Skip to main content
. 2020 May 7;12(5):1182. doi: 10.3390/cancers12051182

Table 3.

Performance comparison of logistic regression models for prediction of high-grade clear cell renal cell carcinoma.

Included Variables in Models Sensitivity Specificity PPV NPV Accuracy (%) AUC (95% CI)
SETD2 (frozen tissue) 0.84 0.59 0.84 0.59 71.43% 0.779 (0.704–0.853)
DDX11 (frozen tissue) 1.00 0.93 1.00 0.93 96.43% 0.964 (0.931–0.997)
SETD2 + DDX11 (frozen tissue) 0.97 0.99 0.97 0.99 97.86% 0.997 (0.992–1.000)
SETD2 (plasma) 0.86 1.00 1.00 0.86 92.86% 0.952 (0.918–0.987)
DDX11 (plasma) 0.84 0.70 0.84 0.70 77.14% 0.836 (0.771–0.900)
SETD2 + DDX11 (plasma) 0.93 0.93 0.93 0.93 92.86% 0.971 (0.947–0.994)

PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve; CI: confidence interval.