
Deep Statistical Model Checking

Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck(B),
and Marcel Steinmetz

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,hermanns,hoffmann,klauck,steinmetz}@cs.uni-saarland.de

Abstract. Neural networks (NN) are taking over ever more decisions
thus far taken by humans, even though verifiable system-level guaran-
tees are far out of reach. Neither is the verification technology available,
nor is it even understood what a formal, meaningful, extensible, and
scalable testbed might look like for such a technology. The present paper
is a modest attempt to improve on both the above aspects. We present
a family of formal models that contain basic features of automated deci-
sion making contexts and which can be extended with further orthogonal
features, ultimately encompassing the scope of autonomous driving. Due
to the possibility to model random noise in the decision actuation, each
model instance induces a Markov decision process (MDP) as verification
object. The NN in this context has the duty to actuate (near-optimal)
decisions. From the verification perspective, the externally learnt NN
serves as a determinizer of the MDP, the result being a Markov chain
which as such is amenable to statistical model checking. The combina-
tion of a MDP and a NN encoding the action policy is central to what we
call “deep statistical model checking” (DSMC). While being a straight-
forward extension of statistical model checking, it enables to gain deep
insight into questions like “how high is the NN-induced safety risk?”,
“how good is the NN compared to the optimal policy?” (obtained by
model checking the MDP), or “does further training improve the NN?”.
We report on an implementation of DSMC inside The Modest Toolset
in combination with externally learnt NNs, demonstrating the potential
of DSMC on various instances of the model family.

1 Introduction

Neural networks (NN), in particular deep neural networks, promise astounding
advances across a manifold of computing applications across domains as diverse
as image classification [27], natural language processing [21], and game play-
ing [40]. NNs are the technical core of ever more intelligent systems, created to
assist or replace humans in decision-making.

This development comes with the urgent need to devise methods to analyze,
and ideally verify, desirable behavioral properties of such systems. Unlike for

Authors are listed alphabetically.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 96–114, 2020.
https://doi.org/10.1007/978-3-030-50086-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_6

Deep Statistical Model Checking 97

traditional programming methods, this endeavor is hampered by the nature of
neural networks, whose complex function representation is not suited to human
inspection and is highly resistant to mechanical analysis of important properties.

Verification Challenge. As a matter of fact, remarkable progress is being made
towards automated NN analysis, be it through specialized reasoning methods
of the SAT-modulo-theories family [10,23,25], or through suitable variants of
abstract interpretation [13,31] or quantitative analysis [7,42]. All these works
thus far focus on the verification of individual NN decision episodes, i.e., the
behavior of a single input/output function call. In contrast, the verification of
NNs being the decisive (in the literal sense of the word) authorities inside larger
systems placed in possibly uncertain contexts, is wide-open scientific territory.

Very many real-world examples, where NNs are expected to become central
decision entities – from autonomous driving to medical care robotics – involve
discrete decision making in the presence of random phenomena. The former are
to be taken in the best possible manner, and it is the NN that decides which
decisions to take when and where. A very natural formal model for studying
the principles, requirements, efficacy and robustness of such a NN, is the model
family of Markov decision processes [38] (MDP). MDPs are a very widely studied
class of models in the AI community, as well as in the verification community,
where MDPs are the main semantic object of probabilistic model checking [29].

Assume now we are facing a problem for which a NN decision entity has been
developed by a different party. If the problem statement can be formally cast as
a certain MDP, we may use this MDP as a context to study properties of the NN
delivered to us. Concretely, the NN will be put to use as a determinizer of the
otherwise non-deterministic choices in the MDP, so that altogether a Markov
chain results, which in turn can be evaluated by standard probabilistic model
checking techniques. This is the simple idea this paper proposes. The idea can be
further extended by making the technology available to a certification authority
responsible for NN system approval, or to the party designing the NN, as a
valuable feedback mechanism in the design process.

Deep Statistical Model Checking. However, this style of verification is challenged
by the complexity of analyzing the participating NN and that of analyzing the
induced system behaviors and interactions. Already the latter is a notorious
practical impediment to successful verification rooted in state space explosion
problems. Indeed, standard probabilistic model checking will suffer quickly from
this. However, for Markov chains there is a scalable alternative to standard model
checking at hand, nowadays referred to as statistical model checking [20,43].
The latter method employs efficient sampling techniques to statistically check
the validity of a certain formal property. If applicable, it does not suffer from
the state space explosion problem, in contrast to standard probabilistic model
checking.

The scalable verification method we propose is called deep statistical model
checking (DSMC) by us. At its core is a straightforward variation of statistical
model checking, applied to a MDP, together with a NN that has to take the

98 T. P. Gros et al.

decisions. For this, DSMC expects a NN that can be queried as a black-box
oracle to resolve the non-determinism in the MDP given: The NN receives the
state descriptor as input, and it returns as output a decision determining the
next step. The DSMC method integrates the pair of NN and MDP, and analyzes
the resulting Markov chain statistically. In this way, it is possible to statistically
verify properties of the NN itself, as we will discuss.

Racetrack. To study the potential of DSMC, we perform practical experiments
with a case study family that remotely resembles the autonomous driving chal-
lenge, albeit with some drastic restrictions relative to the grand vision. These
restrictions are: (i) We consider a single vehicle, there is no traffic otherwise. (ii)
No object or position sensing is in use, instead the vehicle is aware of its exact
position and speed. (iii) No speed limits or other traffic regulations are in place.
(iv) Fuel consumption is not optimized for. (vi) Weather and road conditions
are constant. (vii) The entire problem is discretized in a coarse manner. What
remains after all these restrictions (apart from inducing a roadmap of further
works beyond what we study) is the problem of navigating a vehicle from start
to goal on a discrete map, with actions allowing to accelerate/decelerate in dis-
crete directions, subject to a probabilistic risk of action failing to take effect in
each step. The objective is to reach the goal in a minimal number of steps with-
out bumping into a boundary wall. This problem is known as the Racetrack,
a benchmark originating in AI autonomous decision making [1,37]. In formal
terms, each map and parameter combination induces a MDP.

Racetrack is a simple problem, simple enough to put a neural network in the
driver seat: This NN is then the central authority in the vehicle control loop. It
needs to take action decisions with the objective to navigate the vehicle safely
towards the goal. There are a good number of scientific proposals on how to
construct and train a NN for mastering such tasks, and the present paper is not
trying at all to innovate in this respect. Instead, the central contribution of this
paper is a scalable method to verify the effectiveness of a NN trained externally
for its task. This technique, DSMC, is by no means bound to the Racetrack
problem domain, instead it is generally applicable. We evaluate it in the context
of Racetrack because we do think that this is a crisp formal model family, which
is of value in ongoing activities to systematize our understanding of NNs that
are supposed to take over important decisions from humans.

Our concrete modelling context are MDPs represented in Jani [6], a lan-
guage interfacing with the leading probabilistic model checkers out there. For
the sake of experimentation and for use by third parties, we have implemented
a generic connection between NNs and the state-of-the-art statistical model
checker modes [2,5], part of The Modest Toolset [18]. This extension gives
the possibility to use a NN oracle, and to analyze the resulting Markov chain by
SMC. We thus establish an initial DSMC tool infrastructure, which we apply on
Racetrack benchmarks.

It will become evident by our empirical evaluation that there are a variety
of use cases for DSMC, pertaining to end users and domain engineers alike:

Deep Statistical Model Checking 99

– Quality Assurance. DSMC can be a tool for end users, or engineers, in sys-
tem approval or certification, regarding safety, robustness, absence of dead-
locks, or performance metrics. The generic connection to model checking fur-
thermore enables the comparison of NN oracles to provably optimal choices,
on moderate-size models: taking out the NN, the original MDP results, and
can be submitted to standard probabilistic model checking. In our implemen-
tation, we use mcsta [18] for this purpose.

– Learning Pipeline Assessment. DSMC can serve as a tool for the NN engi-
neers designing the NN learning pipeline in the first place. This is because the
DSMC analysis can reveal specific deficiencies in that pipeline. For example,
we show that simple heat maps can highlight where the oracles are unsafe.
And we exhibit cases where NN oracles turn out highly unsafe despite this
phenomenon not being derivable from standard measures of learning perfor-
mance. Such problems would likely have remained undetected without DSMC.

In summary, our contributions are as follows:

1. We present deep statistical model checking, which statistically evaluated the
connection of a NN oracle and a MDP formalizing the problem context.

2. We establish tool infrastructure for DSMC within modes to connect to NN
oracles.

3. We establish infrastructure for Racetrack benchmarking, including parsing,
simulation, Jani model export, comparison with optimal behavior, and also
for NN learning.

4. We illustrate the use and feasibility of DSMC in Racetrack case studies.

The benchmark and all infrastructure including our modification of modes
as well as our Jani model is archived and publicly available at DOI
10.5281/zenodo.3760098 [14].

The paper is organized as follows. Section 2 briefly covers the necessary
background in model checking, neural networks, and the Racetrack benchmark.
Section 3 introduces the DSMC connection and discusses our implementation.
Section 4 briefly introduces our Racetrack infrastructure, specifically the Jani
model and the NN learning machinery. Section 5 describes the case studies, and
Sect. 6 closes the paper.

2 Background

Markov Decision Processes. The models we consider are discrete-state Markov
Decision Processes (MDP). For any nonempty set S we let D(S) denote the set
of probability distribution over S. We write δ(s) for the Dirac distribution that
assigns probability 1 to s ∈ S.

Definition 1 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = 〈S,A, T , s0〉 consisting of a finite set of states S, a finite
set of actions A, a partial transition probability function T : S × A � D(S),
and an initial state s0 ∈ S. We say that action a ∈ A is applicable in state

http://doi.org/10.5281/zenodo.3760098

100 T. P. Gros et al.

s ∈ S if T (s, a) is defined. We denote by A(s) ⊆ A the set of actions applicable
in s. We assume that A(s) is nonempty for each s (which is no restriction).

MDPs are often associated with a reward structure, specifying numerical
rewards to be accumulated when moving along states sequences. Here we are
interested instead in the probability of property satisfaction. Rewards, however,
appear in our case study as part of the NN training which aims at optimizing
reward expectations during reinforcement learning.

The behavior of a MDP is usually considered together with an entity resolv-
ing the otherwise non-deterministic choices in a state. This is effectuated by
an action policy (or scheduler, or adversary) that determines which applicable
action to apply when and where. In full generality this policy may use random-
ization (picking a distribution over applicable actions), and it may use the past
history when picking. The former is of no importance for the setting considered
here, while the latter is. Histories are represented as finite sequences of states
(i.e. words over S), thus they are drawn from S+. We use last(w) to denote the
last state in w ∈ S+.

Definition 2 (Action Policy). A (deterministic, history-dependent) action
policy is a function σ : S+ → A such that ∀w ∈ S+ : σ(w) ∈ A(last(w)). An
action policy is memoryless if it satisfies σ(w) = σ(w′) whenever last(w) =
last(w′).

Memoryless policies can equally be represented as σ : S → A such that ∀s ∈
S : σ(s) ∈ A(s).

Definition 3 (Markov Chain). A Markov Chain is a tuple C = 〈S, T , s0〉
consisting of a set of states S, a transition probability function T : S → D(S)
and an initial state s0 ∈ S.

An MDP 〈S,A, T , s0〉 together with an action policy σ : S+ → A induces a
countable-state Markov chain 〈S+, T ′, s0〉 over state histories in the obvious
way: For any w ∈ S+ with T (last(w), σ(w)) = μ, set T ′(w) = d where d(ws) =
μ(s). For memoryless σ the original state space S can be recovered by setting
T ′(last(w)) = μ in the above, since both are lumping equivalent [4].

Probabilistic and Statistical Model Checking. Model checking of probabilistic
models (such as MDPs) nowadays comes in two flavors. Probabilistic model check-
ing (PMC) [29] is an algorithmic technique to determine the extremal (maximal
or minimal) probability (or expectation) with which an MDP satisfies a certain
(temporal logic) property when ranging over all imaginable action policies. For
some types of properties (step-bounded reachability, expected number of steps
to reach) it does not suffice to restrict to memoryless policies, while for oth-
ers (inevitability, step-unbounded reachability) it does. At the core of PMC are
numerical algorithms that require the full state space to be available upfront (in
some way or another) [17,35].

Deep Statistical Model Checking 101

If fixing a particular policy, the MDP turns into a Markov chain. In this set-
ting, statistical model checking (SMC [20,43]) is a popular alternative to proba-
bilistic model checking. This is because PMC, requiring the full state space, is
limited by the state space explosion problem. SMC is not, even if the underlying
model is infinite in size. Furthermore, SMC can extend to non-Markovian for-
malisms or complex continuous dynamics effectively. At its core, SMC harvests
classical Monte Carlo simulation and hypothesis testing techniques. In a nutshell,
n finite samples of model executions are generated and evaluated to determine
the fraction of executions satisfying a property under study. This yields an esti-
mate q′ of the actual value q of the property, together with a statistical statement
on the potential error. A typical guarantee is that P(|q′ − q| < ε) > δ, where
1−δ is the confidence that the result is ε-correct. To decrease ε and δ, n must be
increased. SMC is attractive as it only requires constant memory independent
of the size of the state space. When facing rare events, however, the number of
samples needed to achieve sufficient confidence may explode.

In the MDP setting (or more complicated settings), SMC analysis is always
bound to a particular action policy turning an otherwise non-deterministic
model into a stochastic process. Nevertheless, many SMC tools support non-
deterministic models, e.g. Prism [28] and UPPAAL SMC [8]. They use an
implicitly defined uniform random action policy to resolve choices. The sta-
tistical model checker modes [5], which is part of The Modest Toolset [18]
instead lets the user choose out of a small set of predefined policies, or provides
light-weight support for iterating over policies [5,30] to statistically approximate
an optimal policy. In any case, results obtained by SMC are to be interpreted
relative to the implicitly or explicitly defined action policy.

Neural Networks. NNs consist of neurons: atomic computational units that typ-
ically apply a non-linear function, their activation function, to a weighted sum
of their inputs [39]. For example, rectified linear units (ReLu) use the activation
function f(x) = max(0, x). Here we consider feed-forward NNs, a classical archi-
tecture where neurons are arranged in a sequence of layers. Inputs are provided
to the first (input) layer, and the computation results are propagated through
the layers in sequence until reaching the final (output) layer. In every layer, every
neuron receives as inputs the outputs of all neurons in the previous layer. For a
given set of possible inputs I and (final layer) outputs O, a neural network can
be considered as an efficient-to-query total function π : I → O.

So-called “deep” neural networks consist of many layers. In tasks such as
image recognition, successful NN architectures have become quite sophisticated,
involving e.g. convolution and max-pooling layers [27]. Feed-forward NNs are
comparatively simple, yet they are in wide-spread use [12], and are in principle
able to approximate any function to any desired degree of accuracy [22].

Such NNs can be trained in a multitude of ways. Here we use deep Q-learning
[33], a successful and nowadays widespread form of reinforcement learning, where
the NN is trained by iterative execution and refinement steps. Each step executes
the current NN from some state, and updates the NN weights using gradient
descent. Deep Q-learning has been shown to learn high-quality NN action policies
in a variety of challenging decision-making problems [33].

102 T. P. Gros et al.

Racetrack. Originally Racetrack is a pen and paper game [11]. A track is drawn
with a start line and a goal line. A vehicle starts with velocity 0 from some
positions on the start line, with the objective to reach the goal as fast as possible
without crashing into a wall. Nine possible actions modify the current velocity
vector by one unit (up, down, left, right, four diagonals, keep current velocity).
This simple game lends itself naturally as a benchmark for sequential decision
making in risky scenarios. In particular, extending the problem with noise, we
obtain MDPs that do not necessarily allow the vehicle to reach the goal with
certainty. In a variety of such noisy forms, Racetrack was adopted as a benchmark
for MDP algorithms in the AI community [1,3,32,36,37].

Like in previous work, we consider the single-agent version of the game.
We use some of the benchmarks, i.e., track shapes, that are readily available.
Specifically, we use the three Racetrack maps illustrated in Fig. 1, originally
introduced by Barto et al. [1]. The track itself is defined as a two-dimensional
grid, where each cell of the grid can represent a possible starting position “s”
(indicated in green), a goal position “g” (red), or can contain a wall “x” (white,
crossed). Like Barto et al. [1], we consider a noisy version of Racetrack that
emulates slippery road conditions: actions may fail with a given probability,
in which case the action does not change the velocity and the vehicle instead
continues driving with unchanged velocity vector.

Fig. 1. The maps of our Racetrack benchmarks: Barto-small (left top), Barto-big (left
bottom), Ring (right). (Color figure online)

3 Neural Networks as MDP Action Policies

Connecting MDP and Action Oracle. Racetrack is a simple instance of many
further examples representing real-world phenomena that involve randomness
and decision making. This is the natural scenario where NNs are taking over
ever more duties. In essence, their role is very close to that of an action policy:
Decide in each situation what options to pick next. If we consider the “situations”
(the inputs I) as the states S of a given MDP, and the “options” (outputs O) as

Deep Statistical Model Checking 103

actions A, then the NN is a function π : S → A. We call such a function an action
oracle. Indeed this is what the reinforcement learning process in Q-learning and
other approaches delivers naturally.

Observe that an action oracle can be cast into an action policy except for a
subtle problem. Action policies only pick actions (from A(s), thus) applicable
at the current state s, while action oracles may not. A better fitting definition
would constrain oracles to always return an applicable action. Yet it is not clear
how to guarantee this for NNs – it is easy to see that, even for linear multi-
classification, the hard constraints required to guarantee action applicability lead
to non-convex optimization problems. An easy fix would use the highest-ranked
applicable action instead of the NN classifier output itself. For our purposes
however, where we want to analyze the quality of the NN oracle, it makes sense
to explicitly distinguish inapplicable actions as a form of low quality.

If an oracle returns an inapplicable action, then no valid behavior is pre-
scribed and in that sense the system can be considered stalled.

Definition 4 (Action Oracle Stalling). Let M = 〈S,A, T , s0〉 be an MDP,
and π : S �→ A be an action oracle. We say that s ∈ S is stalled under π if
π(s) /∈ A(s).

To accommodate for stalling, we augment the MDP upfront with a fresh action
† available at every state, this action is chosen upon stalling, leading to a fresh
state ‡ with only that action to continue. So M = 〈S,A, T , s0〉 is transformed
into M‡ = 〈S ∪ {‡},A ∪ {†}, T ′, s0〉 where for each state s, T ′(s, †) = δ(‡) and
otherwise T ′(s, a) = T (s, a) wherever the latter is defined.

Definition 5 (Oracle Induced Markov Chain). Let M = 〈S,A, T , s0〉
be an MDP, and let π be an action oracle for M. Then the Markov chain Cπ

induced by π is the one induced in M‡ by the memoryless action policy σ defined
by σ(w) = † whenever last(w) is ‡ or stalled under π, and otherwise by σ(w) =
π(last(w)).

In words, the oracle induced policy fixes the probability distribution over tran-
sitions in each state to that of the chosen action. If that action is inapplicable,
then the chain transitions to the fresh state ‡ which represents stalled situations.

Deep Statistical Model Checking. Overall, Cπ is a Markov chain that uses π as
an oracle to determinize the MDP M whenever possible, and stalls otherwise.
With π implemented by a neural network, we can use statistical model check-
ing on Cπ to analyze the NN behavior in the context of M. This analysis has
the potential to deliver deep insights into the effectiveness of the NN applied,
allowing for comparisons with other policies and also with optimal policies, the
latter obtained from exhaustive model checking. From a practical perspective,
an important remark is that in the definitions above and in our implementation
of DSMC described below, the inputs to the NN are assumed to be the MDP
states S. This captures the scenario where the NN takes the role of a classical
system controller, whose inputs are system state attributes, such as program vari-
ables. More generally, the connection from the MDP model to the NN input may

104 T. P. Gros et al.

require an intermediate function f mapping S to the input domain of the NN.
This is in particular the case for NNs processing image sequences, like in vision
systems in autonomous driving. In such a scenario, the MDP model states have
to represent the relevant aspects of the NN input (e.g. objects and their proper-
ties in an image). This advanced form of connection remains a topic for future
work. It lacks the crisp nature of the problem considered here.

DSMC Implementation. Deep statistical model checking is based on a pair of
NN and MDP operating on the same state space. The NN is assumed to be
trained externally prior to the analysis, in which it is combined with the MDP.
To experiment with this concept in a real environment, we have developed
a DSMC implementation inside The Modest Toolset [18], which includes
the explicit-state model checker mcsta, and in particular the statistical model
checker modes [5]. modes thus far offers the options Uniform and Strict to
resolve non-determinism. We implemented a novel option called Oracle, which
calls an external procedure to resolve non-determinism. With that option in
place, every time the next action has to be chosen, modes provides the current
model state s to the Oracle, which then calls the external procedure and returns
the chosen action to modes. In this way, the Oracle can connect to an external
NN serving as an action oracle from modes’s perspective.

At the implementation level, connecting to standard NN tools is non-trivial
due to the programming languages used. TheModest Toolset is implemented
in C#, whereas standard NN tools are bound to languages like Python or Java.
Our key observation to overcome this issue is that a seamless integration is not
actually required. Standard NN tools are primarily required for NN training,
which is computationally intensive and requires highly optimized code. In con-
trast, implementing our NN Oracle requires only NN evaluation (calling the NN
on a given input) which is easy – it merely requires to propagate the input val-
ues through the network. We thus implemented NN evaluation directly in The
Modest Toolset’s code base, as part of our extension. The NNs are learned
using standard NN tools. From there, we export a file containing the NN weights
and biases. Our extension of modes reads that file, and uses it to reconstruct
the same NN, for use with our evaluation procedure. When the Oracle is called,
it connects to that procedure.

modes contains simulation algorithms specifically tailored to MDP and more
advanced models. The tool is implemented in C#. It offers multiple statistical
methods including confidence intervals, Okamoto bound [34], and SPRT [41]. As
simulation is easily and efficiently parallelizable, modes can exploit multi-core
architectures.

4 Getting Concrete: The Racetrack Case Study

As previously outlined, we consider Racetrack as a simple and discrete, yet highly
extensible approximation of real-world phenomena that involve randomness and
decision making. In this section we spell out how these benchmarks are made
concrete use of.

Deep Statistical Model Checking 105

The Jani framework. Central to our practical work is the Jani-model for-
mat [6,24]. It can express models of distributed and concurrent systems in the
form of networks of automata, and supports property specification based on
probabilistic computation tree logic (PCTL) [16]. In full generality, Jani mod-
els are networks of stochastic timed automata, but we concentrate on MDPs
here. Automatic translations from and into other modeling languages are avail-
able, connecting among others to the planning language PPDDL [26] and to
the Prism language, and thus to the model checker Prism [28]. A large set
of quantitative verification benchmarks (QVBS) [19] is available in Jani, and
many tools offer direct support, among them ePMC, Storm and The Modest
Toolset [9,15,18].

Racetrack Model. For lack of space, the details of the Racetrack encoding in Jani
are part of the archive publicly available at [14]. The track itself is represented as
a (constant) two-dimensional array whose size equals that of the grid. The Jani
files of different Racetrack instances differ only in this array. Vehicle movements
and collision checks are represented by separate automata that synchronize using
shared actions.

The vehicle automaton keeps track of the current vehicle state via four
bounded integer variables (position and directional velocity), and two Boolean
variables (indicating whether the vehicle has crashed or reached a goal). The ini-
tial automaton location has edges for each of the 9 different acceleration vectors.
Each of them updates the velocity accordingly, and sends the current source and
next target coordinates to the collision check automaton. It then awaits that
automaton to respond with one of three answers: “valid”, “crash”, or “goal”.
For the latter two, the automaton moves to a terminal location. For “valid”, the
vehicle automaton sets the target coordinates as its new source coordinates and
moves back to its initial location.

The collision check automaton checks whether the vehicle’s next target coor-
dinates lie within the grid. If so, it iterates over the cells on the discretized trajec-
tory from current source to next target, and looks up for each such cell whether
it represents a wall or goal cell. Such a result is sent to the vehicle automaton as
soon as available. If the entire trajectory is found free of such events, the vehicle
automaton’s request is answered with “valid”, and the automaton location is
reset, waiting for the next trajectory to check.

Learning Neural Networks for Racetrack. For the sake of realistic empirical stud-
ies, we have drawn on established NN learning techniques to obtain NN oracles
for the Racetrack case studies. Here we briefly summarize the main design deci-
sions. Notably, DSMC is entirely independent of the concrete learning process,
depth, and shape of the NN employed.

– NNs are learnt for a specific map (cf. Fig. 1), with the inputs being 15 integer
values, encoding the two-dimensional position, the two-dimensional velocity,
the distance to the nearest wall in eight directions, the x and y differences
to the goal coordinates, and Manhattan goal distance (absolute x- and y-
difference, summed up). Actions are encoded as classification outputs.

106 T. P. Gros et al.

– A crucial design decision is the learning objective, i.e., the rewards used in
deep Q-learning. We set the reward for reaching the goal line to 100, and
for crashing into a wall to −50. We used a discount factor of 0.99 to encour-
age short trajectories to the goal. This arrangement was chosen because,
empirically, it resulted in an effective learning process. With higher negative
rewards for crashing, the policies learn to prefer not to move or to move
in circles. Similarly, smaller negative rewards make the learnt policies prefer
to crash quickly. Using a discount factor yields better learning performance,
but does not match the overall Racetrack setup. This exemplifies that the
choice of objectives for learning is governed by learning performance. Both
meta-parameters and numeric parameters such as rewards typically require
fine-tuning orthogonal to, or at least below the level of abstraction of, the
qualities of interest in the application.

– We experimented with a range of NN architectures and hyperparameter set-
tings, the objective being to keep the NNs simple while still able to learn
useful oracles in our Racetrack benchmarks. The NNs we settled on have the
above described input and output layers, and two hidden layers each of size
64. All neurons use the ReLU activation function.

– NNs are learnt in two variants: (a) starting on the starting line vs. (b) starting
from a random point anywhere on the map, each with initial velocity 0.
Variant (b) turned out to yield much more effective and robust learning.
Intuitively, with (a) it takes the policy a long time to reach the goal at all,
while with (b) this happens more quickly yielding earlier and more robust
learning also farther away from the goal.

Fig. 2. Heat maps of NN induced crash probabilities for all Racetrack benchmarks.
(Color figure online)

Deep Statistical Model Checking 107

5 Getting Practical: DSMC Case Studies in Racetrack

We now demonstrate the statistical model checking approach to NN policy ver-
ification through case studies in Racetrack. Section 5.1 illustrates the use of
DSMC for quality assurance by human analysts (end users, engineers) in sys-
tem approval. Section 5.2 illustrates the use of DSMC as a tool for the engineers
designing the NN learning pipeline. Section 5.3 evaluates the computational effort
incurred by DSMC compared to a conventional SMC setting where the MDP
policy is coded in the model itself.

Throughout, we use modes with an error bound P (error > ε) < κ, where
ε = 0.01 and κ = 0.05, i.e., a confidence of 95%. We set the maximal run
length to 10000 steps. Unless otherwise stated, we set the slippery-noise level
in Racetrack, i.e. the probability of action failure, to 20%. The NN oracles are
learnt by training runs starting anywhere on the map; we will illustrate how
DSMC can highlight the deficiencies of the alternate approach (starting on the
starting line only). All experiments were run on an Intel(R) Core(TM) i7-4790
CPU @ 3.60 GHz (4 cores, 8 threads) with 32 GB RAM and a 450 GB HDD.

5.1 Quality Assurance in System Approval

The variety in abstract property specification gives versatility to the quality
assurance process. This is important in particular because, as previously argued,
the relevant quality properties will typically not be identical to the objectives
used for NN learning. In the Racetrack example, NN learning optimizes expected
reward subject to fine-tuned reward and discount values. For the quality assur-
ance, we consider crash probability and goal probability, expressed as CTL path

Fig. 3. Goal probability of NN oracle on the Barto-big benchmark trained and executed
with 20% noise vs. stress-test executed with 50% noise using the same NN (middle)
vs. optimal policies obtained by probabilistic model checking with 50% noise (right).
(Color figure online)

108 T. P. Gros et al.

formulas in Jani, namely ♦ crashed (“eventually crashed”) for the former and
¬crashed U goal (“not crashed until reaching goal”) for the latter.1

We highlight that the DSMC analysis can not only point out that a NN ora-
cle has deficiencies, but also where: in which regions of the MDP state space
S. Namely, in cyber-physical systems, it is natural to use the spatial dimension
underlying S for systematizing the analysis and visualizing its result. This deliv-
ers not only a yes/no answer, but an actual quality report. We illustrate this
here through the use of simple heat maps over the Racetrack road map.

Figure 2 shows quality assurance results for crash probability in all the Race-
track benchmarks, using for each the best NN oracle from reinforcement learning
(i.e. those yielding highest rewards). The heat maps use a simple color scheme as
an illustration how the analysis results can be visualized for the human analysts.
Similar color schemes will be used in all plots below.

From the displayed DSMC results, quality assurance analysts can directly
conclude that the NN oracles are fairly safe in Barto-small (left top), with crash
probabilities mostly below 0.1; but not on Barto-large (left bottom) and Ring
(right) where crash probabilities are above 0.5 on significant parts of the map.
Generally, crash probability increases with distance to the goal line. Some inter-
esting subtleties are also visible, for example that crash probabilities are rela-
tively high in the left-turn before the goal in Barto-small.

Our next results, in Fig. 3, illustrate the quality-assurance versatility afforded
by DSMC, through an analysis quite different from the previous one. The human
analysts here decide to evaluate goal probability (a quality stronger than not
crashing because the latter may be achieved by idling). Apart from the origi-
nal setting, they consider a stress-test scenario where the road is significantly
more slippery than during NN training, namely 50% instead of 20%. They
finally decide to compare with optimal goal probabilities, computable via the

Fig. 4. Goal probabilities on the Barto-big benchmark (color coding as in Fig. 3), for
NN oracles learnt over n = 70000 (left) and n = 90000 (middle) training episodes,
together with Q-learning curve (right). (Color figure online)

1 Further properties of interest could be, e.g., bounded goal probability (how likely is
it that we will reach the goal within a given number of steps?), expected number of
steps to goal, or risk of stalling.

Deep Statistical Model Checking 109

probabilistic model checker mcsta, so that they can see whether any deficien-
cies are due to the NN, or are unavoidable given the high amount of noise.

The figure shows the outcome for Barto-large. One of the deficiencies is imme-
diately apparent, the NN policy does not pass the stress test. Its goal probability
matches the optimal values only near the goal line, and exhibits significant defi-
ciencies elsewhere. Based on these insights, the quality analysts can now decide
whether to relax the stress-test (after all, even optimal behavior here does not
reach the goal with certainty), or whether to reject these NN polices and request
re-training.

5.2 Learning Pipeline Analysis and Revision

More generally, DSMC can yield important insights not only for quality assur-
ance, but also for the engineers designing the NN learning pipeline in the first
place. There are two distinct scenarios:

(i) The engineers run the same success tests as in quality assurance, and re-train
if a test is not passed.

(ii) The engineers assess different properties of interest to the learning process
itself (e.g. expected length of policy runs), or assess the impact of different
hyperparameter settings.

In both scenarios, the DSMC analysis results point to specific state-space regions
that require improvement. This can be directly operationalized to revise the
learning pipeline, by starting more training runs from states in the critical
regions.

Figures 2 and 3 above have already demonstrated (i). Next we demonstrate
(ii) through two case studies analyzing different hyperparameter settings.

Our first case study, in Fig. 4, analyzes the number n of training episodes, as
a central hyperparameter of the learning pipeline. The only information available
in deep Q-learning for the choice of this hyperparameter is the learning curve,
i.e., the expected reward as a function of n, depicted on the right. Yet, as our
DSMC analysis here shows, this information is insufficient to obtain reliable
policies. In Barto-big, the highest reward is obtained after n = 90000 episodes.
From n = 70000 to n = 90000, the reward slightly increases. Yet we see in
Fig. 4 that the additional 20000 training episodes, while increasing overall goal
probability, lead to highly deficient behavior in an area near the start of the map,
where goal probability drops below 0.25. If provided with that information, the
engineers can focus additional training on that area, for instance.

In our next case study, we assume that the NN engineers decide to analyze
the impact of starting training runs on (a) the starting line vs. (b) random points
anywhere on the map. Figure 5 shows the results for the Ring map, where they
are most striking. In variant (a), the top part of the Racetrack was completely
ignored by the learning process. Looking into this issue, one finds that, during
training, the first solution happens to be found via the bottom route. From there
on, the reinforcement learning process has a strong bias to that route, preventing
any further exploration of other routes.

110 T. P. Gros et al.

> 0.998

> 0.99

> 0.97

> 0.9

> 0.75

> 0.5

> 0.25

≤ 0.25

Fig. 5. Goal probabilities in Ring for NN oracles where training was carried out with
reinforcing runs from the start line only (left) vs. from anywhere on the map (right).
(Color figure online)

Phenomena like this are highly detrimental if the learnt policy needs to be
broadly robust, across most of the environment. The deficiency is obvious given
the DSMC analysis results, and these results make it obvious how the problem
can be fixed. But neither can be seen in the learning curves.

5.3 Computational Effort for the Analysis

As discussed, it can be highly demanding or infeasible to verify the input/output
behavior of even a single NN decision episode, and that complexity is potentially
compounded by the state space explosion problem when endeavoring to verify
the behavior induced by an NN oracle. Deep statistical model checking carries
promise as a “light-weight” approach to this formidable problem, as no state
space needs to be stored and on the NN side it merely requires to call the NN on
sample inputs. In addition, it is efficiently parallelizable, just like SMC. Yet (1)
the approach might suffer from an excessive number of sample runs needed to
obtain sufficient confidence, and/or (2) the overhead of NN calls might severely
hamper its runtime feasibility.

Figure 6 shows data regarding (1). We compare the effort for analyzing our
NN policies to that required for analyzing a conventional hand-made policy that
we incorporated into our Jani models.2 As the heat maps show, the latter effort
is higher. This is due to a tendency to more risky behavior in the hand-made
policy, resulting in higher variance. Regarding (2), the runtime overhead for NN
calls is actually negligible in our study. Each call takes between 1 and 4 ms.
There is an added overhead for constructing the NN once at the beginning of
the analysis, but that takes at most 6 ms.
2 The policy implements a simple reactive controller that brakes if a wall is near and

otherwise accelerates towards the goal. Its goal probability is moderately worse than
that of the best NN policies.

Deep Statistical Model Checking 111

�log2(#runs)� = 14

�log2(#runs)� = 13

�log2(#runs)� = 12

�log2(#runs)� = 11

�log2(#runs)� = 10

�log2(#runs)� = 9

�log2(#runs)� < 9

NN-induced

Hand-coded

Fig. 6. Heat maps showing computational effort needed by DSMC, measured by the
number of sample runs performed by modes to analyze goal probability for each map
location. Results shown for the policies induced by our learnt NN in the top row, vs.
a simple hand-coded policy (see text) at the bottom. Each point on the map shows
�log2(#runs)�. (Color figure online)

These results should of course not be over-interpreted, given the limitations of
this initial study. But they do provide evidence that the computational overhead
may be manageable in practice at least for moderate-size neural networks.

6 Conclusion

This paper has described the cornerstones of an effective methodology to apply
statistical model checking as a light-weight approach to checking the behavior
of systems incorporating neural networks. The most important aspects of the
DSMC approach are its (i) genericity – in that it provides a generic and scalable
basis for analyzing learnt action policies; its (ii) openness – since the approach is
put into practice using the Jani format, supported by many tools for probabilis-
tic or statistical model checking; and its (iii) focus – on an abstract fragment
of the “autonomous driving” challenge. We consider these contributions as a
conceptual nucleus of broader activities to foster the scientific understanding of
neural network efficacy, by providing the formal and technological framework for
precise, yet scalable problem analysis.

We have contributed an initial case study suggesting that this may indeed
be useful and feasible. We hope that the study provides a compelling basis for

112 T. P. Gros et al.

further research on deep statistical model checking. Racetrack forms a viable
starting point for this endeavor in that can be made more realistic in a man-
ifold of dimensions: finer discretizations, different surface conditions, appear-
ing/disappearing obstacles, other traffic participants, speed limits and other
traffic regulations, different probabilistic perturbances, fuel efficiency, change
from map perspective to ego-perspective of an autonomous vehicle, mediated by
vision and other sensor systems. We are actually embarking on an exploration
of these dimensions, focussing first on speed limits and random obstacles.

From a general perspective, DSMC provides a refined form of SMC for MDPs
where thus far only implicitly defined random action policies have been available.
If those were applied to Racetrack, goal probabilities <0.1 would result – except
directly at the goal line. DSMC instead can harvest available data for a far better
suited action policy, in the form of a NN oracle trained on the data at hand. Of
course, other forms of oracles (based on, say, random forests) can be considered
with DSMC rightaway, too.

Acknowledgements. This work was partially supported by ERC Advanced Investi-
gators Grant 695614 (POWVER), and by DFG Grant 389792660 as part of TRR 248
(CPEC). The authors thank Felix Freiberger for technical support.

References

1. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

2. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order meth-
ods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.)
FMOODS/FORTE -2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21461-5 4

3. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming, In: ICAPS, pp. 12–21 (2003)

4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31(1), 59–75 (1994)

5. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

6. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

7. Croce, F., Andriushchenko, M., Hein, M.: Provable robustness of RELU networks
via maximization of linear regions, In: AISTATS. pp. 2057–2066. PMLR 89 (2019)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

https://powver.org
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27

Deep Statistical Model Checking 113

9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is Coming: A Modern
Probabilistic Model Checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

10. Ehlers, R.: Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482,
pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-
2 19

11. Gardner, M.: Mathematical games. Sci. Am. 229, 118–121 (1973)
12. Gardner, M., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a

review of applications in the atmospheric sciences. Atmospheric Environ. 32(14),
2627–2636 (1998)

13. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: Safety and robustness certification of neural networks with abstract
interpretation. IEEE Sympos. Secur. Privacy 2018, 3–18 (2018)

14. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Models and
Infrastructure used in “Deep Statistical Model Checking” (2020). https://doi.org/
10.5281/zenodo.3760098

15. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

17. Hartmanns, A.: On the analysis of stochastic timed systems. Ph.D. thesis, Saarland
University, Germany (2015)

18. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

19. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

20. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

21. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

22. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359–366 (1989)

23. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

24. The JANI specification. http://www.jani-spec.org/. Accessed 28 Feb 2020
25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an

efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-319-63387-9_1
http://www.jani-spec.org/
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

114 T. P. Gros et al.

26. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Compiling probabilistic
model checking into probabilistic planning. In: ICAPS, pp. 150–154 (2018)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

28. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

29. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

30. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

31. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural
networks with symbolic propagation: towards higher precision and faster verifica-
tion. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32304-2 15

32. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS, pp. 151–160 (2005)

33. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

34. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. inst. Stat. Math. 10(1), 29–35 (1959)

35. Parker, D.A.: Implementation of symbolic model checking for probabilistic systems.
Ph.D. thesis, University of Birmingham, UK (2003)

36. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAI, pp. 2350–2356 (2013)

37. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: ICAPS, 217–225 (2014)

38. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

39. Sarle, W.S.: Neural networks and statistical models (1994)
40. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)
41. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–

186 (1945)
42. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing

of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

43. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

	Deep Statistical Model Checking
	1 Introduction
	2 Background
	3 Neural Networks as MDP Action Policies
	4 Getting Concrete: The Racetrack Case Study
	5 Getting Practical: DSMC Case Studies in Racetrack
	5.1 Quality Assurance in System Approval
	5.2 Learning Pipeline Analysis and Revision
	5.3 Computational Effort for the Analysis

	6 Conclusion
	References

