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Abstract

The scientific value of a mouse model with a targeted mutation depends greatly upon how
carefully the mutation has been engineered. Until recently, our ability to alter the mouse genome
has been limited by both the lack of technologies to conditionally target a locus and by
conventional cloning. The “cre/loxP” and “recombineering” technologies have overcome some of
these limitations and have greatly enhanced our ability to manipulate the mouse genome in a
sophisticated way. However, there are still some practical aspects that need to be considered to
successfully target a specific genetic locus. Here, we describe the process to engineer a targeted
mutation to generate a mouse model. We include a tutorial using the publicly available informatic
tools that can be downloaded for processing the genetic information needed to generate a targeting
vector.
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1. Introduction

Gene targeting in the mouse is a powerful technology that allows the study of gene function
in mammals (1-4). Its initial application was for the establishment of in vivo genetic models
for the phenotypic analysis of genes considered developmentally important. This was
achieved by inactivating a specific gene in the mouse germline. Other more complex
applications include the introduction of genetic mutations to mimic pathological conditions
in humans or the replacement of one gene with another to investigate common genetic
functions. Currently, it is fairly common to introduce reporter genes (e.g., LacZ, GFP, (5-7))
into a locus to pursue gene expression studies or to insert recombination recognition sites
(loxP and Frt sites) that allow inactivation of a gene conditionally or induce chromosomal
rearrangements (8-11). These applications have been made possible and have been greatly
facilitated by the development of the cre/loxP and more recently the “recombineering”
technologies (see Chapter 2, this volume, (12-16)). However, some basic concepts must be
considered when designing a targeting strategy, irrespective of the type of mutation to be
utilized.

A common misconception among investigators that are new to gene targeting in mouse
embryonic stem (ES) cells is that a gene targeting strategy merely requires two fragments of
DNA flanking the genomic sequence of interest to be modified and a selectable marker to
identify correctly targeted ES cells. Indeed, while this constitutes the basic concept of
homologous recombination in ES cells, there are a number of criteria that the investigator
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must consider to successfully target a specific locus. A few examples include, the length of
genomic sequence used in the vector; the mouse strain of the genomic DNA; the selectable
markers used in the vector and the overall design of a screening strategy to identify correctly
targeted ES cells. While this may appear complicated at first, the availability of the DNA
sequence of both the mouse and human genomes has greatly facilitated this task (17-19). In
this chapter, we describe in detail the steps involved in designing a targeting vector including
how to search and obtain sequence information from the publicly available genome
database.

2. Methods

In order to design a targeting vector, the researcher must first obtain the cDNA and the
genomic DNA sequences of the gene of interest to analyze the characteristics of the locus
under investigation. Most of these data are available in computed form and can be obtained
from public resources such as the UCSC Genome Browser (20, 21). It should be stressed
that the investigator should be knowledgeable of the structure and function of the gene to be
targeted. This is important when considering which region of the gene should be deleted to
most likely result in the successful disruption of that gene. One consideration is the presence
of catalytic sites that are essential for the function of the protein. However, it should be
noted that deletion of such sites can still potentially generate a protein that has the ability to
bind other accessory proteins and could therefore act in a dominant-negative fashion.
Moreover, instead of disrupting a gene, deletion of certain exons can potentially generate a
modified cDNA through “alternative splicing” creating a functional protein that lacks only
the amino acids coded for in the deleted exon/s. In general, we find targeting the first exon a
good strategy for completely disrupting a gene, assuming that the Kozak consensus sequence
is removed and/or there are no alternative ATG start sites downstream of the targeted exon.
Another strategy includes deletion of an exon that potentially leads to an out-of-frame
protein.

For those unfamiliar with the tools available to search the genome databases, we include a
case study to describe a step-by-step search and retrieval of genetic information from the
public database (see Appendix).

2.1. Construct Design

The most common type of DNA vector used for gene targeting in ES cells is the so-called
“sequence replacement vector” (22, 23). It includes two DNA fragments flanking a marker
gene used for the positive selection of ES cells (see Fig. 8.1, (24)). Several aspects of the
vector’s design should be considered when choosing the genomic region to be targeted.
These aspects can affect the frequency of the targeting events and/or affect the targeted locus
and normal function of surrounding genes (25). These include the following.

2.1.1. Length of Homology Between the Targeting Vector and the Target
Locus—The length of homologous DNA sequence incorporated on either side of the
targeted region of interest in a targeting vector significantly influences the frequency of
homologous recombination. Targeting of the HPRT locus has shown that the length of
homology used in the construct can affect the homologous recombination efficiency 100- to
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200-fold (22, 26). Ideally, a total of 8-12 kb should be used with the shortest homologous
arm being no less than 2 kb in length.

2.1.2. Source of DNA for Vector Construction—The source of the vector DNA
should be isogenic to the ES cells used for the targeting (22). Mouse strain-specific
polymorphisms at specific loci can greatly reduce the efficiency of homologous
recombination if the vector sequence is somewhat different from the ES cells. Most ES cells
are from the 129 Sv background because they are the most efficient at colonizing the mouse
germline upon injection into recipient blastocysts (27, 28). However, most of the mouse
DNA sequence information that is available comes from “bacterial artificial chromosomes”
(BACs) of the C57BL/6 background (see below) that have been used for the public
sequencing of the mouse genome. For this reason, in our laboratory we have been using a
hybrid 129 Sv—C57BI/6 ES cell line (v6.4 a gift of John Schimenti; (29)) that allows us to
use vectors from both 129 Sv and C57BL/6 genetic backgrounds. Most recently, a genome-
wide, end-sequenced 129 Sv BAC library has become available for construction of targeting
vectors of the 129 Sv background (30) (http://www.geneservice.co.uk/products/sanger/bMQ/

bMQ.jsp).

2.1.3. Drug Resistance Marker Genes for Selection

2.1.3.1. Positive Selection: The construct used for targeting a specific locus must contain a
drug-selectable marker to easily select for recombinants. The most commonly used positive
selection marker is the neomycin phosphotransferase gene (neo) that confers resistance to
the neomycin analog, G418. G418 is an aminoglycoside antibiotic produced by
Micromonospora rhodorangea that blocks polypeptide synthesis by inhibiting the elongation
step in both prokaryotic and eukaryotic cells. Resistance to G418 is conferred by the neo
gene that encodes an aminoglycoside 3”-phosphotransferase. Selection in mammalian cells
is usually achieved in 3—7 days with concentrations starting from ~300 pg/ml. Rapidly
dividing cells are more severely affected; thus, 250-300 pg/ml is effective in killing ES cells
that do not contain the neo gene.

Another commonly used selectable marker is the Aygromycin B phosphotransferase gene.
Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus. It
inhibits protein synthesis by interfering with translocation and causing mistranslation at the
70S ribosome. Hygromycin B is effective against most bacteria, fungi, and higher
eukaryotes. Resistance to hygromycin is conferred by the hph gene from E. coli.
Hygromycin B is normally used at a concentration of 50-200 pg/ml in mammalian cells and
is effective in 2-3 days.

The most widely used selectable marker is the neo gene. Hygromycin is used when a second
vector that targets another allele of a gene is required. Other markers for positive selection
include genes encoding for resistance to puromycin (inhibits peptidyl transfer on ribosome),
Blasticidin S (interferes with the peptide bound formation in the ribosomal machinery), and
Zeocin™ (intercalates and cleaves DNA). These markers can be used to introduce multiple
targeting events in ES cells. It should be noted that the positive-selectable marker chosen for
the vector will influence the type of mouse embryo fibroblast (MEF) feeder layer that is
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needed to grow the ES cells. For example, if the neo gene is used the feeders must be G418-
resistant.

Selectable expression cassettes can easily be obtained from investigators who perform gene-
targeting experiments. The main difference between the types of cassettes available is the
choice of promoter and the poly-adenylation signal used to control the expression of the
selectable marker (31). The phosphoglycerate kinase (PGK) promoter is commonly used
with the neo gene. A key element of the promoter used is that it should not be too sensitive
to positional effects in the genome to ensure that it will work for the targeted genes that are
not expressed in ES cells. The orientation by which the positive selection cassette is inserted
in the targeted locus does not matter. After the initial targeting and transmission through the
mouse germline the cassette should be removed via cre or flpe recombination to prevent its
regulatory elements from affecting the transcription of neighboring genes confounding the
phenotypic analysis (25).

2.1.3.2. Negative Selection: Negative selection markers are used to reduce the number of
transfected cells containing the exogenous sequence inserted at random loci (32). The most
commonly used marker is the thymidine kinase (TK) gene of the herpes simplex virus
(HSV). If the TK gene is incorporated into the genome, it confers sensitivity to gancyclovir
(2”-nor-2" deoxyguanosine) or FIAU [1-(Z-deoxy-2’fluoro-b-D-arabinofuranosyl)-5
iodouracil]. These drugs are specific inhibitors of HSV by acting as nucleotide analogues
that inhibit cellular growth following incorporation into DNA.

In order for these analogues to be incorporated into DNA, they must be phosphorylated by
the TK gene. In the absence of the TK gene, the drug phosphorylation is limited. Low
concentrations of gancyclovir or FIAU have no effect on cells. Therefore, the sensitivity of
cells to gancyclovir is dependent upon the presence of the HSV tk gene product.

The TK gene is placed at one end of the targeting vector adjacent to one end of the two DNA
homology arms. Following a homologous recombination event, the TK is not recombined
into the region and the correctly targeted ES cell will be resistant to both G418 (because it
has incorporated the neo gene) and gancyclovir or FIAU (because TK is not incorporated
during the homologous recombination process) (Fig. 8.1).

Another negative selection marker is the diphtheria toxin A-fragment gene (DT-A) that
exerts toxicity by inhibiting ADP-ribosylation of elongation factor 2 upon protein synthesis
(33). Thus, contrary to the gancyclovir or FIAU it does not have mutagenic potentials and
should enhance karyotype stability. The DT-A gene works with the same principle as the TK
negative selection gene. The main difference is that if the DT-A gene is randomly
incorporated into the genome by non-homologous recombination it will produce diphtheria
toxin that kills the cell without the need to add any drug to the cultured cells. A negative
selection strategy employing either the TK gene or the DT-A gene can enrich the ratio of
homologous recombinant clones by 3-10 fold.

2.1.4. Screening Strategy—The importance of designing a screening strategy to
identify homologous recombinant clones cannot be overstated and it should be an integral
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part of the vector design process. A screening strategy design can include a Southern
blotting or PCR methodology for detection of homologous recombination events. Screening
by Southern blotting is far superior in assuring that the correctly targeted clones are
identified and helps avoid false-positives. We highly recommend that this type of screening
be used at least in the initial phases of the analysis. For Southern analysis, specific
restriction enzyme digestions should be chosen to recognize homologous recombination
events involving the targeting vector (see Note 1). Moreover, two probes, one 5’ and one 3’,
should be identified external to the targeting vector sequence. This means that the probes
should not hybridize to the targeting vector. This insures identification of rearrangements
that occur only in the targeted locus following the homologous recombination event (Fig.
8.2E) without detecting random integrations of the vector in the genome (Fig. 8.2D). The
restriction enzymes for DNA digestion should be chosen that cut the DNA upstream of the
5’ probe or downstream of the 3’ probe. This allows for detection of rearrangements caused
only by homologous recombination events in the targeted locus. A rearrangement can be
detected when insertion of the selection cassette (e.g., neo) causes the restriction enzyme
fragment to increase in size. However, most times the design of a screening strategy can take
advantage of the presence of a restriction enzyme site that is located within the selection
cassette itself (seein Fig. 8.1 the Himdlll restriction fragment detected with probe B goes
from 8.5 kb in the WT allele to 7 kb in the mutant allele) or a site can be intentionally added
when a loxP recombination sequence is included in the targeting vector (see for example the
BamHI * site added to the loxP site in Fig. 8.1 that causes the DNA fragment detected with
Probe A to go from 8 kb to 5.5 kb). In general it is advisable to include a restriction enzyme
site adjacent to the isolated loxP site to have appropriate means to detect its presence. Some
investigators rely on PCR to screen for the presence of a loxP site. However, this can lead to
the detection of false-positive clones if the vector has integrated randomly into another site
of the genome in addition to the targeted locus. Lastly, when a conditional allele is generated
the investigator should include a strategy for detecting rearrangements at both the 5" and 3’
ends of the construct not only before but also after cre and Flp recombination (Fig. 8.1).

2.1.5. Probes—As mentioned above, the probes for the screening strategy should not be
part of the targeting vector sequence to allow detection of homologous recombination events
at the targeted locus. Moreover, it is critical that the probes are free of repetitive elements
whose presence results in a smear on the Southern blot (Fig. 8.2B,C). The probes can be
synthesized by PCR but even if the sequence from which they are chosen appears repeat-free
they should be tested on a blot because computer programs may not recognize all types of
repeats. Even a small stretch of repeats in a probe could prevent its use in Southern blot
analysis (Fig. 8.2B).

2.1.6. Vector DNA Sequence

2.1.6.1. Repetitive Elements: Repetitive sequence should be avoided not only when
choosing a probe for screening but also when designing the targeting vector per se. Almost
50% of the mouse genome is repetitive (34); thus, it is intuitive that having repetitive
sequence in the vector increases the chances that it can integrate throughout the genome by
aligning its own repeat sequence to other identical and very abundant sequence in the
genome. Nevertheless, because almost half of the mouse genome is repetitive, it is
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sometimes impossible to avoid the presence of repetitive sequences in a vector. Therefore,
during the designing phase, the investigator should choose a region with as few repeats as
possible.

2.1.6.2. Sequence Analysis: If the objective of the gene targeting is the simple inactivation
of a gene by deletion of a specific genomic region, the task is fairly simple. The vector can
include two DNA homology arms that flank the region to be deleted. However, currently it is
advisable to generate a vector that targets a gene in a conditional manner by using the cre-
loxP/Flpe-Frt technology. This requires the placing of the loxP/Frt sites and the neo
selectable marker in an intronic region that does not interfere with the transcription or
splicing of the targeted gene. In fact, the objective is to include these elements in such a way
as to keep the gene functional until it can be inactivated by the precise spatio-temporal
expression of the cre or Flpe recombinases. The most common approach is to include a neo
cassette flanked at each end by both Frt and loxP sites and adding an additional isolated loxP
site flanking one or more exons (e.g., Fig. 8.3). However, intronic regions can contain
regulatory elements that control the transcription or splicing of a gene. The best approach in
choosing where to insert the loxP and the neo cassette, while limiting the chances of
disrupting the gene, is to align and compare the mouse and human genomic DNA sequence
(publicly available; see below) in the area to be targeted. This analysis often reveals
surprisingly high conservation in intronic areas in addition to the exons. High conservation
between species indicates the functional relevance of these regions. Moreover, as a general
rule the neo cassette and the loxP site should be placed at least 200-300 bp away from the
targeted exon because even if there is no obvious conservation between species these
elements could nevertheless interfere with the splicing machinery.

2.1.7. Transfection—The DNA vector should be linearized to facilitate stable
integration into the genome by DNA recombination. The preferred method for introducing
DNA into ES cells is by electroporation because it allows the introduction of only a few
molecules of DNA per cell. This reduces the chances of multiple random integrations of the
DNA vector into an ES cell genome that can interfere with the selection process. For
example, even if homologous recombination can occur at the targeted locus the random
integration of only one other copy of the vector in the genome would cause the ES cell clone
to die because of the insertion of the negative selection marker (TK or DT).

2.2. Summary

An ideal construct should have the following characteristics (Fig. 8.4):

a. DNA sequence used for the vector should be isogenic to the mouse ES cells used
for targeting.

b. Length of DNA sequence homologous to the locus under investigation must
range between 7 kb and 12 kb (8-12 kb optimal) with the shortest arm being no
less than 2 kb.

A loxP site added to generate a conditional allele should be placed
approximately 1-2 kb away from the neo cassette. If placed at a distance greater
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than 2 kb the chances of “losing” it during the homologous recombination
process can be very high because the sequence between the loxP and the neo
cassette can undergo homologous recombination with exclusion of the loxP site
(seeFig. 8.3). Greater distances, up to 5 kb, can be acceptable if the homologous
recombination frequency at the targeted locus is high (30-50%). The “isolated”
loxP site can get “lost” during recombination because there is no selection for the
retention of this site.

C. Selectable markers:

. Neomycin gene (possibily pGKneobpA) for positive selection
(selection: 300 pg/mL active G418),

. DT-A (requires no drug for selection) or thymidine kinase gene
(possibily pGK TK) for negative selection (selection: 5 uM FIAU).

d. Restriction enzyme strategy for screening homologous recombination events at
both 5" and 3" ends of the construct.

e. Restriction enzyme strategy for screening homologous recombination events at
both 5" and 3" ends of the construct before and after cre recombination (if
applicable).

f. At least one probe must be external to the genomic DNA sequence used to create

the targeting vector.

g. Unique restriction site for linearization of the vector prior to electroporation.

3. Notes

1. The best restriction enzymes for screening are those that require high salt
concentrations. When designing the screening strategy it is desirable to include
enzymes such as BamH|I, Bgl, Bgll, EcoRV, Hincll, Himdlll, Ncol, Ndel, Nodl,
Pstl, Spel, Scal, and Stul. Other enzymes such as £coR1 and Xbal are more
sensitive to impurities and salt concentration variations and should be avoided if
possible. However, these enzymes can be used if the DNA is purified by the
phenolchloroform procedure (see Chapter 9).
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4.: Appendix

How to search and navigate the public databases to obtain and analyze the DNA sequence
required to generate a targeting vector.

Case Study: Search and analysis of the genomic sequence of the Cytip/Pscdbp gene.
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The task includes retrieving the mouse genomic DNA sequence to design a vector disrupting
the exon with the start codon (ATG) of Pscdbp.

Step 1. Retrieve the MRNA of the Pscdbp gene. This will provide the information to identify
the ATG initiation codon relative to the genomic sequence. 700/ NCBI GeneBank.

Step 2. Identify the genomic structure of the Pscdbp gene. The genomic structure of a gene
is important to see the size of the individual exons and introns and whether there are clusters
of exons that can be targeted to maximize the amount of cDNA sequence deleted. As
indicated above, there are limitations to the amount of genomic sequence that can be flanked
by loxP sites (ideally Z-2kb; Fig. 8.4). Thus, the clustering of multiple exons within a few
kilobases of genomic sequence may represent a good area to be targeted. 700f UCSC
Genome Browser.

Step 3. Obtain 15 kb of genomic DNA sequence upstream and downstream of the Pscdbp’s
ATG start site with repetitive regions identified within this 30-kb region. Once the exon/s to
be targeted are identified (in this case the ATG containing exon), 30 kb of DNA sequence
must be downloaded to perform a detailed analysis of restriction enzyme sites (for the
screening strategy), to identify repetitive sequence (to be avoided in the generation of probes
and possibly to limit in the sequence chosen for the vector) and for genomic sequence
comparison among species (to help choose the site for insertion of the loxP sites and the
selectable marker cassette). 700/ UCSC Genome Browser.

Step 4. Characterize the genomic DNA sequence.
a. Map the restriction enzyme sites. 7oof NEBcutter v2.0.
b. Compare the genomic locus among species (mouse vs. human).

7ool UCSC Genome Browser or Vista.

Step 1: Get mRNA of Pscdbp gene

1.1.  Goto NCBI GenBank (http://www.ncbi.nlm.nih.gov) (20).
1.2.  Select “Gene” database, type “Pscdbp” and then click “Go” (se¢ Fig. 8.5).

1.3.  Choose the mouse gene (Mus Musculus) Cytip (also known as Pscdbp) from the
list. The description for Cytip will appear.

1.4.  From the “Genomic regions, transcripts, and products” section click the
accession number (i.e., NM_139200). From the mRNA links “GenBank” or
“FASTA” format will appear (seeFig. 8.6).

1.5.  Click “GenBank” to obtain the sequence in GenBank format. The output shows
annotations of the mRNA such as gene size (i.e., 5735 bases), exons (e.g., exon
1 goes from 1 to 241), and CDS (coding sequences start at nucleotide 68 and end
at nucleotide 1147 of the last exon. The rest of the 5735 mRNA nucleotides are
untranslated region). At this step, confirm the CDS start position as 68 nt for
Pscdbp (seeFig. 8.7).
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In the “Display” links window, click “FASTA” to obtain the sequence in FASTA
format. Save the sequence as a text file, such as Simple Text in Mac and
NotePad in Windows, in your computer for later usage. If you use MS Word, use
“save as Plain text option”. FASTA format is a popular sequence format, and
many bioinformatics tools accept this format. FASTA format file starts with a
“>" followed immediately by a name, and the next fine begins the sequence with
fixed length (see Fig. 8.8).

Step 2: Identify genomic structure (exon/intron, ATG site) of Pscdbp gene

2.1.
2.2.

2.3.

2.4,

2.5.

2.6.

Go to UCSC Genome Browser (http://genome.ucsc.edu) (21).

Click “Blat” at the top bar to run a sequence alignment program (35) against
mouse genome (see Fig. 8.9).

Choose Mouse genome and paste the FASTA format sequence of NM_139200
(from Step 1.6). Click “Submit” (see Fig. 8.10).

Choose the best scoring alignment at the top (i.e., 5728). Notice that this gene is
on the (=) strand (seeFig. 8.11).

Click “details” to view the alignment. The cDNA entered appears at the top in
blue upper-case letters. Scroll down to the retrieved genomic sequence where the
exons are represented in upper-case blue letters and the intronic regions are
lower-case black letters. Highlight, copy, paste, and save the ATG exon (targeted
exon) for further analysis. Scroll down further to see the alignment with mouse
chromosome 2. You can confirm the ATG initiation position at 68 nt of
NM_139200 (Step 1-5) is at chr2:58012466 (see Fig. 8.12).

Return to previous page to get to the BLAT search results and click “browser” to
view the graphical presentation of gene structure. You can zoom in, zoom out, or
move the window by clicking “1.5x” or “<” signs (see Fig. 8.13).

Step 3: Obtain +/-15 kb genomic sequence from Pscdbp’s ATG site with

information about repetitive regions

3.1

3.2.

Select BLAT and paste the sequence of the exon of interest in the box. Click
SUBMIT. This takes you to the BLAT Search Results. Click “browser” to get
assembly information about the specific exon of interest as in Step 2.6 (see Fig.
8.14).

Click DNA from the top menu. In the boxes indicated type in 15,000 bp
upstream and downstream of your exon.

Check “All upper case”; check the “Mask repeats”, and “to lower case” boxes.

Check “Reverse complement (get “~” strand)” box (because the exon of interest
is on the “~" strand).

Click “get DNA” (seeFig. 8.15).
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3.3.  This sequence is the genomic region 15 kb upstream and downstream of your
exon. The lower-case letters represent repeats masked by repeatMasker (36).
You should copy and paste this sequence into a word document. You will use it
for designing your targeting construct and genotyping strategy. Since there is no
numbering you can find the location of the ATG-containing exon by doing a
search in the word document with a small stretch of sequence from the
beginning of the exon. After having located the exon you can see how many
repeat sequences (in lower case) are present around the exon to be targeted.

Step 4a: Map restriction enzyme sites

To view cutting sites of major restriction enzymes in the genomic region use NEBcutter
v2.0.

4a.1. Go to the New England BioLabs homepage (http://www.neb.com) and choose
NEB CUTTER from the menu at the bottom of the page or go to NEBcutter v2.0
directly (http://tools.neb.com/NEBcutter2/index.php).

4a.2. Paste your 30 kb genomic sequence in the box, name your sequence in the box
provided (optional), check “All commercially available specificities”, and click
“Submit” (see Fig. 8.16).

4a.3. The linear sequence for Pscdbp will appear (see Fig. 8.17).

Under “Main Options” select “Custom digest”. This displays all of the enzymes that will cut
your sequence. Choose rare cutter enzymes to simplify the map. Suggested enzymes include
BamH|1, Bgh, Bgll, EcoRl, EcoRV, Hircll, Hirdlll, Nod, Ncol, Psl, Scal, Spel, Stul, Xbal.
Scroll down and check these boxes. Note: Enzymes that do not cut are not listed (i.e.,
EcoRV and Nod because they do not cut within the 30 kb that is being analyzed). Choose
“DIGEST” from the menu at the very bottom of the page.

4a.4. Under “DISPLAY” choose “Alternative” to create a map with one restriction
pattern per line. This helps to visually analyze the map and quickly identify
restriction enzymes that can be used to generate a screening strategy.

To Print: Under “Main options” choose “Print”. Under “Display mode” check “Map only”
and then select “Create Image”. To see the map click on “Click here to view/download the
PDF file” (see Fig. 8.18). Print the PDF file.

The least frequent cutters are displayed at the bottom. They are most useful in designing a
screening strategy. Since the restriction enzyme analysis has been done with 15 kb upstream
and 15 kb downstream of the targeted exon, this exon is in the middle of the map. Thus, for
example one can envision using BgA to detect a size increase due to the addition of the
selectable marker flanking the exon and using a probe at the 5" end of the vector, assuming
BgN does not cut within the selectable marker cassette.
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Step 4b: Compare seqguence among species (mouse vs. human)

The mouse and human genomic DNA sequence at the region of insertion of the selectable
marker cassette should be aligned and compared to look for areas of sequence conservation.
In fact, as mentioned previously the loxP and the neo cassette should be inserted in a non-
conserved region to avoid disruption of regulatory elements. Disruption of these regions
could cause the generation of a null allele instead of a conditional one. Since the loxP site
and the selectable marker cassette (e.g., neo cassette) are placed within 2 kb of each other, 1
kb upstream and 1 kb downstream of the targeted exon should be retrieved from both the
mouse and human database to analyze for sequence conservation. Compare the intronic
regions directly upstream and downstream of the exon with an alignment or bestfit program.

4b.1.

4b.2.

4b.3.

4b.4.

4b.5.

4b.6.

4b.7.

To retrieve the mouse sequence: Go to UCSC Genome Browser (http://
genome.ucsc.edu) and choose BLAT from the top menu.

Paste just the ATG exon sequence (targeted exon) in the box and select
“SUBMIT”. At the “BLAT Search Results” page click “browser”. At the top
menu, click “DNA” (seeFig. 8.19).

At the “Get DNA for” page, go to the “Sequence Retrieval Region Option”
section and type in “1000” in the boxes for add extra bases upstream and
downstream. Check the “Mask repeats” and “to lower case” boxes. Check the
“Reverse complement” box since the gene is on (=) strand. Click “get DNA”.
Copy, Paste, and Save this sequence as a TEXT file.

Retrieve human Pscdbp sequence by following Step 1. Go to NCBI GenBank
(http://www.ncbi.nlm.nih.gov) and at “search” select “gene”, at “for” type in
“Pscdbp” and click “Go”. Choose a human gene from the list, and obtain the
FASTA format human sequence.

Obtain the structure of human Pscdbp by following Step 2. Briefly, go to the
UCSC Database (http://genome.ucsc.edu). Click BLAT and paste the human
Pscdbp sequence into the box. Under “Genomes” choose “Human” and click
“SUBMIT”. Pick the sequence with the highest score. Click “details” to see the
results. Scroll down to “Genomic chr2” and highlight and confirm the ATG exon
(in blue upper-case letters). Save the sequence in a TEXT file.

Retrieve human Pscdbp’s first exon’s sequence with +/— 1000 flanking sequence
by following Steps 4b.2 and 4b.3. Briefly, go to the UCSC Database and use
BLAT to align the human ATG exon sequence against human genome. Click
“browser” in the result. At the top menu, click “DNA”. Go to the “Sequence
Retrieval Region Option” section and type in “1000” in the boxes and add extra
bases upstream and downstream. Check the “Mask repeats” and “to lower case”
boxes. Check the “Reverse complement” box since the gene is on “~" strand.
Select “get DNA”. Copy, Paste, and Save this sequence as a TEXT file

Go to the VISTA website (http://genome.lbl.gov/vista/index.shtml) (37) and
choose the mVISTA alignment for mouse/human sequence comparison. The
program accepts FASTA-formatted sequence files. FASTA format starts with a
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“>” followed immediately by a name and the next line begins the sequence.
Without the “>" sign and a name in the file, VISTA will give you an error
message. The sequence must be a TEXT file (see Fig. 8.20).

4b.8. At the mVista screen, type “2” in the number of species box to compare two
species and press submit. Fill in your e-mail address. Select each of the text files
for your mouse and human sequences as shown and press submit. Your results
will be e-mailed to you and will look as shown below (in the box is the end
sequence of the exon).

Sequence comparison can be done optimally using VISTA because it is a program that
allows you to compare sequences between different species and identify genes with a
common ancestor. The sequence comparison resulting from the NCBI Blast does not lead to
such a detailed comparison and only highlights a few conserved areas because it is not
optimized for sequence comparison between species (se¢ Fig. 8.21).
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Fig. 8.1.

Schematic representation of a representative vector and screening strategy to detect the
rearrangements in a specific targeted locus. A targeting vector (Zgp) for conditional removal
of the exon of interest has been generated using 4.5 kb and 4 kb of upstream and
downstream DNA sequence, respectively. An exogenous BamHl site (BHI*) has been added
to the upstream loxP site sequence for screening purposes. A Himdlll site (HITI*) present in
the neo cassette is also employed for the screening. Note that when the screening strategy
has been designed every change in restriction fragment size has been accounted for after
each specific recombination event. For example, Probe B detects an endogenous wild-type
(WT) band of 8.5 kb that is reduced in size (7 kb) by the addition of the HIII* site present in
the neo cassette following homologous recombination. After FIpe-induced recombination to
excise the neo cassette the band reverts to the WT 8.5-kb size. However, targeting at the
locus is detected by the presence of the 5.5-kb band obtained by BamHI digestion and Probe
A. Cre recombination leads to a change of both BamHI and Himdll1 restriction fragments
that are characteristic of the deletion of the exon (6.5 kb and 7 kb respectively). WT, wild-
type allele; MT, targeted allele; MT/Flpe, mutant allele after Flpe recombination; MT/cre,
mutant allele after Cre recombination; pBS, Bluescript; HSV-TK, thymidine kinase cassette.
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Fig. 8.2.
Screening of probes for Southern analysis. Testing of probes for the presence of repetitive

sequence (A-C). The probe in (A) is completely free of repetitive sequence, hence only one
clear band is detected by Southern blot hybridization. On the contrary, blots tested in (B) and
(C) have different levels of repetitive sequence as shown by the smear detected in the blot.
Note that even the moderate presence of repetitive sequence (B) does not allow the use of
this probe for analysis. Southern blot analysis of ES cell DNA samples using a probe
internal to the targeting vector (D) detects bands in almost every lane of the blot (*) in
addition to the wild-type band (arrowhead). Using a probe that is external to the targeting
vector allows detection of a re-arranged band in ES cell clones in which one allele
underwent homologous recombination (*, E). Note that the band from the targeted allele has
intensity similar to that of the wild-type allele (arrowhead). Equal molarity of the two bands
is a sign of clonality. Only clones with two bands of similar intensity should be pursued for
injection into recipient blastocysts.
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Fig. 8.3.

Homologous recombination often leads to the loss of the targeting vector loxP sequence if
situated too far away from the neo selectable cassette. (A) Example of homologous
recombination event leading to the integration of the neo selectable marker and the upstream
loxP site with the artificial BarmH| site (BHI*). Retention of the loxP site from the targeting
vector becomes more difficult during the homologous recombination process if it is situated
more than 2 kb away from the selectable marker (B). Shaded areas indicate the regions
between the vector and the targeted locus where homologous recombination occurs. When
homologous recombination occurs in the region between the loxP site and the neo cassette
the lox P site is not recombined into the locus (B). Abbreviations are as in Fig. 8.1.
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Fig. 8.4.

Example of an ideal representative targeting vector for conditional deletion of an exon. Note
that the orientation of the construct can be either 5" to 3" or 3" to 5”. The positive and
negative selectable markers can be different than the ones indicated (see text).
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Fig. 8.5.
Entry window into the NCBI gene database.
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Fig. 8.6.
Selection of the Genbank format via the accesssion number (arrow).
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Selection of the start codon of the Pscdbp gene (arrrow).
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GCATITCOCTTCCTCCCTCCTOC AL OGCCAOGGAACCATOTOTTOOCGO0ATTAATCTTTOCCCACAATO
TCTCTOC ALLOGTTTCTAS AOC OAC A0GIC AGC AATOCCAATTITOOAOTAC TOTOL TOAC TETOCL TACD
GCTCCTACTCOGTCCTCACOQOCCAOS TCACGATUGALGACAACC CAADGATTCALSTOC TOOCUAOACAC
TOTAMCTACTITOCCCCGUOGALOARLGCAGC TTGCO TTOGCCAGATC ALGCTCTTTIUGO TAATTTTTLC
TOGTCTCALAGOAAGTTTOTTACTO TOCAMAGCAGGACALTOGAACATTTOGATTTOALATTCAGACCT
ACACGACTCCAGALCCAOMCATCTOTTCCTCAGAAGTOTOCACTATGATCTOCAMLGTOC LOOAAOACAC
CCOCOCTCAL TOTOC TOGCCTOCAMTTTOOITGACATC TTTOC AAATOTCAATGOTO TOASC AC MO AAGOC
TTTACTSACAMMIAASTOOTTOACC TOATCCOATCATCAGGARATCTOCTAM GATAGASACTCTTALTS
GALCAATOATTCACAGALGAGC AOALC TTOALGC AAAACTOC AGACTTT AAMCALMCCTTOALOALLAL
1TEO0 TS TGS TS TC TOCAC TTAC KOG IAC IGCOCCTOTTOC A TS AGACAC XOC KAECTCOCC
AATTTOOALMMC A TOGACCTCOACCACTCOTCCTTUT TTDAAMTCTUCTOO0ACCOAGTCCAOCCCTCC
TOALCCGICATCOACTOTCCAGTOAGAGCAOTTOTALGAOTTOOC TOAOC TOCCTCACAGTOOACAOTOA
QOACCK TACCGOASCASTATOTC TCAGCALTCCATCCGAGATOC CTTCAGCC GOCAGACCALCALCOAC
GATOASTOCTYTCACTCTAAGOATOOLOAC GACATTC TOCOGAATOC TTC TTCCAGGAGAALC COAAOCA
TCAOTOTCACTAOTAGTOGOTCLTTITC TS CCTTOTOOGAGAOCAATTACTCAMOCOTUTTTORALSCT
GCOCCGCAMMCCACACGGCCTAGTGTOCCGAMC MM TTTTCARMTTCATCCCTGGCCTTCATCCTCCA
GTGORAAGAGGALGAGAGTCGCTTTIOATOGGCTGC TOCAGACCTTTIGALTTGOCTIGTTTCACAATCCT
CTCTCTACCCGCCAAGATGRACCCL TGOCTTAGTGGOAMGTACAGATAGACTOTOARGC TCACATCC CA

Fig. 8.8.
View of the Pscdbp mRNA in the FASTA format.

Methods Mol Biol. Author manuscript; available in PMC 2020 June 09.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Tessarollo et al. Page 22

UCSC Qﬂ( ome Bsomformatucs

Aboad the TCSC Conomne Blobaferestin Jite

Wekome 1o B¢ DCSC Grmome Browser webety. Thie sy osniitn e refarvecs requence ind wering dre smmmmbin
$a¢ & laege colbetion of passanes. Bt deo protider & porml i & ENCODE projens.

Wo etmurage you 1o anpors tues tequances with cur soola T Gascess Drowesr 2000 and serolls sver chrumesames,
J— HMMQWUMTEMSHM“MM*MQM
of geoes & cas ba relend i cancy wegn. Bl MW!‘-M”“ The Table Browser prowdes
ootwmaersd scores (0 G endodyeg datbuss. VierGute ki i bresre Gromgd ;k’uh-‘hﬂw-lh

mages tn e egpremmn pesene. (Joweme (hgls iows yoo bo oploed md daplay grasme -nde 4ote setn.

Fig. 8.9.
The BLAT search tool of the UCSC genome browser.
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Submission of the Pscdbp FASTA format sequence to the BLAT search.
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ACLGACTCCE GAACCAGRAC ATCTGTTCCT CAGAAGTGTG CACTATGATC
TCCAMGTGC AGGLLGACAG CCCCGCTCAC TOTGCTGGCC TGCAAGTTGS
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Fig. 8.12.
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Detailed view of the top alignment and identification of the Pscdbp start codon (arrow).

Methods Mol Biol. Author manuscript; available in PMC 2020 June 09.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Tessarollo et al. Page 26

Genomes Blat Tables Gene Sorter PCR DMNA Convert Ensembl NCBI PDFIPS

UCSC Genome Browser on Mouse Feb 2006 Assembly s

[rr2 cact 5> m:mml

owas| | G7o5e008] Srossenel 796 6088] S7o6sea8] W“ll! Groiseedl
STS MACKErS On OeNeTic Bnd RACIAT ion Myor i
STS markers| | [ ]
Your Seguence Frn Blat scrm
F_ 135200, + IR b h
UCSC Krowan 5“’ Bagea on I.M‘Pl"ut l!fS'ﬂ and Gii’\ﬂqlﬂl( RN
oo mil -
5 EUDD W A4 B et 4 4
RefSeq m‘
Refseq Ceres < + + +—+
HON-HouUse an Genes
other RefSeqa e ] s
n—a!immcolluctiun Full ORF mRHAS
MOC Genes ] + s
Enseab) Gene Pml“
Enseab ! Genss — + + ++

Verteorate MUlItiz Aligneent &L Conservation

Conservat jon

CPOsTum.
chicken
X_trogpicalis
Tetraodon

Dﬂ‘llu (abSH* Duild

126
swes cuzos 1IN (00 ORIONE mml lllll1|| N O i i A
*ngrits
Repeatrasker | 1 - e AT NI ENIEN |

Fig. 8.13.
View of the Pscdbp gene structure on the UCSC genome browser.
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Fig. 8.14.
BLAT search for genomic sequence around exon 1 of the Pscdbp gene.

Methods Mol Biol. Author manuscript; available in PMC 2020 June 09.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Tessarollo et al. Page 28

Home Genomes Genome Browser Blat Tables Gene Sorter PCR Sassion FAQ Help

Get DNA in Window
Get DNA for
Posion |chr2 58,01 2.233-56,012.533
MNote: f you would prefer to get DNA for features of a particular rack or table, try the Table Browser using the cutput format sequence
Sequence Retrieval Region Options:
3

Add (150 cxtra bascs upstream (57) and (15000 | cxtra downstroam (37)

close 1o the beginrung ot end of a chromosome and upstream/downstream bases are added, they may be truncated in

order to avoid extending past the edge of the chromosome

Sequence Formatting Options:

: @ tolower cass © to N

Y| Reverse complement (get '

strand sequence)

l get DNA " edended case/color oplions j

Fig. 8.15.
Retrieval of 30 kb genomic sequence around exon 1 of the Pscdbp gene.
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Fig. 8.16.
Submission of the 30 kb Pscdbp genomic sequence to the NEBcutter webpage for restriction

analysis.
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Fig. 8.17.

Selection of enzymes for the restriction map of the Pscdbp genomic sequence.
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Fig. 8.18.
Identification of BgA as enzyme to screen for targeted ES cell clones by Southern blotting.
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Fig. 8.19.
Retrieval of 2 kb of genomic sequence around exon 1 of the mouse and human Pscdbp
genes.
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Fig. 8.20.

>hunan_FPscdbp hgl8 dna range=chr2:158007605-158009850

AAAGATTTGC TAACTC T TTCAAATGCTAGTATTGATCTTCAGAGATTTTA
AAAAGCACATTTGACTTTTTGTGCCATATAAAACTTCTCTTTTTGACTTT
TGTTTCGATTCTTCCTTTTACTTGCCTCCCCTACTCCTCCACTGAAACCA
GTTCTCTCALMACTACCTGCCCCCAACCTCAGCCARAGGRERRAAAAAAA
AARGCATCTGTGATCTTGAGTACTTGGTGATGGTGCCCTTGACCCATATGC
ACATGCAGGGACCAACAGGCAATGTTCTTGGTGCCACCTTGGTTTGCCTG
TTkCCTTCCTGCCCACTCCTTTCCTCCCCTGGGACCRCTTGCTGATGCTd
CCGCALAGTCTCGTCTAAGAAATGGCAACATTGTGCCCTAAATGTGCTGG
CTTTCCCTTCCCATTGTACTTTGTAAAGATCATGGGTAATTTTTGTAAGG
ACAAAGTAGTALMAGGACAACCAGAAGALATGCTGAATGGTTACAACCTCA
TG AGATATAATGTCTTTTTCATCGAACATTAATGATCTAGGGTATACT
TCAGGGAAAGTACAGTATTACAAGGACTTCGAGAGAGAACATTATGACCG
GCACCTGTAATTCTTGCCCATATTCACAAGAACTGAATGTCCTCGTGTGC
TCACTTCTGCATTGCATTGCTAATCTTAACTAAGAGAATGGATGGGAAAC
AAATGGTAGCACTTGGGGACATTTTTCTTTCTTCTCTARRGAAAAAAATG
GCAAATGGTGGTGTGAATGCAACTTGCCACAGAACATAARAGCGTAAGAA
TTCTGGC TG T T TGAGG TCGALAAAATAAGTTGATTTTTCTTTRAAATTGTAA
ALATTAGCTCCAGGTTCTCTCAGGAGCTTAAAGARRARAAGCTTTGAGAA
ATGGGAGTGAATAGCAAGATAGGGTTTGTGTAACAAGTTCCTCAAACCAC
AGAGGTCACATGGGCTCTTTCTGCTTTGCTACTTTTGATTACTTGTCACA
GTTGTACTTTTAGCTTCCCCCATCCTGCAAGGCCACTCRAACCATGTGCTA
GCTGGAGTGATCTTTATTCACAATGTCTTTACAAAGGCTCCTGCAACACA
GCAGCAATGGCAATTTGGCGGACTTCTGCGCTGGGCCAGCGTATAGCTCT
TACTCCACACTCACCGGCAGCCTTACCGATCGACGATAATAGRAGGATTCA

Submission of the mouse and human Pscdbp sequences for alignment at the VISTA

webpage.
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>zequencel mouse_Pscdbp:1-2241 (+)
>sequence? human_Pscdbp:1-2213 (+)
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Fig. 8.21.
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Alignment results of mouse and human Pscdbp at the VISTA webpage.
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