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Abstract

Purpose—Radiation dose to cardiac substructures is related to radiation-induced heart disease. 

However, substructures are not considered in radiation therapy planning (RTP) due to poor 

visualization on CT. Therefore, we developed a novel deep learning (DL) pipeline leveraging 

MRI’s soft tissue contrast coupled with CT for state-of-the-art cardiac substructure segmentation 

requiring a single, non-contrast CT input.

Materials/methods—Thirty-two left-sided whole-breast cancer patients underwent cardiac T2 

MRI and CT-simulation. A rigid cardiac-confined MR/CT registration enabled ground truth 

delineations of 12 substructures (chambers, great vessels (GVs), coronary arteries (CAs), etc.). 

Paired MRI/CT data (25 patients) were placed into separate image channels to train a three-

dimensional (3D) neural network using the entire 3D image. Deep supervision and a Dice-
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weighted multi-class loss function were applied. Results were assessed pre/post augmentation and 

post-processing (3D conditional random field (CRF)). Results for 11 test CTs (seven unique 

patients) were compared to ground truth and a multi-atlas method (MA) via Dice similarity 

coefficient (DSC), mean distance to agreement (MDA), and Wilcoxon signed-ranks tests. Three 

physicians evaluated clinical acceptance via consensus scoring (5-point scale).

Results—The model stabilized in ~19 h (200 epochs, training error <0.001). Augmentation and 

CRF increased DSC 5.0 ± 7.9% and 1.2 ± 2.5%, across substructures, respectively. DL provided 

accurate segmentations for chambers (DSC = 0.88 ± 0.03), GVs (DSC = 0.85 ± 0.03), and 

pulmonary veins (DSC = 0.77 ± 0.04). Combined DSC for CAs was 0.50 ± 0.14. MDA across 

substructures was <2.0 mm (GV MDA = 1.24 ± 0.31 mm). No substructures had statistical volume 

differences (P > 0.05) to ground truth. In four cases, DL yielded left main CA contours, whereas 

MA segmentation failed, and provided improved consensus scores in 44/60 comparisons to MA. 

DL provided clinically acceptable segmentations for all graded patients for 3/4 chambers. DL 

contour generation took ~14 s per patient.

Conclusions—These promising results suggest DL poses major efficiency and accuracy gains 

for cardiac substructure segmentation offering high potential for rapid implementation into RTP 

for improved cardiac sparing.
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1. INTRODUCTION

Increased risks of radiation-induced heart disease (RIHD) including acute (pericarditis) and 

late (congestive heart failure, coronary artery disease (CAD), and myocardial infarction) 

cardiotoxicities have been linked to dose from thoracic radiation therapy (RT) for 

lymphoma, lung, breast, and esophageal cancers.1–4 RIHD presents earlier than previously 

expected, beginning only a few years after RT and with elevated risk persisting for ~20 yr.4 

Importantly, dose escalation evaluation for locally advanced non-small cell lung cancer in 

RTOG 06175 revealed that the volumes of the heart receiving ≥5 and ≥30 Gy were 

independent predictors of survival.5 Furthermore, heart dose/volume metrics are 

significantly associated with quality of life.6

At present, dosimetric evaluation is currently limited to simplified heart volume/dose 

relationships, such as those recommended by QUANTEC, where the heart is considered a 

single organ. It is currently recommended that <10% of the heart receive >25 Gy with the 

clinical endpoint of long-term cardiac mortality.7 Despite having whole-heart dose limits, 

evidence suggests that dose to sensitive cardiac substructures may lead to cardiac 

toxicities4,8,9 including cardiomyopathy, CAD, as well as pericardial, and conduction system 

diseases.10 Specifically, an increased rate of cardiac events and ischemic diseases have been 

associated with increased radiation dose to the left ventricle,8 left atrium,9 and left anterior 

descending artery (LADA).11 Patel et al. found that a maximum dose >10 Gy to the LADA 

was a significant threshold for increased odds of developing coronary artery calcification 

(CAC). When compared to mean heart dose, maximum dose to the LADA had a stronger 
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association with CAC onset.12 However, following these dosimetric thresholds is currently 

limited by the poor visualization and ability to delineate these sensitive cardiac substructures 

on non-contrast CT simulation (CT-SIM) scans.

Several studies have assessed atlas-based segmentation of cardiac substructures in RT13–15 to 

avoid the time consuming (6–10 h/patient) and tedious task of manual delineation.16 

However, most atlases fail in segmenting the coronary arteries, with Dice similarity 

coefficients (DSCs) between ground truth and auto-segmentation of the LADA ranging from 

0.09 to 0.27.13–15,17 Incorporating multiple imaging modalities (i.e., contrast enhanced CT 

and magnetic resonance imaging (MRI)) has improved visualization and yielded successful 

chamber and great vessel segmentation, yet coronary artery segmentation remains an unmet 

need.13,14

Recently, deep neural networks (DNNs), such as U-Net,18 have shown great promise for 

generating accurate and rapid delineations for RT.19 Here, a DNN learns a mapping function 

between an image and a corresponding feature map (i.e., segmented ground truth). Payer et 
al. implemented a U-Net for substructure segmentation and obtained a DSC of 94% in the 

aorta as compared to ground truth.20 Various DNNs have been applied to medical image 

segmentation,19 specifically for cardiac substructure segmentation. These include deep 

convolutional neural networks (CNNs) with adaptive fusion21 or multi-stage20 strategies, as 

well as generative adversarial networks (GANs)22. Adaptation of these segmentation 

strategies has greatly improved cardiac chamber20 and pulmonary artery21 segmentations on 

contrast-enhanced CTs (DSCs > 85%). Additionally, deep residual learning techniques are 

currently being used to generate cardiac substructure segmentation models that are robust 

against the presence or absence of image contrast.23 However, most of these models have 

not been applied to conventional CT-SIM images and have yet to implement segmentations 

of the pulmonary veins (PVs) and coronary arteries.

The current work builds upon recent DNN results to develop an efficient and accurate 

cardiac substructure deep learning (DL) segmentation pipeline that can be implemented into 

routine practice on standard, non-contrast CT-SIMs, thus requiring no additional image 

acquisitions. Here, training is performed via labeled MRI/CT pairs inputted into a three-

dimensional (3D) U-Net coupled to predict cardiac substructure segmentations using a 

single non-contrast CT-SIM input. We further improve agreement to ground truth 

delineations by introducing a 3D dense conditional random field (CRF) as a post-processing 

step, which has been recently merged with DNNs for state-of-the-art results in medical 

image segmentation.24 Overall, the overarching goal is to enable widespread implementation 

of DL to improve cardiac sparing in RT planning (RTP) accomplished via cardiac sparing 

trials and improved risk assessment evaluation.

2. METHODS

2.A. Imaging and ground truth contour delineation

Thirty-two left-sided whole-breast cancer patients, with 36 unique datasets, were consented 

to an Institutional Review Board approved study and underwent cardiac MRI scans (two-

dimensional T2 single-shot turbo spin echo sequence, TR = 927.9 ms, TE = 81 ms, voxel 
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size = 0.7 × 0.7 × 8.0 mm3) at end-expiration (EE) on a 3T Philips Ingenia (Philips Medical 

Systems, Cleveland, OH). Imaging was completed in a single breath hold (acquisition time = 

22.1 ± 4.4 s). Non-contrast CT-SIM images were acquired on a Brilliance Big Bore CT 

simulator (Philips Medical Systems, Cleveland, OH) (voxel size = 1.1 × 1.1 × 3. mm3−1.4 × 

1.4 × 3.0 mm3, 120–140 kVp, and 275–434 mAs) with patients immobilized in the supine 

position on a Posiboard (Civco, The Netherlands). Twenty-four patients were imaged under 

free breathing conditions, while the other eight underwent four-dimensional CT (4DCT).

To develop a mutual coordinate system between datasets, an automatic global rigid 

registration between the T2 MR (moving image) and CT-SIM (target image) images was 

performed in MIM (version 6.9.1, MIM Software Inc., Cleveland, OH). An automated local 

rigid registration was then applied via a manually drawn cardiac-confined bounding box. For 

both rigid registrations, normalized mutual information was used as the similarity metric as 

it has been shown to perform well with multi-modality image registration tasks.25 For 

patients who underwent 4DCT, the 50% phase was used as it most closely matched the EE 

MRI.

The evaluation and approval of the co-registration of the T2 MRI to the non-contrast CT 

were performed through visual verification by a radiation oncologist. To generate the 

contours, a consensus atlas was followed26 as implemented in our previous work.13 In brief, 

12 cardiac substructures (left/right ventricles (LV, RV) and atria (LA, RA), superior/inferior 

venae cavae (SVC, IVC), pulmonary artery/veins (PA, PV), ascending aorta (AA), right 

coronary artery (RCA), left main coronary artery (LMCA), and LADA) were manually 

delineated by a radiation oncologist and verified by a radiologist with a cardiac subspecialty. 

Due to the enhanced soft tissue contrast that MRI provides, preference was given to 

anatomical information from the MRI.

2.B. Data preparation

All work was performed using an NVIDIA Quadro M4000 graphical processing unit 

(NVIDIA, Santa Clara, CA). To improve generalizability, zero-mean normalization27 (i.e., 

subtracting the mean intensity from the image and dividing by the standard deviation of the 

image) was performed to maintain intensity consistency across MRI/CT datasets and 

patients. To generate ground truth images, substructure masks were combined into a single 

image volume (ground truth (GT) image in Fig. 1) with intensity values for the 12 

substructures indexed every 20 grayscale values from 35 to 255 with no overlap among 

substructures. MR and CT images were all resampled to a 650 × 650 mm in-plane resolution 

using bilinear interpolation. Bilinear interpolation was also used to interpolate MR images in 

the z-direction to match the 3 mm CT slice thickness (final voxel size of 1.27 × 1.27 × 3 

mm3). Registered MR and CT image volumes were cropped to 64 slices (in-plane dimension 

of 128 × 128 pixels), centered on the centroid of the whole heart, and padded with 32 blank 

slices both superiorly and inferiorly for a final size of 128 × 128 × 128 pixels.

2.C. Neural network architecture and training

The proposed 3D U-Net shown in Fig. 1 was based on an existing architecture designed for 

brain tumor auto-segmentation28 with several customizations as follows: (a) including deep 
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supervision, (b) training using the entire 3D image volume simultaneously with multi-

channel data inputs (i.e., MRI, CT, and cardiac substructure ground truth masks), (c) 

optimizing hyperparameters of a Dice-weighted multi-class loss function,28 (d) utilizing 

deconvolution in the upsampling process, and (e) optimizing the number of feature maps 

used in the first layer.

This 3D U-Net is composed of a contraction pathway (Fig. 1, left) to aggregate high level 

information using context modules and an expansion pathway (Fig. 1, right) to combine 

feature and spatial information for localization.28 Context modules (Fig. 1, left) were 

composed of a dropout layer with 30% probability between two 3 × 3 × 3 convolutional 

layers. Deep supervision was implemented by adding segmentation layers at each step of the 

localization pathway (Fig. 1, right). Deep supervision allows for the injection of gradient 

signals deep into the network,29 as it speeds up convergence and enhances training 

efficiency when there is a small amount of available labeled training data.28,30 An 

elementwise summation with upsample was then applied across all added segmentation 

layers to generate the final segmentation. As coarse segmentation results may yield 

unrealistic results, skip connections were applied (i.e., concatenation) by fusing earlier 

layers in the network where the downsampling factor is smaller to recover the original 

spatial resolution.31 To rebuild high-resolution feature maps, deconvolution was used in the 

localization pathway in order to learn the upsampling.32

To prevent model overfitting (i.e., ensuring the model remains generalizable to the hold-out 

dataset after being tuned to a training set), data augmentation18 including flipping, rotating 

(0–30°, 1° increments), scaling (±25%, 1% increments), and translating (10 pixels in the 

left-right, anterior-posterior, and superior-inferior directions) was applied. Originally 

proposed as a novel objective function based on DSC,33 a Dice-weighted multi-class loss 

function was used28,34 to manage the different image features among substructures, as 

shown in Eq. 1:

ℒDSC = − 2
B ∑

b ∈ B

∑axa, bya, b
∑axa, b + ∑aya, b

(1)

As label encoding is not sufficient for model training, y represents the ground truth 

segmentation map converted from categorical to binary variables (i.e., one-hot encoding). 

For training voxel a in class b, xa,b and ya,b represent the prediction and ground truth, 

respectively. As a larger DSC represents better overlap between ground truth and the 

prediction, the loss function is negative due to it being minimized during the training. Each 

value of correspondence between both the training and validation datasets to ground truth is 

represented by an average across all 12 substructures.

An adaptive momentum estimation (Adam) optimizer35 was used along with randomly 

initialized weights. Patience (i.e., number of epochs to wait without validation loss 

improvement before reducing the learning) was also implemented during training. An epoch 

is defined as one forward pass and one backward pass (i.e., backpropagation process) of all 

the training samples.36 Optimized hyperparameters included an initial learning rate of 5 × 
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10−4, 50% learning rate reduction, a batch size of 1, patience of 10 epochs, and 16 base 

filters in the first layer of the localization pathway.

Patient data were split into 25 patients for training data and 7 (11 unique datasets) patients 

for a hold-out dataset for network testing. No hold-out datasets used for testing were 

implemented in the network training. Training data were split via random assignment into 

80% training and 20% validation data. Paired MRI and CT data were placed into separate 

image channels along with indexed ground truth labels for 25 patients to train the 3D U-Net 

using the entire 3D MR and CT images and all substructures simultaneously. Training was 

considered to be sufficiently converged when the training error between two adjacent epochs 

(i.e., one forward and backward pass of all the training samples) was <0.001.36

All work was performed using Windows 10 operating system in Python version 3.6. The 64-

bit Microsoft Windows system is equipped with a quad-core Intel® Xeon® CPU-E5–1630 

v4 at 3.70 GHz and 16 GB of memory. The employed graphics processing unit was an 

NVIDIA Quadro M4000 with 8 GB of RAM and 1664 CUDA cores where Keras 2.0 was 

implemented with a Tensorflow backend.

2.D. Contour post-processing and optimization

Coarse output maps from the DL network containing holes and spurious predictions from 

neural networks are common.37 Thus, contour post-processing was performed on the 3D U-

Net output using a fully connected CRF38 that imposes regularization constraints through 

minimizing an energy function.39 A 3D-CRF model was developed based on an initial 2D 

implementation39 and optimized to refine segmentations by smoothing, filling holes, and 

removing false positives, such as small remote regions.

3D-CRF was implemented on a GPU for improved computation and inference time. 

Inference here is with regard to the number of iterations applied to minimize the Kullback-

Leibler (KL) divergence.39 Both bilateral40 (i.e., appearance kernel) and Gaussian39 (i.e., 

smoothness kernel) pairwise energies were used to account for the grayscale intensity 

similarity as well as the spatial proximity of pixels. The applied kernel involves the sum of a 

smoothness and appearance kernel which are shown in the following equations39:

smoothness kernel = ks = exp −
Pα − Pβ2

2θx2
.

appearance kernel = ka

= exp −
Pα − Pβ2

2θx2
−

Qα − Qβ2

2θy2
.

applied kernel = w1 * ks + w2 * ka
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where P and Q represent intensity and position vectors at pixel (α, β). The smoothness 

kernel works to remove small remote regions41 and is controlled by scaling factor θx. 

Parameter θy is an additional scaling factor in the appearance kernel, which controls the 

degree of similarity in predicted pixels. The appearance and smoothness kernel are equally 

weighted with weights w1 = w2 = 1.

CRF hyperparameters θx and θy were optimized automatically42 for each substructure by 

stepping through different parameter values and then comparing the prediction result back to 

ground truth through DSC. Based on the range of utilized values found in the current 

literature,39,43,44 full integer values (1–80) were stepped through for θx and in steps of 0.05 

from 0–1 for θy, yielding 100 individual tests. Ten inference steps per substructure 

prediction were used.39,42 Finally, predictions both with and without CRF post-processing 

were assessed by comparing agreement with ground truth and calculating the Hausdorff 

distance (HD, maximum nearest neighbor Euclidean distance45).

Network testing on the hold-out dataset was conducted using the remaining 11 test patient 

CTs containing the heart and thorax from seven unique patients. Binary mask segmentations 

were converted to contours in Digital Imaging and Communications in Medicine (DICOM) 

format and imported into MIM.

2.E. Evaluations and statistical assessment

Quantitative evaluations between DL and ground truth segmentations were performed via 

DSC,46 mean distance to agreement (MDA, average of the shortest distance between all 

voxels of the predicted and ground truth segmentations47), and centroid displacement in 

three cardinal axes. DL segmentations were also compared to our previously published 

multi-atlas (MA) results, which implemented simultaneous truth and performance level 

estimation (STAPLE) with ten atlas matches13 using a shared cohort of 11 test subjects. 

Lastly, qualitative consensus scoring of DL segmentations was conducted to evaluate clinical 

utility. Before the qualitative grading was performed, three physicians (two radiation 

oncologists and a radiologist with a cardiac subspecialty) reviewed DL segmentations from a 

patient who was excluded from the grading. The physicians were instructed on the image 

grading system and a grading consensus scale was established for each substructure and then 

applied for five unique patients. Qualitative consensus scoring was completed on five of the 

test subjects as evaluated in our previously published atlas study.13 Scoring was completed 

using a 5-point scale13,48 as follows: (a) not clinically acceptable, (b) clinically acceptable 

with major changes, (c) clinically acceptable with moderate changes, (d) clinically 

acceptable with minor changes, (e) clinically acceptable. Contours were converted to a 0.25 

mm high resolution display for final evaluation in MIM.

For volume size similarity assessment, two-tailed Wilcoxon signed-ranks tests were 

performed between ground truth and auto-segmented DL segmentations, with P < 0.05 

considered significantly different. Statistical assessments using two-tailed Wilcoxon signed-

ranks tests were also used to compare DL segmentations to our previous MA method via 

DSC, MDA, and qualitative consensus scores.
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3. RESULTS

3.A. Segmentation and post-processing time

The initial manual ground truth delineations of the 12 cardiac substructures required ~3 h 

per patient. The DL network stabilized in ~19.4 h after training the network for 200 epochs, 

including ~2 h after implementing data augmentation. Figure 2 shows the results for the 

training and validation datasets over the 200 epochs. The final training and validation DSC 

values were 83.1% and 81.5%, respectively (difference <2%), which represents an average 

over all 12 substructures.

Augmentation led to an overall DSC increase of 5.0 ± 7.9% across all substructures, with 

greatest improvements in the coronary arteries (LMCA = 18.6 ± 15.5%, RCA = 8.7 ± 9.1%, 

LADA = 7.8 ± 7.1%). Substructure contour generation (12 substructures) for a new patient 

using a single non-contrast CT-SIM dataset input took 5.0 ± 0.6 s. CRF post-processing time 

from a single test patient using ten inference steps for 12 substructures was 9.3 ± 0.3 s, for a 

total DL generation time of 14.3 s (range: 13.5–15.6 s).

3.B. CRF post-processing

CRF hyperparameter optimization revealed that differing values of (θx,θy) provided 

maximal DSC when three different sets of optimized parameters were employed for (a) 

coronary arteries and PV (2.0, 0.40), (b) superior/inferior venae cavae (2.0, 0.50), and (c) 

chambers and great vessels (8.0, 0.55). CRF applications lead to an average improvement in 

DSC, MDA, and HD over all substructures of 1.2 ± 2.5%, 0.11 ± 0.31 mm, and 5.58 ± 14.25 

mm, respectively. The LMCA had the greatest improvement in DSC (6.2 ± 6.6%, range: 1–

22%) after CRF application, whereas the RV and RA saw the least improvement (0.3 ± 

0.2%, range: 0.0–1.0%). The LV showed the greatest improvement in MDA (0.3 ± 0.5 mm, 

range: 0.0–1.2 mm) and HD (34.4 ± 23.0 mm, range: 0.1–64.7 mm) after 3D-CRF 

application. Lastly, after applying CRF, the mean improvement in MDA ranged from 0.04 to 

0.21 mm over the 12 substructures.

3.C. Geometric performance of segmentation

DL segmentation results are presented in Table I.

Figure 3 presents comparisons between ground truth and DL segmentations across 

substructures (LMCA not shown). The best case patient (Fig. 3, right) had chamber DSCs > 

0.90 and MDAs < 2 mm for all substructures with favorable results for the RCA (DSC = 

0.72, MDA = 1.67 mm). MDA (Fig. 5, left) across all 12 substructures was <2.0 mm (MDA 

= 1.46 ± 0.50 mm).

Wilcoxon signed-ranks tests revealed no significant differences in cardiac substructure 

volumes between DL and ground truth (P > 0.05). Figure 4 summarizes the centroid shifts in 

all cardinal axes. On average, the smallest displacements (<2 mm) occurred in the anterior-

posterior direction for 11 substructures. The largest displacements occurred in the superior-

inferior direction.
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3.D. DL vs. MA segmentation

Figure 5 summarizes MDA and DSC results over 11 test cases and compares DL with our 

previously developed MA method for the same cohort.13 MDA and DSC for all cardiac 

substructures improved with DL.

Specifically, DSC agreement to ground truth increased 3–7% for chambers, 9–11% for the 

superior/inferior venae cavae and PV, and reached 23–35% for the coronary arteries. On 

average, MDA improved by ~1.4 mm with DL, with greatest agreement in the SVC (MDA = 

0.99 ± 0.15) and worst agreement in the RCA (MDA = 1.97 ± 0.46). For four test CTs, our 

DL method yielded LMCA contours, whereas our previous atlas-based model failed to 

produce any segmentation. Overall, DL provided a significant improvement (P < 0.05) over 

the previous MA method for every substructure in terms of MDA and DSC.

3.E. Qualitative analysis

Physician consensus scores are summarized in Fig. 6. All patients had clinically acceptable 

contours (score of 5) for the LV, RA, and RV (results not shown), while the SVC, PA, and 

PV had clinically acceptable contours for 4/5 patients with DL. For the cardiac chambers, 

6/20 comparisons between DL and MA methods were equivalent, while all others improved 

by at least one grade with DL. The LMCA and RCA had the lowest average scores of 3.0 ± 

1.0 and 3.8 ± 0.4, respectively, with all other substructures scoring an average of ≥4.4. DL 

provided significant improvements (P < 0.05) over the MA method for the LADA, RCA, PV, 

PA, SVC, LA, RA, and RV. Improvements in 44/60 (5 patients, 12 substructures) qualitative 

scores were observed with DL. For only one instance, DL scored worse than MA (AA: 

grade 4 to 3). For two LADA segmentations, MA yielded a grade of 1 (clinically unusable) 

and improved to a 5 (clinically acceptable) with DL (Fig. 6, right).

4. DISCUSSION

This work presented a novel DL pipeline to segment sensitive cardiac substructures using a 

3D U-Net with the principal goal of applying to non-contrast CT-SIM for RT planning. Data 

augmentation and CRF post-processing improved DL contour agreement with ground truth. 

Overall, our method provided accurate segmentations of the chambers, great vessels, and 

PVs, and led to promising results in coronary artery segmentation on non-contrast CT-SIM 

datasets.

While cardiac substructure segmentation has been explored previously, to our knowledge, 

none have included paired MR/CT multi-channel data inputs to yield robust segmentations 

on non-contrast CT inputs. Several atlas segmentation methods have been recently 

published13–15 and report cardiac chamber DSCs > 0.75. However, these methods have had 

limited success segmenting coronary arteries as atlas methods rely on image registration 

quality and are unable to consider large amounts of patient data due to computational 

demands.49 Our work parallels recent applications of DNNs where CT coronary 

angiography (CTCA) scans specifically optimized for cardiac imaging were utilized. Here, 

DSC in the RA (87.8%)20 and PA (85.1%)21 were within 1% of our DL method, while we 

were within 5% of their chamber segmentation results. Our work adds to the current 
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literature by including additional substructures and allowing for predictions to be made on 

non-contrast CT-SIM scans.

Data augmentation improved DL segmentation accuracy by ~5% across all substructures. 

Although no comparison values exist in the literature for cardiac substructure segmentation, 

this value is consistent with studies performed on liver lesion segmentation.50,51 One 

extreme outlier (>3 times the interquartile range) observed for the RV in the left-right axis 

occurred for the worst-case patient (Fig. 4, left), where the heart was rotated clockwise and 

shifted posteriorly/left. While this patient’s anatomy was an anomaly, this result may be 

addressed in the future by further augmenting the data (i.e., rotation >30°). Furthermore, 

both the LADA and RCA had larger centroid shifts in the superior–inferior plane (Fig. 4, 

right). This can be further visualized in Fig. 3 (left), where the inferior extent of the LADA 

and RCA were underrepresented with some narrowing of these substructures observed in the 

midline axial slice. To address this, recent atlas-based methods have standardized the size of 

the LADA to 4 mm throughout its entire length.17 Nevertheless, our DL pipeline performed 

well for coronary artery contours on non-contrast CTs (DSC ~ 0.50, MDA < 2.0 mm), 

particularly as compared to recent atlas results where coronary artery (LADA, RCA, and 

LMCA) DSCs ranged from 0.09 to 0.2713–15 and had MDAs > 4 mm.14 Coronary artery 

segmentations may be improved through the use of high resolution (0.78 × 0.78 × 1.6 mm3) 

CTCA21 that use contrast and yield DSCs ~ 60%.52 Additionally, implementing a Dice loss 

function weighted on the inverse of the class size may improve the results for smaller 

substructures such as the coronary arteries. Originally proposed by Crum et al.,53 the 

generalized Dice loss (GDL) function has been shown to improve hyperparameter 

robustness for unbalanced tasks (i.e., when each class is not represented equally in the 

dataset), and improve overall segmentation accuracy for small structures.54

While rare cases involved the removal of spurious remote predictions that resided within the 

ground truth delineation, 3D-CRF led to an overall improvement in segmentation agreement. 

The coronary arteries experienced the greatest improvement from CRF post-processing, with 

the LCMA improving ~6% in DSC. Additionally, there were improvements in MDA up to 

1.21 mm and 1.96 mm for the LV and LA, respectively. Aside from removing spurious 

outlying points, CRFs also improved the smoothed appearance of the segmentations as 

needed for clinical application.55 CRF tuning required different parameters for cardiac 

substructures based on size and shape, much like the work completed by Rajchl et al.56 The 

improvement in segmentation agreement observed, along with the use of a 3D-CRF to 

remove spurious isolated regions, parallels other emerging uses of 3D-CRF post-processing 

in medical imaging.57,58 Although this study implemented CRFs as a post-processing step, 

some current studies have integrated CRFs into the utilized neural network and have seen 

improved segmentation performance42,43,59 and can be explored in future work for possible 

coronary artery segmentation improvement.

The overall time to generate DL segmentations on preprocessed CT-SIM data was rapid: 14 

s for all 12 substructures. This value can be compared to Mortazi et al. who segmented seven 

cardiac substructures in ~50 s on high resolution CTCA and 17 s on MRI.21 Moreover, our 

previous MA method required ~10 min to generate substructure contours per patient without 

post-processing.13
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Although the in-plane resolution was 0.7 × 0.7 mm2, our study may have been limited by the 

8 mm slice thickness of the MRI. Despite our data augmentation techniques, increasing the 

training sample size may further improve segmentation results. However, similar training 

and testing cohort sizes with augmentation have been used previously.60 While paired 

cardiac MRI/CT data are commonly limited for cancer patients, the training cohort may be 

expanded in the future by applying our DL model to generate additional ground truth 

segmentations. Data quantity may also be increased through utilizing unlabeled images for 

unsupervised learning via generative models such as a cycle61 or a stacked62 GAN, which 

implement multiple GANs for data synthesis. Recently, Zhang et al.22 proposed a novel 

cardiac chamber segmentation method using a GAN integrating cycle and shape consistency. 

They obtained DSCs comparable to atlas segmentations (DSC ~ 0.75) on CT and MRI by 

using ~14% real data and augmenting their dataset by incorporating synthetic MRI and CT 

data into training. Our model may be enhanced similarly by incorporating synthetic images 

in the network training, while also providing additional substructures, such as pulmonary 

veins and coronary arteries. Nevertheless, even with the current limited training dataset, our 

results outperform other currently available approaches. As shown in Fig. 2, training and 

validation results increased to a point of stability with a difference of <2% after 

convergence. Moreover, to further limit potential overfitting in this more limited cohort, data 

augmentation (i.e., flipping, scaling, rotating, and translating) and model regularization 

(dropout = 0.3) were implemented. Even though the presented dataset was limited in size, 

overfitting was not an issue in this work.

As both the CT and MR images were acquired in breath hold conditions, respiratory motion 

is assumed to be negligible during this study. However, due to extended scan times, one 

limitation of this study is that numerous cardiac cycles are captured during imaging. Thus, 

the substructures are represented by their average intensity over the course of the scan and 

cardiac motion is not taken into consideration. Currently, cardiac motion is not managed 

clinically due to limitations in available treatment technologies. Nevertheless, the magnitude 

of cardiac motion is on the order of 3–8 mm63 suggesting internal motion may be 

incorporated into future margin design as has been previously proposed.64,65

As MR-guided RT and MR-only planning become more prevalent, future work will include 

training an MR-only model. It has been recently recommended that the LADA be included 

as an avoidance structure in RTP;12 thus, a natural clinical endpoint of this work includes 

dosimetric analysis and implementing cardiac avoidance strategies via accurate and efficient 

cardiac substructure segmentation made possible by DL.

5. CONCLUSIONS

These promising results suggest that our novel DL application offers major efficiency and 

accuracy gains for cardiac substructure segmentation over previously published MA results, 

using only non-contrast CT inputs. Future work involves further refinement of coronary 

artery segmentation using conditional random fields as a recurrent neural network and 

through expanding the patient cohort. Coupled with robust margin design, improved cardiac 

sparing in treatment planning can be realized.
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Fig. 1. 
3D U-Net architecture with CT and MR inputs in different image channels, along with the 

ground truth (GT) labels. Prediction maps are outputted for each substructure. [Color figure 

can be viewed at wileyonlinelibrary.com]
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Fig. 2. 
3D U-Net training and validation results over 200 epochs. Values for mean Dice similarity 

coefficient (DSC) represent an average over all 12 substructures. [Color figure can be 

viewed at wileyonlinelibrary.com]
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Fig. 3. 
Comparisons between contours generated via deep learning and ground truth (GT) in 2D 

axial slices (top) and 3D renderings (bottom) for the worst (left), average (center), and best 

(right) cases. [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 4. 
Substructure centroid displacements in the left-right (left), anterior-posterior (center), and 

superior–inferior (right) directions. Legend: interquartile range = box, median = line, 

minimum and maximum = whiskers, circles and stars = 1.5 and 3 times the interquartile 

range, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 5. 
Agreement between manually drawn ground truth and auto-segmentation methods (Blue: 

Previous multi-atlas method (MA), Red: Novel DL method) over 11 test cases. Left: Mean 

MDA, Right: Mean DSC. DSC, Dice similarity coefficient; MDA, mean distance to 

agreement. [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 6. 
Qualitative consensus scoring (not clinically acceptable, clinically acceptable with major, 

moderate, and minor changes, and clinically acceptable) of five patients for the multi-atlas 

(MA) and deep learning (DL) auto-segmentations (chambers not shown). For each 

substructure, the MA and DL methods are shown on the left and right, respectively. [Color 

figure can be viewed at wileyonlinelibrary.com]
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