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Abstract
Autophagy is a highly regulated catabolic process in which superfluous,
damaged organelles and other cytoplasmic constituents are delivered to the
lysosome for clearance and the generation of macromolecule substrates during
basal or stressed conditions. Autophagy is a bimodal process with a context
dependent role in the initiation and the development of cancers. For instance,
autophagy provides an adaptive response to cancer stem cells to survive
metabolic stresses, by influencing disease propagation via modulation of essential
signaling pathways or by promoting resistance to chemotherapeutics. Autophagy
has been implicated in a cross talk with apoptosis. Understanding the complex
interactions provides an opportunity to improve cancer therapy and the clinical
outcome for the cancer patients. In this review, we provide a comprehensive view
on the current knowledge on autophagy and its role in cancer cells with a
particular focus on cancer stem cell homeostasis.
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Core tip: Cancer stem cells (CSCs) are a distinct subpopulation in the tumor bulk that are
highly plastic, and autophagy has been suggested to modulate their stemness and
development during cancer progression. Autophagy is a pro-survival mechanism used by
cancer cells to provide bioenergetic substrates. Therefore, dissecting the role of
autophagy in cancer propagation can theoretically lead to a more efficient cancer
treatment via the modulation of autophagy, in combination with chemotherapeutics to
sensitize and target CSCs. This review summarizes the divergent role of autophagy in
CSCs and cancer cells and attempts to elucidate the molecular mechanisms involved.
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INTRODUCTION
Autophagy (“self-consumption”) is a conserved catabolic process which assists in the
clearance of superfluous, damaged organelles and proteins, and contributes in the
recycling of the constituents for the maintenance of metabolic homeostasis and as a
pro-survival  mechanism [1].  Autophagy  is  further  activated  by  intrinsic  and
environmental stressors including nutrient deprivation, oxidative stress, cytokine and
growth factor deficiency, hypoxia and exposure to infection[2,3]. It can be noted that
basal autophagy acts as a quality assurance mechanism in cells and as a source of
metabolites [4 ].  Dysregulation  of  autophagy  is  associated  with  a  variety  of
inflammatory and infectious conditions, as well as neurodegenerative pathologies,
ageing and cancer[5].

Autophagy is  a highly regulated mechanism that facilitates the deliverance of
cytoplasmic components for lysosomal mediated degradation. There are three distinct
forms of autophagy, such as microautophagy, chaperone mediated autophagy (CMA)
and macroautophagy. Microautophagy is modulated by the direct sequestration of
cytosolic cargo causing engulfment, followed by indentation of the lysosome leading
to degradation[6]. In comparison, CMA is a prime example of selective autophagy. In
this particular pathway, chaperones are utilized targeting specific proteins containing
a pentapeptide KFERQ motif sequence. Once engaged this leads to the translocation
across the lysosome membrane mediated by lysosome associated membrane protein
2A[7,8].  In contrast, macroautophagy (herein referred to as autophagy) initiates the
degradation  of  intracellular  organelles  by  delivering  them  to  the  lysosome  by
sequestrating  sections  of  the  cytoplasm  via  double  membrane  vesicles  called
autophagosomes.  The  fusion  between  these  two  entities  not  only  promotes
degradation  but  also  generates  bioenergetic  substances  for  recycling.  Emerging
studies describe the existence of a cross talk between CMA and macroautophagy that
promotes a compensatory mechanism under basal and stressed conditions[7,9].

The regulation and process of canonical autophagy
Autophagy relates genes (Atg) are involved in the development and turnover of the
autophagosomes. Formation of the autophagosome proceeds through multiple steps
that include initiation, nucleation, elongation, maturation and thereafter fusion with
the lysosome[8,10]. The mitochondria and the endoplasmic reticulum (ER) are contact
sites for the formation of autophagosomes[11,12] (Figure 1).

Upstream signaling pathway such mammalian target of rapamycin (mTOR) is a
major  negative  regulator  of  autophagy  as  it  senses  amino  acid  availability  and
initiation of cellular anabolism. 5’-AMP-activated protein kinase (AMPK) is activated
during starvation[2]. Under these circumstances, AMPK phosphorylates tuber sclerosis
complex 2 which inhibits mTOR[13]. Moreover, Atg7 protein is essential in modulating
starvation-induced autophagy as demonstrated in Atg7 conditional knockout mice[14].

The  inhibition  of  mTOR  sequentially  leads  to  the  activation  of  pre  initiation
complex  composed of  unc-51-like  kinase  1  (ULK1)  complex,  FAK family  kinase
interacting  protein  of  200  kDa,  Atg13  and  Atg101,  causing  translocation  to  the
membrane, and triggering the initiation step for the assembly of autophagosomes[10].
The ULK1 complex phosphorylates the class III phosphatidylinositol-3-kinase (PI3K)
vacuole protein sorting 34 (VPS34) complex; consisting of VPS15, Beclin-1 (BECN1)
and Atg14, which stimulates the generation of phosphatidylinositol-3-phospate 3
(PI3P),  an  essential  lipid  molecule  required  for  the  nucleation  step  of  the
phagophore[15-17]. Atg9 positive vesicles on the ER contribute to the nucleation process
by interacting with the ULK1 complex[17]. To promote autophagosomes elongation,
WD repeat domain phosphoinositide-interacting protein 2 (WIPI-2) and zinc-finger
FYVE domain-containing protein 1 are employed for the recruitment of two ubiquitin
like  systems[16].  Firstly,  Atg7  and  Atg10  act  as  E1  like  and  E2  like  enzymes  to
covalently conjugate Atg12 to Atg5 and then attach to Atg16L[8,18,19].  In the second
conjugation pathway, Atg12-Atg5 conjugate serves as an E3 like enzyme, where Atg8
family member LC3 is attached to phosphatidylethanolamine[2,19].  Atg7 and Atg3
mediate this process. Next, the autophagosome matures by membrane bound LC3.

WJSC https://www.wjgnet.com May 26, 2020 Volume 12 Issue 5

Mandhair HK et al. Modulation of autophagy in CSCs

304



Figure 1

Figure 1  Canonical autophagy pathway. Autophagy is a multistep process that includes the following steps: initiation, nucleation, elongation, maturation and fusion
with the lysosome. Several proteins referred to as autophagy related genes regulate this process. Autophagy is stimulated under basal conditions and is induced by
stress, for example nutrient deprivation. ATG: Autophagy related genes; ER: Endothelial reticulum; FIP200: FAK family kinase interacting protein of 200 kDa; LC3:
Light chain 3; PE: Phosphatidylethanolamine; PI3P: Phosphatidylinositol-3-phospate 3; ULK1: Unc-51-like kinase 1; VPS34: Vacuole protein sorting 34.

NBR1 neighbor of BRAC1 and adaptor protein p62 facilitate in the degradation of
misfolded and ubiquitinated substrates by binding to Atg8-LC3[18-20]. The closure of the
autophagosome  is  driven  by  LC3  causing  the  Atg12-Atg5-Atg16L  complex  to
dissociate  from the autophagosome membrane leaving the lipidated LC3 (LC3B;
microtubule-associated proteins 1A/1B light chain 3B) in the autophagosome[16,18]. The
degradation of LC3B and p62 are widely accepted markers to measure the autophagic
flux.

It should be noted, however, that multiple signaling cascades control autophagy
and modify  ULK1 and class  III  PI3K complexes.  These  include  antigen  specific
receptors (B cell receptor and T cell receptor), CD40 “the co-stimulatory molecule”,
Toll like receptors, cytokine receptors and nucleotide-binding oligomerization domain
protein 2[2].  The VPS34-BECN1 complex can be inactivated by the anti-apoptotic
proteins from the B cell lymphoma-2 (BCL-2) family[16]. Here we have discussed the
major canonical pathway that utilizes mTOR (Figure 1).

Non-canonical autophagy
Autophagy that precedes the formation of autophagosomes without the involvement
of the core machinery is referred to as non-canonical autophagy. An example of non-
canonical autophagy would be LC3-associated phagocytosis (LAP) which depends on
class III PI3K subunit called RUBICON, a negative regulator of autophagy[2,21]. Unlike
canonical  autophagy,  LAP  only  requires  BECN1  and  VPS34  as  a  pre-initiation
complex and downstream conjugation of LC3 to generate NADH oxidase 2[22]. LAP-
LC3 is associated to autophagosome maturation and facilitating the degradation of
engulfed cells. LAP does not respond to nutrient deficiency or intracellular stressors,
unlike  canonical  autophagy.  Additionally,  the  substrates  for  this  process  are
extracellular entities including Toll like receptor, pattern recognition receptors and
dead cells[22]. LAP occurs in multiple immune cells, such as macrophages, dendritic
cells (DCs) and epithelial cells[21]. LAP deficiency in cells and animal models trigger
exaggerated inflammation[22].

In the canonical form, it is assumed that the generation of PI3P is essential for the
process  of  autophagy.  However,  Mauthe  et  al[23]  reported  resveratrol  mediated
autophagy  did  not  stimulate  PI3P  dependent  accumulation  of  WIPI-1  at  the
autophagosome membrane. This finding was confirmed by PI3P inhibition using
wortmannin in combination with resveratrol which led to an increased autophagic
flux of LC3B and GFP-LC3 puncta formation. This was promoted in the absence of
phagophore formation suggesting an alternative contact  site  for autophagosome
formation. Additionally, the actions of resveratrol were found to be independent of
BECN1; however, required Atg7 and Atg5 to induce the LC3 lipidation. It can be
concluded that resveratrol induces non-canonical autophagy[23].
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The  origin  of  the  autophagosome  membrane  and  the  formation  of  the
autophagosome  remains  unclear [24].  Recently,  using  freeze  fracture  replica
immunolabelling, WIPI-1 puncta were found to be localized on the ER and Plasma
membrane and WIPI-2 was detected close to the Golgi cisternae under starvation
induced autophagy, exclusively. These findings suggest that WIPI-1 and WIPI-2 are
essential components of the autophagosome and the autophagosome membrane site
and formation may potentially originate from the ER, Plasma membrane and the
Golgi[25].  Interestingly,  the deletion of WIPI-2 in the germinal center (GC) B cells
enhanced the autophagic activity, suggesting that B cells derived from the GC have
the ability to switch from canonical  autophagy upon challenge to non-canonical
autophagy to meet their metabolic demands[26].

It  is  believed that  Atg5 and At7 are  essential  for  autophagy.  However,  recent
studies  have  challenged  this  notion.  Atg5/Atg7  independent  non-canonical
autophagic pathway have been identified, which are able to form autophagosomes
mediated  in  a  Rab9  dependent  manner  from  the  trans-Golgi  network  and  late
endosomes. Autophagy proteins, such as ULK1 and BECN1 were found to regulate
this process independent of LC3[27]. The resulting autophagosomes mature and fuse
with  the  lysosome  and  undergo  cargo  clearance [ 2 8 ] .  Furthermore,  ULK1
dependent/Atg5 independent autophagy has been implicated in the removal of the
mitochondria from fetal definitive erythroid cells in vivo[29]. Additionally, ULK1-/- mice
models were able to express LC3B under nutrient depleted conditions; indicating the
role of ULK1 in the induction of autophagy is dispensable[30]. These reported studies
suggest ULK1 is not essential for Atg5/Atg7 dependent canonical autophagy[14,31].
Moreover, ULK1 is upregulated during non-canonical autophagy, and the silencing of
ULK1 inhibits this process[27].

Cross talk between autophagy and apoptosis
It is evident that autophagy participates in catabolism including the breakdown of
long-lived proteins, providing bioenergetics material to facilitate in the production of
adenosine triphosphate (ATP) and meet the metabolic demands of cells undergoing
adverse conditions and rescue them. However, under prolonged metabolic-stressed
conditions the pool of bioenergetic substrates will  be facilitated to generate ATP
dependent apoptosis[32]. Predominately, autophagy has a cytoprotective role. Overall,
it  can  be  assumed  that  autophagy  and  apoptosis  are  activated  by  a  common
stimulus[19].

Apoptosis “self-killing” is a form of type 1 programmed cell death (PD) and is
characterized by the distinct morphological changes causing nuclear condensation
(Pyknosis) and fragmentation (Karyorhexis), and membrane blebbing a requisite for
the generation of apoptotic bodies (smaller apoptotic cell fragments)[33,34].

Emerging  literature  indicates  a  complex  network  that  regulates  the  interplay
between autophagy and apoptosis.  This is  cell  type and stimuli  dependent.  This
dynamic interplay has been described in the following examples: Autophagy and
apoptosis can function together in order to induce cell death, autophagy can promote
cell  survival by antagonizing apoptosis,  or autophagy can assist  in cell  death by
activating apoptosis[16,35,36].

Multiple stimuli that can trigger cell death can also induce autophagy. Autophagy
as a cytoprotective mechanism is usually induced first, followed by apoptosis[16,37].
Death associated protein kinase (DAPK) signaling is an example when both apoptosis
and autophagy are induced either simultaneously or sequentially. Upon stimulation,
DAPK phosphorylates BECN1 leading to its dissociation from BCL-2; thus, activating
autophagy  by  binding  to  VPS34[38,39].  However,  activated  DAPK  is  also  able  to
stimulate apoptosis in autophagy deficient conditions[40].  It can be postulated that
DAPK regulated autophagy is induced by low levels of stress, however, intense and
chronic stress stimuli can initiate apoptosis through DAPK[16].

It  has  been  proposed  that  autophagy  and  apoptosis  display  an  inhibitory
relationship during the removal of pro-apoptotic proteins in the cytoplasm caused by
autophagy, resulting in reduced apoptosis.  Caspase-8 activation is a critical  step
during the extrinsic apoptosis signaling. However, selective autophagy may interfere
in an inhibitory manner with the cell-death pathway through the degradation of
capsase-8[41].  Furthermore, autophagy can be inhibited by apoptosis via  numerous
mechanisms; for example, autophagy exhaustion during increased intensity levels of
stress. In this condition, degradation of autophagic proteins and caspases activity is
reduced. For example, BECN1 inactivation occurs after caspase-mediated cleavage,
stimulating the release of pro-apoptotic factors, and resulting in autophagy inhibition
and induction of apoptosis[42].

Autophagy dependent cell death is defined as a form of cell death distinct from
apoptosis or necrosis that mechanistically depends on the autophagic machinery[43]. It
is postulated that the formation of autophagosome, and not degradation, leads to the
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activation  of  caspase-8  and  the  execution  of  cell  death.  As  reported  in  mouse
embryonic  fibroblasts  treated  with  proteasome  inhibitor  Bortezomib,  and  pan-
sphingosine kinase inhibitor. Pro-caspase- 8 interactions with p62 have been shown to
co-localize with the autophagosomes. The surface of the autophagosomes serves as a
platform  for  the  maturation  of  caspase-8  and  the  initiation  of  apoptosis[16,43].
Furthermore, the depletion of Atg5 ablated caspase-8 processing in the presence of
Bortezomib leading to a significant reduction in cell death[44].

CANCER STEM CELLS
Tumors are derived from heterogeneous cell types. Cancer stem cells (CSCs; also
known as tumor initiating cells) are a small subpopulation of cancer cells within the
tumor bulk tissue that retain the capacity for self-renewal, disease propagation, and
metastasis, which are decisive for tumor recurrences and are therapy resistance[45-47]. In
general, stem cells are characterized by their distinct ability to switch their cell cycle
profile from quiescent to proliferative behavior in order to maintain their capability
for self-renewal and later multi-potency[48]. Similarly, CSCs have the extraordinary
capability to self-renew and differentiate rapidly; accumulating mutations and genetic
alterations and transmitting these defects to the proliferating progeny, giving rise to
tumor heterogeneity conferring to resistance against anti-cancer therapeutics[49].

Similar to normal stem cells, CSCs reside in dynamic microenvironments known as
the stem cell niche, this regulates the fate of adult stem cells by providing signals,
such as cell-cell contact and secreting mediators to promote CSCs renewal, tumor
invasion and metastasis[24,50]. Normal niches are comprised of heterogeneous collection
of cells, such as endothelial, fibroblasts, immune cells, perivascular cells, components
of the extracellular matrix, cytokines and growth factors[51]. In comparison, the CSCs
niche itself is part of the tumor specific microenvironment that remains distinct from
the normal niche[52]. During tumor progression to a malignancy, the CSC state in the
primary tumor depends crucially on the microenvironment and potentially on the
CSC niche itself[53]. Targeting the CSCs niche is the current subject of research as it is a
valuable modality for the treatment and prevention of CSCs growth and downstream
signaling[52].

The functional characterization of CSCs in multiple studies have clarified that CSCs
are the foundation of tumor formation that can survive treatment with conventional
therapies and can cause the recurrence of cancer[54,55]. According to the concept of a
stem cell, it can be assumed that even a few surviving CSCs after therapy is sufficient
to develop a new tumor leading to a relapse. Due to the ability of CSCs to initiate
relapse  after  conventional  cancer  therapy,  they  represent  a  crucial  therapeutic
target[46]. CSCs were first identified in acute myeloid leukemia (AML); their presence
was confirmed by the isolation of AML-initiating cells based on their phenotypical
markers[56].  In solid tumors, breast cancer was one of the first to be characterized,
which  led  to  the  identification  of  a  specific  subpopulation  of  CSCs  marked  by
CD44+CD24-/Low  lineage. This tumorigenic population of cells was able to initiate
tumor  growth  in  immunosuppressed  mice[57,58].  Furthermore,  CSCs  have  been
discovered  in  several  solid  cancers,  such  as  lung[55],  pancreatic[59],  colon[60,61],
melanoma[62], ovarian[63,64], brain cancers[65,66] and hematological malignancies of both
myeloid and lymphoid origin[67-69].

CSC models of tumorigenesis and plasticity
To date, two paradigms: hierarchical and stochastic have been proposed to account
for the tumor origin, progression and heterogeneity. In brief, the hierarchical model is
based on a concept that tumor cells are hierarchically arranged cell populations and
CSCs represent the top of the arrangement. Carcinogenesis proceeds when a healthy
normal stem cell escapes regulation and transforms into a stem cell-like phenotype-
CSCs.  This  in  turn  gives  rise  to  heterogeneity  by  generating  differentiated  and
quiescent  cells  whose  proliferation capacity  is  restricted[52,70].  By contrast,  in  the
stochastic  model,  cancer  is  derived  from  a  single  somatic  cell  that  initiates
tumorigenesis and progression. This paradigm partially relies upon the environment
in  which  the  cancer  cell  is  located  in,  but,  fundamentally  is  defined  by  hyper
proliferation and the acquisition of mutational burden during the cell cycle process
contributing to clonal expansion[52].
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AUTOPHAGY IN CANCER STEM CELLS

Role of autophagy in the maintenance of CSCs
As highlighted  earlier  in  this  review,  autophagy  is  a  multifaceted  pro-survival
mechanism. In cancer, the role of autophagy is context dependent. Autophagy elicits
tumor suppressing functions during tumor initiation by limiting inflammation, tissue
damage, and genome instability by removing damaged mitochondria and reducing
oxidative stress[2]. Extracellular stimuli, such as oxidative stress, nutrient depletion,
increased metabolism and hypoxia result to disease propagation; thus, demanding
autophagy to meet the high metabolic demands by providing recycled bioenergetic
substrates  to  the  CSCs,  and  whilst  doing  so,  implementing  its  role  as  a  tumor
promotor (Figure 2)[71].

It has been proposed that autophagy is associated to CSC maintenance. LC3B gene
knockdown  in  human  embryonic  stem  cells  (ESCs)  leads  to  a  reduction  in
pluripotency  and  due  to  the  accumulation  of  pluripotency  associated  proteins
suggesting autophagy regulates these proteins[72]. Autophagic flux is upregulated in
mammospheres in basal and starvation-induced autophagy and is driven by BECN1
and Atg4A for their survival and expansion. Inhibition of these autophagy genes
abolishes the tumor formation[73,74]. Aldehyde dehydrogenase 1-positive (ALDH1+)
CSCs isolated from MCF-7 mammospheres presented an increased LC3B dependent
autophagic flux with higher rate of p62 degradation compared to the bulk population;
indicating  an  increased  synthesis  of  autophagosomes.  In  addition,  suggesting
elevated autophagy is critical for CSCs[74]. Moreover, Antonelli et al[75] reports that
ataxia-telangiectasia mutated (ATM) kinase modulates breast CSCs through Atg4C.
This was validated in an overexpression study of Atg4C that was assessed in ATM
gene silenced cells using shATM; this led to the rescue of mammosphere formation in
ATM knockdown cells. These findings correlated with the microarray data of breast
cancer samples, however, excluded triple negative tumors[75]. Indeed, these autophagy
genes have shown to promote CSC survival and tumorigenicity. RNAi screenings
reveal constitutive STAT3 activity is regulated by autophagy and is enriched in the
triple  negative  breast  cancer  cell  lines[73,76].  In  those  cell  lines,  Atg7  and BECN1
modulate CD24 expression in CD44+CD24-/low CSC population and secret interleukin 6
(IL-6) through gp130 and JAK-STAT pathway for CSC maintenance[73,77].

MMTV-PyMT is a well-characterized transgenic murine model for breast CSCs
tumorigenesis. Yeo et al[78] reported autophagy differentially regulates two distinct
breast cancer stem-like cells ALDH1+ and CD29hiCD61+ though EGFR/STAT3 and
Tgfβ/Smad.  Depletion  of  FIP200  decreased  STAT3  activation  by  decreasing
phosphorylation  of  EGFR  and  had  consequently  impaired  the  tumor  initiating
properties of ALDH1+ and CD29HighCD61+ breast CSCs. Autophagy inhibition led to
decreased mRNA levels  of  TGFβ2  and TGFβ3  triggering  dysregulation  in  Smad
signaling  which  is  essential  for  CD29HighCD61+  CSCs[78].  The  secretion  of  IL-6  is
autophagy dependent and is mediated through STAT3/JAK2 pathway[77]. From these
studies, it can be assumed STAT3 signaling may potentially be an important factor in
CSCs transformation.

In general, FOXO transcription factors have been associated in the regulation of
cellular homeostasis, stem cell maintenance, ageing and tumor suppression. Mice
with somatic deletion of FOXO1, FOXO2 and FOXO4 resulted in thymic lymphomas
and hemangiomas[79]. Upregulation of FOXO1 promotes self-renewal of t(8;21) pre
leukemia cells in vitro  and in vivo,  and restricts differentiation of AML cells with
t(8;21) translocation; indicating FOXO1 is not a tumor suppressor, however, plays a
crucial role in leukemia stem cells (LSCs) maintenance[80]. Absence of FOXO3 has been
reported to contribute to the expansion of CSC population as well as increase self-
renewal and tumorigenesis in prostate[81], colon[82], and glioblastoma[83] and promote
tumor  initiation  in  breast  cancer[84].  Recently,  it  has  been  proposed  that  DNA
methyltransferase  1  mediates  FOXO3a  promoter  hyper  methylation  causing
downregulation of FOXO3a gene expression in breast CSCs; thus, suppressing CSCs
phenotype markers and tumorigenicity[85]. To date, the role of FOXO in CSCs remains
controversial. It has been reported FOXOs are implicated in autophagy[86-88]. FOXO3
overexpression studies reveal this gene directly regulates autophagy related genes
involved in  the  autophagosome pre-initiation complex:  WIPI-1/2,  core  initiation
complex: ULK1, autophagosome formation and elongation: Atg14, GABARAP, Atg5,
Atg10.  FOXO3  knockout  cells  downregulated  many  of  these  genes  and  PINK1
(component of mitophagy) and exhibited poor LC3B lipidation turnover; indicating
FOXOs  are required to maintain basal  autophagy in neural  stem and progenitor
cells[87]. FOXO3A induced autophagy promotes survival in human pluripotent stem
cells[88].  The  pro  autophagy  protein,  AMBRA1,  modulates  the  differentiation  of
regulatory T cells through FOXO3/FOXP3 axis. In the context of immunosurveillance
against tumors, AMBRA1 deficiency leads to defective generation of the induced
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Figure 2

Figure 2  Autophagy in cancer stem cells. Autophagy has a context dependent role in cancer. Cancer stem cells (CSCs) are a heterogeneous collection of different
cells types that acquire genetic aberrations/epigenetic modifications and retain the ability to undergo extensive cell proliferation, retain stemness and give rise to
differentiated diverse cancer cell lineages. Potentially the CSC niche will provide protective mechanisms for the disease propagation. Autophagy promotes invasion of
cancer stem cells through TGF-1β dependent epithelial-mesenchymal transition; however, during mesenchymal-epithelial transition autophagy is downregulated as
the circulating CSCs are scavenging an organ to seed for metastasis. Moreover, autophagy reinforces the resilience of CSCs plasticity, remodeling the
immunosurveillance and facilitating the acquisition of resistance to conventional chemotherapies which contribute to cancer relapse. By targeting autophagy, cancer
cells and CSCs are sensitized to enhancing the efficacy of chemotherapy agents and reducing their toxicity and disease relapse. CSC: Cancer stem cell; CC: Cancer
cell; EMT: Epithelial-mesenchymal transition; MET: Mesenchymal-epithelial transition; TIL: Tumor-infiltrating lymphocytes.

regulatory T cells in lymph nodes of tumor bearing mice; influencing the regulatory T
cells function in tumor response[89].

Additional FOXO family members are associated to autophagy. It is reported that
FOXA2 knockdown in ovarian CSCs leads to a reduction in the number of spherical
clusters of cells, size and the percentage of phenotype surface markers; suggesting
FOX2A modulates the ability of self-renewal in vitro[90]. Inhibition of autophagy by
Atg5 knockdown, bafilomycin A1 (vacuolar H+ ATPase inhibitor) or chloroquine (CQ;
lysosomotropic agent- late stage autophagy inhibitor) repressed FOXA2 expression.
FOXA2  overexpression  partially  rescues  these  effects;  indicating  autophagy
modulates  ovarian  CSCs  stemness  through  FOX2A[90].  These  studies  identify  a
synergy between FOXOs and autophagy. This relationship promotes CSC stemness
and tumorigenesis; however, the mechanisms behind these actions remains unclear
and require further elucidation. Though it is noteworthy that the regulatory role of
autophagy in CSC is very complex.

Autophagy induces metabolic reprogramming in CSCs
The tumor  microenvironment  (TME)  is  a  critical  driver  of  tumor  heterogeneity,
encouraging CSCs plasticity, remodeling immune surveillance, and facilitating their
metastatic  potential  and ultimately conferring CSCs resistance to  chemotherapy
drugs[52,91]. Non neoplastic cells, and their secreted mediators, such as growth factors
and  the  release  of  cytokines,  are  found  to  contribute  to  the  TME[92].  The  core
regulatory  mechanism  for  oxygen  sensing  and  adaption  to  hypoxia  is  hypoxia
inducible factor (HIF), in particular HIF-1α and HIF-2α. HIF target genes are able to
induce human ESCs markers  sufficient  to  induce pluripotent  stem cell  inducers:
OCT4,  NANOG,  SOX2,  KLF4,  MYC  and miRNA-302  in  multiple  cancer  cell  lines.
Similar results were reported in prostate tumors[93]. Hypoxia-Notch1-SOX2 signaling
axis has been found to activate ovarian CSCs by stimulating self-renewal capacity and
drug resistance[94]. Hypoxia activation and upregulation of HIFs has been implicated
in  aggressive  tumor  phenotypes,  including  breast  and glioma CSCs,  as  a  result
correlating with co-localization studies of these markers with CSCs markers results to
poor survival outcome in cancer patients[95,96].

The integration of autophagy in the cancer stem niche provides metabolic plasticity
to  CSCs  from  hypoxic  conditions,  nutrient  limitation  and  acidosis[92].  Immuno-
histochemistry  of  pancreatic  ductal  adenocarcinoma  (PDA)  tissues  reveals  co-
expression of hypoxia, pancreatic CSC markers (CD44, CD24) and autophagy (BECN1
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and LC3B). Hypoxia starvation induced autophagy has been demonstrated to increase
clonogenicity and migration of PDA-CSCHigh cells and the number of autophagosomes
formed[97]. In accordance, CD133+ pancreatic CSCs is dependent on HIF-1α to induce
autophagy for stem cell maintenance[98]. Similarly, CD133+ liver CSCs showed higher
survival  capacity  under  hypoxic  and  nutrient  deprived  conditions[99].  Recently,
phosphorylation of EZR at Thr567 residue and activation of PRKCA/PKCα kinase has
been suggested to be a responsible candidate for enhanced self-renewal capacity of
colorectal CSCs in hypoxia induced autophagy. The blockade of Atg5, BNIP3, BNIP3L,
or BECN1 reversed these effects[100]. Limited literature is available to define the exact
interplay between hypoxia, autophagy and the maintenance of the TME.

HIF-1α enhances the secretion of TGF-β1-Smad in mesenchymal stem cells (MSC)
which facilitates the propagation of CD44+ breast cancer stem-like cells[94], promoting
epithelial  to  mesenchymal  transition  (EMT)[101].  Autophagy  inhibition  by  Atg5
silencing  and  CQ treatment,  notably  enhanced  the  transcriptional  activation  of
epithelial marker CD24 whilst repressing EMT marker vimentin in response to TGF-
1β, dysregulating cellular ability to migrate and invade[102]. In non small cell lung cells,
vimentin was downregulated in the presence of TGF-β1 treatment in Atg7 knockdown
cells, indicating autophagy positively regulates TGF-β1 in EMT[103]. To the contrary,
autophagic targeting of EMT transcription factors, such as Snail and TWIST, through
death-effector domain-containing DNA-binding protein-PI3KC3 has been shown to
inhibit  tumor  metastasis  and  growth  in  breast  cancer[104].  The  divergent  role  of
autophagy in EMT has been illiustrated in Figure 2.

Recently,  it  has  been  shown  that  pluripotent  transcription  factor  NANOG,
contributes to hypoxia-induced autophagy by directly activating BNIP3L. NANOG
promotes resistance to immune mediated actions of cytotoxic T cells[105].

Mitophagy is the selective degradation of defective mitochondria by autophagy to
avoid the accumulation of oxygen species and its association to cell death, senescence
and malignant transformation. Mitochondria has a central role in generating ATP
derived from oxidative phosphorylation (OXPHOS) and the tricarboxylic acid cycle[2].
Human pancreatic CSCs are primarily reliant upon OXPHOS for energy acquisition,
as  compared  to  their  counterpart;  indicating  increased  mitochondrial  activity
contributes to CSC stemness[106].  Similar results were observed in mice exhibiting
KRAS gene ablation in pancreatic adenocarcinoma cells[107]. Moreover, KRASG12D
mutated pancreatic adenocarcinoma cells have been shown to enter into quiescence in
response to oncogene ablation and did not present metabolic stress and induced
autophagy.  This  finding  was  confirmed  by  measuring  the  levels  of  LC3B  by
immunoblotting and using flow cytometry to quantify the autophagic flux of KRAS
mutated cells stably expressing GFP-LC3; and Bafilomycin A1 treatment rescued the
GFP signaling. Interestingly, these cancer cells exhibited stem cell-like phenotype[107].
Increased mitophagy is reported in esophageal squamous cell carcinoma CD44High

undergoing EMT; the expression of CD44 is rendered during the inhibition of Parkin
dependent mitophagy, resulting to cell death[108]. Hepatic CSCs stemness and self-
renewal capacity is maintained by the removal of p53 localized to the mitochondria
and removed in a mitophagy dependent manner. In contrast, during the suppression
of mitophagy, p53 is phosphorylated by PINK1 and translocated to the nucleus to
prevent Oct4, SOX2 and NANOG transcription in the hepatic CSC population. These
results  suggest  that  the  activity  of  p53  is  regulated  by  mitophagy  to  promote
hepatocarcinogenesis[94]. In LSCs, the loss of p53 simultaneously activates endogenous
KRASG12D mutation inducing aggressive AML phenotype; thus, enabling abnormal
growth[109]. Mitophagy is activated in LSCs by the constitutive activity of AMPK and
FIS1; preventing differentiation via GSK3 downstream mechanism and promotes
stemness. Inhibition of AMPK-FIS1 axis results to suppression of proliferation and
induction of differentiation[110].

THE ROLE OF AUTOPHAGY IN DIFFERENTIATED CANCER
CELLS
Bcl-2  binds  directly  to  BECN1  and  plays  a  vital  role  in  the  development  and
differentiation of normal B cells to inhibit autophagy[111-113]. In accordance, immuno-
histochemistry studies of  patients with diffuse large B cell  lymphomas (DLBCL)
revealed  that  increased  BECN1  levels  with  reduced  levels  of  Bcl-2  correlated
favorably  to  the  clinical  survival  outcome with  better  response  to  the  first  line
treatment of R-CHOP[114,115]. The incidence of breast, ovarian and prostate cancer is
higher in 40%-75% patients with monoallelic deletions of BECN1 gene. Furthermore,
in mice with heterozygous deletion of  BECN1  predisposed them to spontaneous
malignancies  including DLBCL, suggesting BECN1  is  a  haplo-insufficient  tumor
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suppressor gene[116]. Similar findings were reported in the incidence of pre-B acute
lymphoblastic lymphoma with elevated expressions of programmed death ligand 1
(PD-L1) and IL-10[117]. A study led by Bertolo et al[118], suggests constitutive suppression
of autophagy responses in BCL-6 driven GC-derived lymphomas, including DLBCL
contribute to lymphomagenesis. In mice, the homozygote deletion of BECN1 results to
embryonic  lethality,  in  comparison  BECN1  heterozygous  deletion  leads  to  the
establishment of spontaneous tumors and defective autophagy; however, did not
impair apoptosis[119].

Enhanced  autophagic  flux  has  been  attributed  significantly  to  metastatic
tumorigenesis  and immunosuppression related chemoresistance.  In  ex  vivo  lung
cancer cells, CQ augments carboplatin treatment by sensitizing the lung cancer drug
resistant cells and non-resistant cells by limiting the proliferation status and providing
synergistic effects with carboplatin to induce apoptosis. These findings corroborated
with the decreased LC3B level and BECN1 protein expressions suggesting a decrease
in the formation of autophagosomes. The administration of CQ in drug resistant
cancer cells, strikingly reduced the drug resistant proteins: MDR1, MRP1 and ABCG2
and mRNA reduction of MRP1 and ABCC2. The combination treatment of CQ and
Carboplatin  significantly  reduced  both  the  protein  and  the  mRNA  levels.
Furthermore, this decreased the expression of PD-L1 suggesting autophagy has a role
in modulating of PD-L1 in cancer evasion and immunosuppression. Interestingly, the
combination treatment promoted the infiltration of CD4+, FOXP3+ tumor infiltrating
lymphocytes (TILs) indicating autophagy inhibition with carboplatin could mediate
lymphocyte infiltration in the tumor and upregulate only specific expression of TILs,
leading to immune system activation[120].

THE ROLE OF AUTOPHAGY IN TUMOR DORMANCY
Cancer progression leads to metastatic growth resulting to a majority of cancer related
deaths[121]. In many cases, dissemination of tumor cells (DTCs) has already occurred in
patients at diagnosis. It is challenging to detect DTCs at secondary sites, as they may
have entered into dormancy and become refractory to therapeutic targets[122].  The
divergent  characteristics  of  DTCs  have  emphasized  the  need  to  improve  this
phenomenon. It is postulated that autophagy is activated during the seeding process
of DTCs at secondary sites providing an adaptive response to nutrient depletion and
environmental  stress[123].  For  example,  the  tumor  suppressor  gene  ARHI  (RAS
homologue) is downregulated in 60% of ovarian cancer cases.  Studies in ovarian
cancer cell lines revealed autophagy induction is mediated by ARHI  as it inhibits
PI3K-mTOR signaling. This is corroborated by co-localization staining of Atg4 and
LC3B in autophagosomes suggesting ARHI facilitates the autophagosome formation
through this signaling. Xenograft model expressing SKOv3-ARHI cells supplemented
with ARHI by doxycycline repressed tumor growth, however, the withdrawal of
ARHI after 32 or 42 d stimulated rapid tumor growth, indicating that the cancer cells,
in  particular,  CSCs  remained  viable  and  dormant  during  latency.  Autophagy
inhibition  by  CQ  in  this  model  confirms  dormancy  requires  ARHI  mediated
autophagy[124].  Accordingly, Atg7  is  essential  for the reduction of lung metastatic
burden utilizing a non-canonical autophagy pathway independent of BECN1[125]. In
contrast, recent microarray analysis of CSCs in breast cancer patients revealed the
expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3), which
correlated with an aggressive cancer phenotype coupled with self-renewal ability and
metastasis potential.  Dormant breast  cancer cells  display Pfkfb3LowAutophagyHigh

phenotype with elevated levels of LC3B and p62. In contrast, the metastatic breast
cancer  cells  which  exhibited  Pfkfb3HighAutophagyLow;  suggesting  the  status  of
autophagy changes during the phenotypic transition. Knockdown of Atg3, Atg7 or p62
genes promoted the proliferation and outgrowth restoring the upregulated expression
of Pfkfb3 in dormant breast CSCs. The ablation of autophagy related genes gained
CD49fHigh/CD24Low  phenotype with increased stemness signature in CSCs.  These
findings reveal autophagy activation could function to prolong the overall survival of
patients by promoting permanent dormancy of CSCs. Additionally, Pfkfb3 protein
was found to directly interact with ubiquitin binding domain of p62, suggesting its
role as a substrate. Moreover, inactivation of autophagy can facilitate dormancy of
breast CSCs to metastatic lesions by stabilizing Pfkfb3 gene expressions via p62[126].
These studies highlight the poorly understood role of autophagy during dormancy in
breast  CSCs,  in  which targeting autophagy enables  the  sensitization of  CSCs to
chemotherapy by eliminating the adaptive response to autophagy[124,125]. Though it is
noteworthy, CSCs are heterogeneous and disease specificity adds complexity to the
matter[126].
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CLINICAL IMPLICATIONS OF TARGETING AUTOPHAGY IN
RESISTANCE CANCER STEM CELLS
Autophagy demonstrates tumor-suppressing actions in early cancer initiation; but
fundamentally provides adaptive responses – an advantage to cancer cells and CSC
during cellular stress. It remains an open question whether to stimulate or to inhibit
autophagy in  cancer,  specifically,  in  combination  with  anti-cancer  therapeutics.
Autophagy inhibition may provide a reasonable rational  to be used;  as multiple
tumors stimulate autophagy as a source of nutrient replenishment for their increased
metabolic  demands,  survival  and  disease  propagation  (Figure  3)[127].  Hydro-
xychloroquine (HCQ) is  an FDA approved drug, with the capability to suppress
autophagy at  a  later  stage by inhibiting lysosome acidification and due to these
functions it has been used in numerous early phase clinical trials[128]. Meta-analysis
data  reveals  autophagy inhibition  based treatment  leads  to  a  better  therapeutic
response as compared to chemotherapy or radiation in the absence of autophagy;
suggesting this may provide a new therapeutic strategy for anti-tumoral therapy[129].
However, the activation of autophagy may potentially hold a beneficial role as an
anticancer therapy. For example, tat-BECN1 peptide was shown to induce autophagy
in HER2-positive breast cancer xenografts and prevented tumor growth[131].

In hindsight, CSCs and their counterparts have a unique and complex interaction
within  the  tumor  niche  which  challenges  the  opportunity  to  target  autophagy
directly[132]. Several studies indicate the beneficial impact of combination treatments of
chemotherapeutics with autophagy modulators.  For instance, the combination of
autophagy modulators  with  chemotherapy showed to  stimulate  of  CD8+  T  cell-
dependent anticancer immune responses leading to tumor sensitization and cancer
cell growth reduction (Figure 2)[133].

TARGETING CANCER CELLS AND CANCER STEM CELLS
USING AUTOPHAGY MODULATORS
CSCs are highly tumorigenic and contribute to cancer relapse due to their ability to
self-renew and differentiate into heterogeneous cancer cell lineages. Their resilience is
demonstrated in the treatment of chemotherapy and radiation therapy[57]. In addition,
CSCs are able to remain in a quiescent state and cultivate their ability to become
resistant by gaining adaption to their environment[123].  For example, in castration
resistant  prostate  cancer  it  has  been  shown  that  autophagy  is  induced  during
Docetaxel treatment and STAT3 contributes to cancer cell survival[134]; suggesting it is
important to target autophagy directly or as a combination treatment to sensitize
cancer cells.

It should be highlighted that CQ and HCQ exert anti-tumor effects in combination
with  anti-cancer  treatments  in  clinical  trials[135].  In  PDA  the  combination  of
Gemcitabine with HCQ was assessed[136], this was also evaluated in studies of breast
cancer  and  irradiation [137],  or  in  combination  with  the  autophagy  inducer
Temsirolimus  in  patients  with  various  solid  cancers  including melanoma[138].  In
preclinical in vitro models of breast cancer, similar results were reported[139]. These
findings suggest that autophagy inhibition and activation are promising methods to
elicit the sensitization of CSCs to chemotherapy. Moreover, it can be concluded that
metastatic cells are preferentially vulnerable to lysosomal inhibition; however,  it
would be important to assess if these metastatic cancer cells express stem cell-like
phenotypical  features[140].  For  example,  autophagy  inhibition  in  breast  CSCs
expressing Pfkfb3 were found to promote tumor metastasis[126]; suggesting therapeutic
strategies involving autophagy modulation in treating CSCs, also depends on the
cancer phenotype. As mentioned above, CQ and HCQ have been used as late stage
autophagy inhibitors  in numerous studies.  However,  the development of  newer
generation of lysosome inhibitors are more selective and potent which have been
introduced, including Lys05 (analogue of CQ) and dimeric quinacrine (DQ661) - a
derivative  of  Lys05.  Both  are  specific  in  targeting  the  lysosome  and  causing
impairment of palmitoyl-protein thioesterase activity by impairing mTOR signaling
pathway[141]. Lys05 is a potent autophagy inhibitor in comparison to HCQ. Lys05 has
shown to decrease the number of LSCs in vitro by promoting their maturation; similar
results were seen in patient-derived samples[142]. DQ661 is effective in targeting cancer
paradigms of melanoma, colon cancer and PDA by repressing growth and inhibiting
autophagy[141]. Inhibitor of V-ATPase called Concanamycin A, protease inhibitor E64d
and pepstatin A, have also been introduced[143].  These autophagy modulators are
providing an opportunity to explore different combination treatments in different
cancer types. Moreover, these lysosomotropic targets are deemed to be effective in
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Figure 3

Figure 3  The divergent role of autophagy in cancer stem cells and cancer cells. Cancer stem cells (CSCs) drive the initiation and progression of cancer in
multiple tumors. CSCs are reliant on their niches to sustain their self-renewal capacity and plasticity. Hypoxia induced autophagy, provides metabolic plasticity to
CSCs. The role of autophagy in hypoxia is to modulate the metabolic remodeling of cancer cells, in particular CSCs. Additionally, autophagy and hypoxia have been
implicated in immunosurveillance of CSCs during glucose limitation by increasing the expression of programmed death ligand 1 which results to tumor-infiltrating
lymphocytes exhaustion. In addition, autophagy supports tumor dormancy, metastasis and invasion resulting to the treatment of resistant CSCs. CSC: Cancer stem
cell; CC: Cancer cell; ER: Endothelial reticulum; TIL: Tumor-infiltrating lymphocytes; TME: Tumor microenvironment.

bulk  autophagy  degradation,  in  comparison  to  selective  autophagy,  such  as
mitophagy[2]; in such instances early stage autophagy inhibitors would be considered
to be more beneficial. Early stage autophagy inhibitors could target the initiation of
autophagy, for example PIK-III (Vps34 inhibitor)[144], MRT68921, SBI-0206965 (ULK
inhibitors)[145,146] and SAR405 (PIK3C3/Vps34 inhibitor)[147]. Interestingly, SAR405 and
Everolimus (an autophagy inducers)  demonstrate  significant  synergism in renal
tumor  cells  by  reducing  cancer  cell  proliferation[147].  Additionally,  early  stage
autophagy  inhibitors  would  be  a  strategic  method  to  target  tumors  grown  in
oxygenated  environments,  as  they  use  OXPHOS  as  an  alternative  source  of
metabolism.

Autophagy is an adaptive mechanism modulating the TME surrounding CSCs.
Several  studies  defined  CSCs  inducing  autophagy  in  the  TME  to  support  their
stemness and cancer propagation by activating the autophagic machinery under
nutrient depleted and hypoxic conditions, for example in breast cancer[72-74]. By these
actions, autophagy can initiate the development of an aggressive cancer phenotype
and develop resistance to cell death. Further investigations are needed to explore the
role  of  autophagy  in  these  cells  within  the  tumor  niche  in  order  to  tackle  the
protective surroundings of the TME.

INTERACTION BETWEEN AUTOPHAGY AND
IMMUNOTHERAPY
Oncolytic viruses (OVs) therapy is an emerging anti-cancer treatment capable of
efficiently  killing  CSCs  and  cancer  cells  in  several  tumor  types[148].  The  most
commonly used OVs include adenoviruses,  herpes simplex virus,  measles  virus,
reovirus,  Newcastle  disease  virus  and adenovirus  serotype 5[149].  OVs retain  the
capability to infect, replicate and integrate into tumor cells and potentially in their
immunosuppressed TME. Malignant cells overexpressing certain virus receptors,
including coxsackie-adenovirus receptor[150,151], CD155[152], CD46[153] and laminin[154] are
targeted by OVs. Several studies revealed that autophagy facilitates immunogenic cell
death  via  stimulating  the  release  of  pathogen  associated  molecular  pattern  and
damaged associated molecular pattern and initiating their responses in the TME[155].
These responses activate the secretion of ATP from the tumor cells promoting the
stimulation  of  antigen  presenting  cells,  such  as  DCs  to  elicit  antigens  on  major
histocompatibility I and II molecules which stimulate T cells[13,156,157]. Consequently, pro
inflammatory  cytokines,  including  type  I  interferons  induce  the  stimulator  of
interferon genes signaling in DCs, further benefiting anti-tumoral T cell responses[158].
In the context of autophagy, OVs employ strategic methods to survive and propagate
within the cancer cells by perturbing the core autophagic machinery[159,160].

Autophagy  can  either  be  promoted  or  inhibited  during  oncolytic  adenovirus
therapy[161]. The expression of adenovirus oncoprotein triggers the upregulation of
Atg1, Atg5 and LC3 proteins[162]. Leukemic cells treated with oncolytic adenovirus
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encoding BECN1 (SG511-BECN1) significantly induced autophagic cell death in vitro.
Similarly, primary blasts isolated from chronic myelocytic leukemia patients with
Imatinib resistance and AML patients with relapse disease treated with SC511-BECN1
showed  an  increase  in  BECN1  expression  and  LC3B  accumulation.  This  led  to
significantly  reduction  of  colony  formation  in  comparison  to  SG511  control[163].
Interestingly, combination treatment of SG511-BECN1  and Doxorubicin is highly
synergistic in chronic myelocytic leukemia cell lines leading to significant cancer cell
death. Increased levels of BECN1 and LC3B proteins were observed in comparison
with normal mononuclear cells; suggesting the combination of SG511-BECN1  and
Doxorubicin elicits synergistic effects in an autophagy dependent manner[164].

In  liver  CSCs,  oncolytic  virus  expressing tumor suppressor  gene,  TSLC1,  and
specifically targeting Wnt signaling, promoted the generation of autophagosomes.
This was confirmed by the upregulation of BECN1 and accumulation of total LC3 and
led to the reduction of p62 and Survivin. This resulted in cell death in an autophagy
dependent manner. The inhibition of autophagy by CQ induced the accumulation of
total LC3 and p62, this in turn promoted the survival of the liver CSCs. The hepatic
xenograft models treated with this adenovirus induced apoptosis and inhibited tumor
metastasis  resulting  in  an  improved survival  outcome[165].  It  has  been  proposed
autophagy activators, such as Rapamycin or Temozolomide synergistically sensitize
tumor cells to adenovirus by stimulating autophagy, without modifying the viral
replication;  thus,  inducing  autophagy  dependent  cell  death  as  an  antitumor
mechanism[166].  In  addition,  the adenovirus E4 protein suppresses  autophagy by
activating mTOR signaling and inhibiting ULK1 activity[161].

IMMUNE CHECKPOINT INHIBITORS IN MODULATION OF
AUTOPHAGY
The clinical  development of  immune checkpoint inhibitors (ICIs)  is  an emerging
treatment  modality  for  the  reversal  of  TILs  dysregulation  phenotype,  thereby
imposing antitumor responses. Different immune checkpoints, such as T lymphocyte
antigen-4 (CTLA-4), PD-1 and PD-L1 could be clinically targeted using ICIs[167].

It is reported that PD-L1 expression on melanoma and ovarian cancer cells elicits
tumor growth mainly via  Akt-mTOR regulated autophagy; this data corroborated
with a comparative microarray analysis. Moreover, melanoma PD-L1High expressing
tumors demonstrated increased sensitivity to CQ; thus, limiting proliferation in vitro
and in vivo[168]. RNA sequencing data in PD-L1 positive glioma cells promoted cancer
invasion in starvation induced autophagy, utilizing the Akt-F-Actin signaling[169]. In
gastric cancers the knockdown of Atg5  and Atg7  genes inhibited LC3B formation,
leading to the upregulation of PD-L1 by the activation of NF-Kb pathway[170]. These
accumulating studies confirm intrinsic PD-L1 functions through the activation of Akt-
mTOR  pathway,  however,  the  mechanisms  by  which  PD-L1  transduces  signals
remains unknown. The identification of these targets may potentially lead to targeted
combinational  treatments  using  autophagic  agents.  Recently,  it  is  reported  that
Sigma1 promotes the degradation of PD-L1 using selective autophagy and ablates the
functional interaction of PD-1 and PD-L1 in co-cultures of T cells and tumor cells[171].
In accordance, targeting cancer cells expressing CD274 with PD-L1/PD-1 inhibitors
can stimulate autophagy and promote sensitization of cancer cells when combined
with autophagy inhibitors[172].

CTLA-4  inhibitor  is  an  effective  ICI  in  a  subset  of  patients  with  metastatic
melanoma. In a small cohort of melanoma patients, a subcluster of MAGE-A cancer
germline antigens, were found to be overexpressed causing resistance to CTLA-4
inhibition, but not PD-1. Tissue microarray data revealed that the LC3B expression in
MAGE-A+  tumors was significantly attenuated as compared to MAGE-A-  tumors.
Moreover, immunohistochemistry data indicated MAGE-A and damaged associated
molecular  pattern  protein  high-mobility  group box  1  (HMGB-1)  were  mutually
expressed in the clinical samples. In vitro  ubiquitination screening confirmed that
autophagy  was  suppressed  by  the  MAGE-TRIM28  ubiquitin  ligase  complex[173].
HMGB-1 is a pro autophagic protein that directly interacts with BECN1 by displacing
BCL-2; thus, sustaining autophagy and promoting cellular survival[174]. The secretion
of HMGB-1 mediates the priming of immune adaptive response[175].  To overcome
CTLA-4 therapy resistance in melanoma patients, the induction of autophagy may
potentially be relevant in enhancing the effect of CTLA-4 inhibitors; thus, minimizing
tumor immune tolerance.  Combining CTLA-4 inhibition with Rapamycin in vivo
during CD8+ T cell priming, led to an increase of Ag-specific memory CD8+ T cells and
enhanced their function, which in turn, resulted to tumor growth reduction, rapid
bacterial clearance and mediated cytokine production[176]. Taking these findings into
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consideration, the induction of autophagy would reinstate the CTLA-4 expression and
its suppressive functions, thereby, eliciting antitumoral activity.

CONCLUSION
New therapeutic concepts are needed to improve the prognosis of cancer patients.
One  possible  starting  point  is  the  tumor-specific  metabolism  of  cancer  cells.
Autophagy is a catabolic recycling process exciting different forms of cancer cells and
CSCs. In general, CSC maintenance and the development of an aggressive cancer
phenotype  have  strongly  been  correlated  to  autophagy.  In  cancer,  the  role  of
autophagy  is  context  dependent  as  it  demonstrates  functions  both  as  a  tumor
suppressor during tumor initiation and as a pro-survival mechanism during cancer
propagation  by  facilitating  CSCs  and  cancer  cells  adaptive  responses  during
metabolic stresses and dormancy.

Targeting autophagy could potentially represent a promising therapeutic target for
preventing the aggressive and resistance cancer phenotypes. There is convincing
evidence that the inhibition of autophagy in cancer cells, and specifically in CSCs,
augments  cytotoxicity  leading  to  antitumoral  effects  under  certain  conditions.
Therefore,  we  can  expect  valuable  knowledge  regarding  suitable  autophagy-
associated  biomarkers  in  tumor  cells  and  new  therapeutic  approaches  that  are
specifically directed against autophagy-dependent pathways in cancer cells or CSCs.
Additionally, it is increasing evident that autophagy is involved in the maintenance of
immune cell  homeostasis,  activation and function in the TME. However,  limited
studies are available to interpret whether autophagy enhancement or inhibition my
support  the effects  of  immunotherapy.  Several  additional  preclinical  studies are
necessary to identify them, specifically, in a context dependent manner. This would
represent an important step in the direction of improved and individualized cancer
therapy.
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