogeneity ismore representative and the estima-
tion of health effects of temperature and humidity can be derived in lo-
cations far from weather stations or without any station. Previous
research has shown that reanalysis data and weather station data
show similar health risk estimates (Royé et al., 2020). Daily average
near-surface air temperature, specific humidity, and solar radiation
were extracted from ERA-5 for each study location by a simple spatial
average. Because relative humidity (RH) is highly correlated with tem-
perature, we chose to instead include specific humidity (Q) as a predic-
tor variable in the analysis.

2.4. Heat mapping

Preliminary studies have suggested that the combination of humid-
ity and air temperature could affect the transmission of local COVID-19
cases (e.g., Sajadi et al., 2020; Lou et al., 2020; Oliveriros et al., 2020).We
examined the association between local COVID-19 cases and air
temperature and specific humidity using the density heatmap. To con-
struct the density heatmap, the daily confirmed COVID-19 case reports
were first separated based on their corresponding daily mean air tem-
perature (every 1 °C) and mean specific humidity (every 0.5 g/kg). All
daily confirmed case counts were classified into the same air tempera-
ture and specific humidity conditions (e.g., 0 °C b Tair b 1 °C and
1 g/kg b Q b 1.5 g/kg) and evaluated together as a densitymeasurement.
This explanatory analysis was intended to demonstrate the association
of COVID-19 cases with the combined effect of air temperature and spe-
cific humidity. The heatmap could identify the range of optimal meteo-
rological conditions for local transmissions. Considering the incubation
period of COVID-19, we applied the analysis to local weather data at dif-
ferent lead times (i.e., 0, 2, 5, 7, 10, 14 days).

2.5. Case-crossover distributed lag non-linear model

Weapplied a time-stratified case-crossover design that uses each in-
dividual COVID-19 case as their own control. A conditional Poisson re-
gression was used in combination with the Distributed Lag Nonlinear
model (DLNM). This approach is more flexible than conditional logistic
regression (Armstrong et al., 2014) in that it allows for overdispersion.
The application of the DLNM to the case-crossover design provides a
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Fig. 1. Study Area Locations, which include the counties that encompass the following cities: Seattle, Washington; New York, NY; Albany GA; NewOrleans, LA.; Bridgeport-Stamford-Nor-
walk, Conn.; Pittsfield, Mass; Detroit, MI; Chicago, IL.
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means to assess the nonlinear and delayed effects, as well as the cumu-
lative exposure-response between short-term daily average exposure
to meteorological parameters and daily counts for COVID-19 cases. We
performed separate analyses for our primary health outcome —
COVID-19 morbidity — and each meteorological parameter relative to
the median and quartiles (i.e., 50th versus 75th). This approach is
suitable for studying the effects of time-varying exposures
(e.g., intermittent changes in meteorological) on a rare, acute condition
(i.e., COVID-19 transmission) (Armstrong et al., 2019;Malig et al., 2016;
Guo et al., 2011). We relied on the following equation:

Yt � Poisson μtð Þ Log μtð Þ ¼ αþ βTt; lþ λStratat þ υSDt

where t is the day of the observation; Yt is the observed daily case counts
on day t; α is the intercept; Tt,l is a matrix obtained by applying the
DLNM to temperature or humidity, β is a vector of coefficients for Tt,l,
and l is the lag days. Stratat is a categorical variable of day (30 day time
period) used to control for trends, and λ is a vector of coefficients. SDt is
a binary variable that is “1” if day twas a social distancing order, and υ is
the coefficient. Our model was adapted from similar work by Guo et al.
(2011) who also employed a case-crossover design and DLNM to inves-
tigate the effects of temperature onmortality. Given that the incubation
period between exposure and symptom occurrence is 2 to 14 days
(Linton et al., 2020), we used a maximum 14-day lag period to explore
the potential delayed association of temperature and humidity in our
model for approximating the pre- and post-infection period for each
case.

The DLNM utilizes the “cross-basis” function to flexibly model the
lag and exposure components to account for cumulative effects in envi-
ronmental exposure (Gasparrini et al., 2010). We first examined the as-
sociation between temperature and humidity individually for our
primary outcome. Final models included both temperature and humid-
ity, to examine the contribution of temperature and humidity to COVID-
19 transmission in US cities. But our assumption was that temperature
would have a predominant effect followed by humidity based on
emerging literature (e.g., Shi et al., 2020; Araujo et al., 2020; Wang
et al., 2020; Oliveiros et al., 2020; Notari et al., 2020) and therefore hu-
midity was included in the crossbasis term.

2.6. Sensitivity analysis

A sensitivity analysis was conducted to select degrees of freedom for
the lag polynomial (2–8 degrees of freedom) and the response polyno-
mial (2–8 degrees of freedom) for NewOrleans, LA (data not shown). In
addition, we changed the maximum lag to 14 and 20 days, which gave
similar results (data not shown). Prior research has examined a 0 day,
3 day to 5 day lags for COVID-19 transmission (Ma et al., 2020; Wang
et al., 2020) all the way to a lag period extending 7 to 14 days for mete-
orological parameters (Islam et al., 2020). For our initial examination of
meteorological parameters independently, we compared the best
model fit using quasi-Akaike Information Criterion (qAIC) to determine
the optimal degrees of freedom and lag periods. q-AIC is a well-
established technique for sensitivity analysis and was used to compare
DLNM-only models and DLNM + Case-Crossover models to confirm
the final model selection (Guo et al., 2011). Models were also examined
for the adjustment for trends, such as the day of the week. Initially, we
examined the influence of the month in the strata term for the DLNM
+ Case-Crossover models, but the qAIC values demonstrated the addi-
tion of these variables resulted in poor model fit. Likely due to the
short time seriesand thus we selected the most parsimonious model
that only included day in the strata. The “dlnm” package was used to
create the DLNM model (Gasparrini, 2011) using R statistical software
(R Core Team, 2020). We adopted the rare-disease assumption where
our study hypothesis tested the association between weather exposure
and a disease (i.e., COVID-19) characterized by low prevalence. There-
fore, we assumed the odds ratio to approximate the relative risk. All rel-
ative risks (RR) were presented with corresponding 95% confidence
intervals (95% CIs).

2.7. Attributable burden of COVID-19 transmission due to weather

In epidemiology, measures of potential impact are used to examine
the expected impact of changing the distribution of one or more risk
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factors in a particular population (Kleinbaum et al., 1982, Szklo and
Nieto, 2014). For example, the attributable risk, also known as the etio-
logic fraction, is used to examine the proportion of all new cases in a
given time frame that is attributable (or causally associated) to the ex-
posure of interests (Szklo and Nieto, 2014). Because the evidence-base
linking COVID-19 transmission and weather is new and evolving, it is
too early to assume a causal association. Therefore, we relied on the ex-
cess fraction (EF) as an analogous, but alternativemeasure to the attrib-
utable risks in our analysis, to approximate the excess caseload due to
exposure. To examine the attributable burden of transmission for
COVID-19 due to weather we calculated the percent excess fraction
for humidity and temperature for individual cities. We used the follow-
ing equation: % EF= b × (RRi − 1) / b × (RR− 1.0i) + 1.0), where b is
the point prevalence of COVID-19 for each city. Point prevalence was
calculated as the number of cases over the study period divided by the
total population in a specific city. We adopted the modified version of
this equation based on Gasparrini and Leone (2014) to extend the defi-
nition for the excess fraction.

3. Results

Our analysis included a total of 266,760 cases and 19,729 deaths
across 8 cities (Table 1). The crude rate of COVID-19 per location was
highest for New Orleans, LA (374 daily cases per 100,000 people),
followed by New York City, NY (51 daily cases per 100,000 people), Al-
bany, GA (42 daily cases per 100,000 people), and Bridgeport, CT (25
daily cases per 100,000 people). The lowest rates of COVID-19 cases
were in Seattle, WA (4 daily cases per 100,000 people), and Pittsfield,
MA (8 cases per 100,000 people). The highest crude death rates were
observed in New York City, NY (6 daily deaths per 100,000 people), Al-
bany GA (3 daily deaths per 100,000 people), New Orleans, LA (2 daily
deaths per 100,000 people) and Detroit, MI (2 daily deaths per
100,000 people).

3.1. Density heatmaps

The density heatmap (Fig. 2) presents a descriptive explanatory
analysis of the combined association of temperature and specific hu-
midity on COVID-19 cases for the selected cities. Based on the heatmap,
COVID-19 cases were more common in low specific humidity
(2–6 g/kg) and low temperature (2–11 °C) conditions. This association
was consistent when we consider different incubation times (lag
0–14 days).

3.2. Distributed lag-non linear models

3.2.1. All locations
Table 2 shows the goodness of fit (qAIC) values across model types

for all locations and parameters, which is a common validation and sen-
sitivity technique (e.g., Gasparrini et al., 2010; Guo et al., 2011). In gen-
eral, the humidity was the strongest predictor for COVID-19 cases, with
a better model performance for humidity than temperature across all
model types and study locations. Case crossover models performed
higher in Seattle, WA, New York City, NY, Chicago, IL, and New Orleans,
LA. The variation in the dose-response profile for humidity was negligi-
ble before and after adding temperature as a predictor into the model,
indicating that humidity exhibited a robust association. Model perfor-
mance was poor (indicated by high qAIC values) for Detroit, MI, Pitts-
field, MA, and Bridgeport, CT. Results for these cities were insignificant
and therefore not reported in the final results (Supplemental Figs. 1,
2). Overall, the case-crossover + DLNM model outperformed the
DLNM only model. However, select locations had a better model fit for
DLNM only (e.g., Albany, GA), although marginally better. Results
were presented for the following cities: New Orleans, LA, Albany, GA,
and Seattle, WA, and models were selected based on qAIC values.
DLNM and case-crossover models were also constructed for these
locations to analyze the effect of solar radiation (W/m2) on COVID inci-
dence rates.

3.2.2. New Orleans, LA
The relative risk for COVID-19 exhibited a U-shaped relationship

with increases in cases at high and low humidity in New Orleans.
With reference to the median humidity, relative risk peaked at mini-
mum (5 g/kg, RR: 1.98, CI: 1.07–3.66) and maximum (16 g/kg, RR:
2.18, CI: 1.28–3.72) values. Similarly, temperature exhibited a U-
shaped relationship with reference to the median and a significant rel-
ative risk at 16–17 °C (RR: 1.17–1.23; CI: 1.03–2.24) and at the maxi-
mum observed temperatures (23 °C; RR: 1.75, CI: 1.13–2.44). Solar
values exhibited an inverted U-shaped relationship with a higher rela-
tive risk from 5200 to 6300 (W/m2) (Fig. 3).

3.2.3. Albany, GA
Temperature and solar radiation were not significant predictors of

COVID-19 cases.With reference to themedian humidity, significant rel-
ative risk is observed from 6 to 9 g/kg (RR: 1.23–1.47, CI: 1.06–1.94).
Due to a lower qAIC value and more robust results, unlike other cities,
a DLNM-only model was applied to the humidity and the COVID-19 re-
lationship for Albany, GA (Fig. 4).

3.2.4. Chicago, IL
The relative risk for humidity values peaked at 7 g/kg (RR: 1.71, CI:

1.3–2.3) and was significant from 4 g/kg to 8 g/kg (RR: 1.03–1.71, CI:
1.01–2.23) in relation to the median. The relative risk for temperature
was significant from 4 to 9 °C (RR: 1.11–1.44; CI: 1.03–1.78). Solar radi-
ation demonstrated a linear relationship with lower solar values
resulting in lower COVID-19 risk (Fig. 5).

3.2.5. New York City, NY
Temperature exhibited a linear association with the COVID-19 inci-

dence that revealed a protective effect from 9 to 10 °C (RR: 0.60–0.69,
CI: 0.39–0.95), whereas no relationship was observed between humid-
ity and solar radiation and COVID-19 cases in NYC (Fig. 6).

3.2.6. Seattle, WA
The temperature was significant from 3 to 5 °C (RR: 1.59–1.95, CI:

1.22–2.65). However, the humidity was significant at the lowest values
with an increased risk of transmission occurring at b3 g/kg (RR: 1.44, CI:
1.16–1.80). Lower risk of transmission was observed for the lowest
values of solar radiation (i.e., b3200 W/m2, RR: 0.93, CI: 0.89–0.97)
(Fig. 7).

3.2.7. The excess burden of new COVID-19 cases due to weather
Overall, the attributable burden of excess COVID-19 cases associated

with exposure to humidity and temperature was low for each city
(Table 3). The excess fraction was the highest for New Orleans, with
3.7 to 4.5% of new cases occurring within the humidity range of 5 g/kg
to 16 g/kg and 6.8 to 9.1% occurring within the temperature range of
16(°C) to 23(°C).

4. Discussion

In this study, we examinedwhether daily meteorological patterns in
humidity, temperature, and solar radiation were associated with the
transmission of COVID-19 in U.S. cities that emerged as early hot spots
for infection.We applied the DLNM to a case-crossover design to assess
the nonlinear and delayed effects of meteorological parameters on
COVID-19 incident cases. To our knowledge, this study is the first to as-
sess the effects of meteorological variables on COVID-19 morbidity
using a robust distributed lag nonlinear model and case-crossover de-
sign. We observed a weak but statistically significant relationship be-
tween COVID and meteorological parameters for select locations
including Albany, GA, New Orleans, LA, New York City, NY, and Chicago,



Table 1
Distribution of key variables by city.

City (county) Latitude &
longitude

Populationa Study
period
(days)

Date of social
distancing
measures

# of
total
cases

# of
deaths

Median daily
temperature
(°C)

Median daily
specific humidity
(g/kg)

Seattle, Washington (King) 47.61° N 122.33° W 745,000 2/29–4/23 (54) 3/7 5532 385 2.19 3.98
New York City, NY (New York) 40.71° N 74.01° W 8,336,817 3/5–4/11 (49) 3/13 145,855 16,158 6.01 4.0
Albany, GA (Dougherty) 31.58° N 84.16° W 75,200 3/14–4/23 (40) 3/21 1479 107 18.78 9.88
New Orleans, LA (Orleans) 29.95° N 90.07° W 1,670,000 3/11–4/23 (43) 3/16 62,663 387 19.96 12.99
Bridgeport-Stamford-Norwalk, Conn (Fairfield) 41.18° N, 73.19° W 943,823 3/12–4/23 (42) 3/16 10,008 125 5.25 3.68
Pittsfield, Mass (Berkshire) 42.45° N, 73.25° W 126, 348 3/10–4/23 (44) 3/13 418 29 2.18 3.3
Detroit, MI (Wayne) 42.33° N, 83.05° W 1,753,893 3/15–4/23 (39) 3/16 14,994 1396 3.30 3.78
Chicago, IL (Cook) 41.88° N, 87.63° W 2,710,000 3/10–4/23 (44) 3/12 25,811 1142 3.475 3.91

a Population data from ACS 2018 1-year estimate.
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IL and no relationship for other locations like Pittsfield, MA, Detroit, MI
and Bridgeport, CT. Spatially, we found a weaker or insignificant rela-
tionship with meteorological variables in the northeastern US
(e.g., Pittsfield, MA, Bridgeport, CT, and New York City, NY). In contrast,
all southern cities (e.g., Albany, GA, and New Orleans, LA) exhibited a
stronger association with meteorological variables. This difference
could in part be due to the time period (March–April) where weather
daily fluctuations are more prominent depending on the origin of air
masses resulting in greater temperature and humidity ranges for south-
ern locations. Although this analysis is based on selected cities in the
United States only, this result is similar to results derived from selected
cities worldwide with community transmission (Sajadi et al., 2020).

Humidity was observed as the best predictor for the coronavirus
outbreak followed by temperature and solar radiation. The majority of
cities included in this study demonstrated a nonlinear dose-response
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Fig. 2. The density heatmaps of COVID-19 cases in the selected cities in associationwith tempera
the histogram of COVID-19 cases in relation to temperature while the blue histogram beside e
relationship between a range of specific humidity conditions and
sustained COVID-19 transmission. More specifically, 3 of the 4 cities
were characterized by a significant relationship between COVID-19
transmission and humidity (e.g., Albany, GA, New Orleans, LA, and Chi-
cago, IL). Humidity in the range of 6 to 9 g/kg (analogous to an Absolute
Humidity range of 7.56–11.37 g/m3) was a significant predictor of
COVID-19 cases and resulted in an up to two-fold increased risk of
transmission in some areas. Early research in China and other interna-
tional locations reported a similar relationship between the variability
in relatively humid conditions and transmission of COVID-19 (Lou
et al., 2020; Shi et al., 2020; Oliveiros et al., 2020; Bukhari et al., 2020;
Rahman et al., 2020; Islam et al. 2020). Our results for specific humidity
are higher than those reported by Sajadi et al. (2020) who reported op-
timal transmission at low specific humidity levels (3–6 g/kg) for loca-
tions outside of the US.
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Table 2
quasi-AIC values demonstrating model fit for DLNM and CCO models for each city.

DLNM only DLNM + CCO

Temperature Humidity Humidity
+ temperature

Temperature Humidity Humidity
+ temperature

Humidity
+ SD

Humidity + temperature
+ SD

Seattle, WA 2.344 3.471 3.412 2.476 3.632 3.861 1.686 1.875
Albany, GA 2.609 2.522 2.343 3.016 2.862 2.676 3.123 2.899
New York City, NY 3.471 3.471 3.471 3.632 3.632 3.632 1.686 1.686
Chicago, IL 1.559 2.158 2.062 1.574 1.456 1.642 1.588 1.588
Bridgeport, CT 11.672 10.803 12.34 13.126 11.255 12.842 12.264 13.899
Detroit, MI 10.618 10.618 12.236 12.272 12.272 13.947 13.781 15.342
Pittsfield, MA 11.102 9.232 10.422 12.676 10.649 11.922 11.55 12.854
New Orleans, LA 3.022 3.182 3.528 2.296 2.094 2.331 2.285 2.525
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Fig. 3. Summary of cumulative exposure-response curves for COVID-19morbidity for temperature (far left), humidity (center), and solar radiation (far right) over a 30 day period in New
Orleans, LA after adjusting for social distancing, 2020.
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Fig. 4. Summary of cumulative exposure-response curves for COVID-19 morbidity for temperature (far left), humidity (center), and solar radiation (far right) over a 30 day period in
Albany, GA after adjusting for social distancing, 2020.
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Fig. 5. Summary of cumulative exposure-response curves for COVID-19 morbidity for temperature (far left), humidity (center), and solar radiation (far right) over a 30 day period in
Chicago, IL after adjusting for social distancing, 2020.
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Temperature and solar radiation did not exhibit a strong association
with COVID-19 incidence in our study locations. Our results for New
York City, NY support and extend previous research on COVID-19 and
meteorological parameters in New York City that found a significant
association with temperature using simple correlation coefficients
(Bashir 2020). Bashir et al. observed a direct association with higher
temperatures predicting higher COVID-19 cases (2020). Conversely,
our research found a protective effect at higher temperatures and is cor-
roborated by earlier studies (Qi et al., 2020;Wang et al., 2020) and other
respiratory viruses (Moriyama et al., 2020). Thesemixedfindings on the
influence of temperature on COVID-19 transmission highlight the need
formore analysis across a variety of geographic locations and over a lon-
ger time series.
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Fig. 6. Summary of cumulative exposure-response curves for COVID-19morbidity for temperat
York City, NY after adjusting for social distancing, 2020.
4.1. Future studies

The modeling approach used in this research study can be used to
expand upon the evidence-base with the addition of social determi-
nants of health (e.g., age, sex, race, and ethnicity, occupation, income
status) to examine the joint and independent effects of social and envi-
ronmental drivers of COVID-19 transmission. The transmission of respi-
ratory viruses, like COVID-19, is likely to be impacted by a number of
factors including meteorological conditions, population density, testing
capacity, and geographic disparities in access to and quality of medical
care (Dalziel et al., 2018). These factors should be considered in future
studies to fully understand the contextual influence of meteorological
effects on COVID-19 transmission.
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Fig. 7. Summary of cumulative exposure-response curves for COVID-19 morbidity for temperature (far left), humidity (center), and solar radiation (far right) over a 30 day period in
Seattle, WA after adjusting for social distancing, 2020.
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4.2. Strengths and limitations

The main strength of this study was the case-crossover design. This
design is used in observational studies to capture short-term effects of
exposures and removes the effects of seasonal and secular trends by
allowing each COVID-19 case to serve as their own control
(e.g., Armstrong et al., 2019;Malig et al., 2016; Guo et al., 2011). This de-
sign was particularly advantageous given the limited information avail-
able on cases and the short time series under investigation. While the
current evidence base is newly emerging, the majority of published
studies to date have only examined the relationship between meteoro-
logical factors and transmission using descriptive correlation statistics
or simple linear regression. One important advantage to the DLNM
method is that it not only allows the model to maintain a detailed
time course of the non-linear exposure-response relationship, but it
also generates an estimate for the overall effect of an exposure on a
health outcome in the midst of changes in the effect over different
lagged or delay periods (Gasparrini et al., 2010). Unlike previous studies
examining the influence of meteorological factors on COVID-19 trans-
mission, an additional strength of our study is the adjustment for social
distancing measures (Sajadi et al., 2020).

Most environmental health research includes either a variable for
relative humidity (RH) and/or absolute humidity (AH). However, spe-
cific humidity, the metric included in our study, is more conservative
and less susceptible to changes in pressure and temperature compared
to AH. Further, in addition to the confounding influence of humidity and
temperature, RH is typically not useful as a stand-alone humidity vari-
able in environmental health or epidemiological research. Our results
are comparable to a few recent studies examining the association
Table 3
The % excess fraction of COVID-19 cases attributable to humidity and temperature expo-
sure in select US cities.

Prevalence Humidity Temperature

EF% EF%

Seattle, WA 5532/745,000 (0.01) 0.44 0.58 to 0.94
Albany, GA 1479/75,200 (0.02) 0.46 to 0.93 –
New Orleans, LA 62,663/1,670,000 (0.04) 3.78 to 4.51 6.75 to 9.11
Chicago, IL 25,811/2,710,000 (0.01) 0.03 to 0.70 0.11 to 0.44
between COVID-19 and specific humidity (e.g., Ma et al., 2020; Sajadi
et al., 2020).

Recent research has demonstrated the linkage between poor air
quality and COVID-19 mortality (Wu et al., 2020); however, we did
not adjust for background air qualitymeasures as a potential confound-
ing factor in our study.While ourmodeling strategy did adjust for social
distancing measures, our estimates do not account for underreporting
of case counts (Lachmann, 2020), demographic data on cases, changes
in testing capacity, or the date of onset of COVID-19 symptoms. This
study did not include information on the type or amount of testing at
each location, as this data was not available at the time of publication.
There is currently a void of publicly accessible COVID-19 testing data
at the local level. While efforts are underway to capture this data at
the state-level, there are a number of inconsistencies relating to reliance
on multiple data sources, the timing of the release of these data, and
changes in the ways in which states are counting negative and positive
test results. However, future research studies should consider including
daily testing, as well as other contexutal social and environmental pa-
rameters, as control variables for examining the association between
meteorological variables and COVID-19 cases.

5. Conclusion

Meteorological factors may influence COVID-19 transmission and
spread in the US. The influence of meteorological parameters on
COVID-19 was modest and not uniform throughout select study loca-
tions. Humidity was the best predictor of COVID-19 transmission com-
pared to solar radiation and temperature in US cities presenting as
early emergers in the pandemic. The case-crossover design was an en-
hancement to the application of DLNM. As an emerging infection, future
research is needed to fully understand the impact of environmental
conditions on COVID-19 transmission.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.140093.
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