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Abstract

A workshop on research gaps and opportunities for Precision Medicine in Pancreatic Disease was 

sponsored by the National Institute of Diabetes and Digestive Kidney Diseases on July 24, 2019, 

in Pittsburgh. The workshop included an overview lecture on precision medicine in cancer and 4 

sessions: (1) general considerations for the application of bioinformatics and artificial intelligence; 

(2) omics, the combination of risk factors and biomarkers; (3) precision imaging; and (4) gaps, 

barriers, and needs to move from precision to personalized medicine for pancreatic disease. 

Current precision medicine approaches and tools were reviewed, and participants identified 

knowledge gaps and research needs that hinder bringing precision medicine to pancreatic diseases. 

Most critical were (a) multicenter efforts to collect large-scale patient data sets from multiple data 

streams in the context of environmental and social factors; (b) new information systems that can 

collect, annotate, and quantify data to inform disease mechanisms; (c) novel prospective clinical 

trial designs to test and improve therapies; and (d) a framework for measuring and assessing the 

value of proposed approaches to the health care system. With these advances, precision medicine 

can identify patients early in the course of their pancreatic disease and prevent progression to 

chronic or fatal illness.

Lowe et al. Page 2

Pancreas. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

chronic pancreatitis; consensus workshop; pancreatic cancer; personalized medicine

Pancreatic diseases, including acute pancreatitis, recurrent acute pancreatitis, chronic 

pancreatitis (CP), pancreatitis-associated diabetes mellitus, pancreatic cancer, and associated 

syndromes of organ dysfunction or failure, are complex and require a precision medicine 

approach. Precision medicine is a term that means many things but at its core implies that 

physicians use an understanding of the mechanisms underlying specific signs and symptoms 

of disease to focus therapies at highly specific and effective targets.

Precision medicine for pancreatic cancer is a challenging field. On the one hand, genetic 

testing is being developed to assess the patient’s tumor to help in the diagnosis of disease 

and choice of treatment.1,2 On the other hand, genetics is also used to classify patients into 

risk categories before cancer develops to assist in surveillance with various biomarkers.3–5 

Studies are needed to identify risk factors that ascertain high-risk patients and then select 

appropriate biomarkers and imaging approaches to detect, diagnose, stage, and target 

treatment of early pancreatic cancers.

Precision medicine for inflammatory disease of the pancreas has made major advances in the 

past few years. First, a new definition of CP has been adopted that facilitates precision 

medicine approaches to early detection and management of a progressive group of disorders.
6 Second, consensus has been reached that it is impossible to diagnose early CP because the 

biomarkers are nonspecific and CP requires irreversible organ damage.7,8 Third, in 

contrasting and comparing the approaches of modern Western medicine to precision 

medicine, it becomes clear that precision medicine for complex disorders focuses on 

detecting mechanistic dysfunction and disorders at the cellular and systems level in 

symptomatic patients, well in advance of disease, and providing a target for therapy.9 

Linking known risk and etiologies to mechanism and clinical signs and symptoms is now 

possible.10,11 Both a top-down approach (using well-defined populations to correlate 

specific diseases or disease features with an agnostic collection of genetic and omics data) 

and a bottom-up approach (correlating knowledge of cellular and biological systems with 

specific disease-associated genetic and omic variants to gain insights into disease 

mechanisms and to generate predictive models to aid the development of target-specific 

interventions) must occur together to merge clinical insights with disease mechanisms in 

each individual patient to achieve personalized medicine.

The purpose of the National Institutes of Diabetes and Digestive and Kidney Diseases 

(NIDDK) Workshop on Precision Medicine in Pancreatic Disease was to understand the 

current status of methods and applications of precision medicine to the diagnosis and 

management of pancreatic disease and to explore approaches to translate information gained 

through precision medicine to create strategies for personalized approaches for the 

prevention, early diagnosis, and treatment options for patients with benign or malignant 

pancreatic disease. Each session and lecture provided insights into the methods of precision 

medicine and on how to apply them to pancreatic disease as well as guided discussion to 
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identify the knowledge gaps, barriers, and priorities for conducting basic and clinical studies 

to advance the field.

PRECISION MEDICINE: LESSONS FROM CANCER

Cancer treatments have improved dramatically in recent years, in part because new 

measurement technologies have been deployed to identify aspects of cancer that can be 

manipulated to achieve cancer control. The use of efficient nucleic acid and protein profiling 

tools has been especially useful to discover recurrently aberrant genes and molecular 

pathways intrinsic to cancer cells that can be targeted therapeutically. The spectrum of 

targetable abnormalities varies substantially between tumors, so the administration of 

targeted drugs must be coupled with rapid inexpensive diagnostics that can identify tumors 

likely to respond to specific targeted therapies. This is the essence of precision medicine that 

has led to tumor control or cure for many patients with early-stage disease.

These same drugs also demonstrate efficacy in advanced disease, but control typically is not 

durable. Recent efforts to improve control have included manipulation of the diverse 

microenvironments in which disseminated tumor cells live. These include efforts to 

normalize angiogenesis, stromal fibroblasts, extracellular matrix proteins, and reactivation of 

immune surveillance. Unfortunately, even the best combinations of drugs that target tumor 

intrinsic and extrinsic processes have not led to durable responses for the majority of 

patients with metastatic cancer including pancreatic ductal adenocarcinoma.

Our inability to control metastatic disease stems from a still imperfect understanding of the 

diverse intrinsic and extrinsic mechanisms that enable tumor cells to escape therapeutic 

control and from the inability to quickly and effectively recognize and counter newly 

resistant tumor subpopulations as they arise. These attempts to identify additional 

therapeutic vulnerabilities need to include comprehensive omic and multiscale image 

analyses of longitudinal tumor biopsies and blood samples taken during the course of 

treatment.

For example, investigators have analyzed serial tumor biopsies to assess changes in genome 

composition, protein expression, and cellular composition using multiplex 

immunohistochemistry and cyclic immunofluorescence as well as focused ion beam 

scanning electron microscopy to design, monitor, and adjust the therapy of individual 

patients. The experience of applying these methods in subjects with breast cancer revealed 

remarkable on-treatment evolution, heterogeneity between and within individual lesions in 

the same patient, and novel nanoscale biology that must be managed to achieve therapeutic 

control. This is the essence of personalized medicine.

The result of this effort, the Serial Measurements of Molecular and Architectural Responses 

to Treatment program at Oregon Health and Science University, is dedicated to the 

proposition that treatment with biologically motivated multidrug combination strategies that 

change during the course of treatment as guided by omic and multiscale imaging 

measurements can achieve durable and tolerable control of even the most advanced cancers 
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including pancreatic carcinoma.12 Lessons learned from this approach to treating malignant 

disease can be applied to progressive inflammatory diseases such as CP as well.

GENERAL CONSIDERATIONS FOR LARGE DATA SETS

A necessary feature of precision medicine is the expectation that large data sets in 

biomedicine will provide fresh insights into health and disease that will translate into 

personalized disease prevention and therapies. To reach this state, we must overcome the 

significant challenges of data analysis, integration, storage, and result interpretation posed 

by the generation of enormous data sets generated by multiple methods. To make sense of 

these large data sets, tools are required that can assemble integrated data generated by omics 

with a knowledge base of known biological mechanisms and networks to extract and 

identify significant changes in molecular profiles, construct models of interacting biological 

networks, map perturbations to causal pathways, construct simulations to predict phenotype, 

and validate potential biomarkers and therapies. These tools will come from bioinformatics, 

artificial intelligence (AI), and machine learning. Their role in precision medicine for 

pancreatic disease was discussed in this session.

Bioinformatics Approaches to Precision Diagnosis

Precision diagnosis is the effort to accurately and precisely determine the etiology of a 

patient’s disease, often to guide treatment. For this reason, precision diagnosis of a patient is 

a critical component of precision medicine.13 Bioinformatics is often a critical component of 

diagnostic development programs.

Several bioinformatics algorithms and approaches are used to develop precision diagnostics, 

but the field has not converged to a single approach. In some cases, precision diagnosis 

might require considering and weighing several different lines of information together. 

Machine learning algorithms are of high interest because they are able to recognize patterns 

in complex data, enabling better diagnosis of disease. However, machine learning methods 

are often black box and unable to give clear insight or explanation of their predictions. The 

role of black box methods in health care remains an open question.14 If the goal is to 

understand a disease’s subtypes, noninterpretable methods may be less desirable. On the 

other hand, if improving outcomes is most important, black box methods can sometimes 

perform better than interpretable methods. The precise trade-offs between different 

approaches are usually problem specific. The decisions may not lend them-selves to answers 

that apply in every context. For this reason, careful attention should be paid to defining the 

precise problems being addressed by bioinformatics analysis so appropriate methods can be 

used.

The focus of genetics is on the underlying mechanistic disorders, but an additional area of 

need is biomarkers of disease location, subtype, activity, stage, and response to treatment. 

Linking image analysis with disease mechanisms provides great opportunities for the future. 

Deep learning, a recent advance in machine learning, can analyze images with surprising 

accuracy, providing quantitative and qualitative data to support clinical decisions.15 

Likewise, a patient’s disease can be distinct for many reasons, and distinct drug exposure of 

patients is an important variable. For several reasons, patients can be prescribed drugs 
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incidentally to the primary diagnosis of importance. Incidentally prescribed drugs can 

influence the trajectory of diseases, suggesting uses for drugs and mechanistic insight into 

diseases. For example, epidemiological studies showed that metformin reduced cancer risk 

in many patients,16 and it is now being studied as an adjuvant therapy in several cancers.17 

Similar repurposing opportunities might be identified by studying incidentally prescribed 

medications in patients with pancreatic diseases.

In all cases, systematic collection of patient outcome data is critically important. For 

example, more data can be collected in a clinical study than can practically be collected in 

standard clinical practice. From these data, bioinformatics algorithms can be used to 

identifying specific biomarkers associated with response to different treatments. After 

identification of putative biomarkers, a focused laboratory test can be developed to direct 

treatment. Other approaches are also possible, but prospective studies like this may be a key 

step toward developing precision diagnostics in complex disease. The Kidney Precision 

Medicine Project (https://kpmp.org/) may be an important investigative model to learn from 

and adapt for pancreatic disease. Regardless of the adopted strategy, efforts to design 

prospective studies and to address the concerns arising from scientific, clinical, statistical, 

and machine learning applications will require interdisciplinary teams.

The Application of AI and Deep Learning in Pancreatic Imaging

Automated analysis of the pancreas in radiological imaging has been historically difficult 

because of the large shape and size variations among patients and low tissue contrast to 

surrounding anatomical structures. Recent advances in the machine-learning based analysis 

of the pancreas in computed tomography (CT) and magnetic resonance imaging (MRI) are 

changing the landscape of automated analysis of the pancreas. In particular, the advent of 

deep learning has boosted the practicality of AI in health care and radiological imaging 

applications. Fully convolutional neural networks have driven the performance of automated 

segmentation methods and have improved the state-of-the-art significantly.18–21 Fully 

convolutional neural networks can now process full 3-dimensional (3D) radiological images 

including the whole pancreas and produce accurate automatic segmentations in many cases. 

Accurate and robust automated segmentation results could lead to new clinically relevant 

applications, potentially reducing miss rates of pancreatic cancers, and improve early 

detection and screening for pancreatic diseases.22 For example, segmentations can be useful 

for further automated analysis, such as the classification of cancerous versus noncancerous 

pancreatic tissue.23 Furthermore, pancreas segmentation can be enhanced and combined 

with multiorgan segmentation models of the major abdominal anatomic regions, typically 

improving the robustness and accuracy of the segmentation models further.24,25

OMICS: THE COMBINATION OF RISK FACTORS AND BIOMARKERS

Until recently, researchers have used omic data sets mainly to derive simple associations 

between genetic variants and disease phenotypes initially with genome-wide association 

studies. Advances in high throughput technologies have allowed rapid sequencing of whole 

genomes and the identification and quantification of biological constituents on 

unprecedented scales. Rare genetic variants, catalogs of proteins, and metabolites can be 
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identified in various fluids, cells, and tissues. Protein-to-protein and cell-to-cell interactions 

can be identified and understood in more detail than ever before. The availability of diverse 

omics data and tools to analyze cellular pathways allows the discovery of new biological 

networks and link them to disease pathogenesis. In this section, the role of omics in bringing 

precision medicine to pancreatic disease was discussed.

Proteomics—A Tool for Cancer Therapeutics

To develop new drugs and therapeutic strategies for diseases associated with genomic 

alterations such as pancreatic cancer and pancreatitis, it is necessary to go beyond the mere 

fact of such genomic alterations; instead, it is vital to assess and understand the functional 

impact of such genomic alterations to identify the key disease drivers and mechanisms that 

shape tissue heterogeneity. Proteins are the functioning units in a cell, encoded by the 

genome. Thus, proteomics is the obvious choice to connect genomic alteration and function

—a notion underscored by the fact that proteins are the direct targets of most drugs currently 

in use.

The importance of proteomics to understand the functional ramifications of mutations in 

proteins became clear when the data from a large-scale quantitative proteomic and 

transcriptomic study on 50 different colorectal cancer cell lines were analyzed in detail.26 

With over 12,000 proteins identified in total and with more than 8000 proteins identified in 

more than 80% of the samples, solid conclusions can be drawn: (1) proteomics shows more 

and tighter modularity than transcriptomics, and (2) loss of function mutations resulted in 

significantly more changes of the proteome than the transcriptome.27 These findings 

highlight the need to go beyond DNA and RNA sequencing to understand the role of 

genomic alterations.

Given the importance of proteomics and its complementarity to genomics or transcriptomics, 

major advances are currently being made.28 We expect that in the near future 4000 proteins 

can easily be identified in a single tissue specimen within 30 minutes of instrument time. At 

such throughput, routine proteomic analyses of clinical tissue and tumor specimens will 

become a viable option accelerating the realization of personalized medicine.

Genomics—A Tool for Therapeutics Development in Benign Pancreatic Disease

It is unlikely that a single omics technology will be sufficient to significantly alter the drug 

development process. Instead, the processes have to be assessed from various different 

angles including genomics.29 Although genetic mutations are often neither sufficient nor 

necessary for a particular disease, knowing the exact map of genetic mutations in the context 

of a disease such as pancreatitis30 will play a major role in improving the stratification of the 

patients, which will be essential for tackling the problem of massive attrition during today’s 

drug development: about 90% of all drug candidates fail, especially during phase II, owing 

to toxicity or a lack of efficacy.

Such attrition rate in the development of drugs will be an impediment for personalized 

medicine and individualized therapies. Thus, improving the drug development process will 

be a prerequisite to realize precision medicine. To fulfill the mission of precision medicine, 
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modern genomics tools will have to be used to provide deeper understanding of the genetic 

basis of biological mechanisms and pathways.

These considerations are particularly important in complex disorders such as pancreatitis. 

For such a disease, it is expected that genomic analysis will identify hundreds of genetic 

variants that contribute to disease risk, progression, and severity.31 However, because effect 

sizes of the different variants on the traits will be small, it is expected that the disease is the 

result of changes in gene expression rather than changes in the protein sequence, which 

underscores the notion of the need for a system biological approach to combine genomics, 

transcriptomics, and proteomics. Therefore, thorough genomic evaluation will have to be 

coupled with deep molecular and clinical phenotypic data to enable the development of 

genotype-phenotype response curves, which will be a critical element in validating 

therapeutic hypotheses and moving us closer to precision medicine.

Novel Tumor-Stromal Metabolic Reprogramming—Metabolomics as a Tool to Understand 
Tumor Biology and Identify Actionable Therapeutic Targets

The tumor microenvironment is composed of complex interactions among malignant, 

immune, endothelial, and stromal cells. Recent technological advances in mass cytometry, 

single-cell RNA sequencing, and highly multiplexed in-situ imaging are providing a deeper 

characterization of the tumor microenvironment.32 In addition, novel computational 

techniques that enable cell-specific deconvolution have been applied to bulk gene expression 

data sets to produce a pan-cancer cellular decomposition of the tumor microenvironment. 

Although the composition of the tumor microenvironment is being better characterized, 

more progress is needed to reconstruct functional interactions between cell types comprising 

the tumor microenvironment. Integrative experimental and computational approaches that 

combine imaging, genomic, and proteomic data to characterize the tumor microenvironment 

are revealing novel mechanisms of tumor-stromal metabolic programming that are critical to 

tumor progression and drug response.

An example of this approach has identified new molecular processes associated with tumor 

metabolism from the integrative analysis of imaging and genomic data of human non–small 

cell lung cancer (NSCLC).33,34 An analysis of the transcriptome of bulk and flow-sorted 

human primary NSCLC together with 18F-fluordeoxyglucose-positron emission tomography 

scans provides a clinical measure of glucose uptake. Tumors with higher glucose uptake 

were functionally enriched for molecular processes associated with invasion in 

adenocarcinoma and cell growth in squamous cell carcinoma. Moreover, genes were 

identified that correlated to glucose uptake that were predominately overexpressed in a 

single cell-type comprising the tumor microenvironment. Most of these genes were 

expressed by malignant cells in squamous cell carcinoma, whereas in adenocarcinoma, they 

were predominately expressed by stromal cells, particularly cancer-associated fibroblasts. 

Among these adenocarcinoma genes correlated to glucose uptake, glutamine-fructose-6-

phosphate transaminase 2 (GFPT2), which codes for the glutamine-fructose-6-phosphate 

aminotransferase 2 (GFAT2), a rate-limiting enzyme of the hexosamine biosynthesis 

pathway, is responsible for glycosylation. Expression of GFPT2 was predictive of glucose 

uptake independent of GLUT1, the primary glucose transporter, and was prognostically 
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significant at both gene and protein level. Normal fibroblasts transform to cancer-associated 

fibroblast–like cells, after transforming growth factor β treatment, and upregulate 

hexosamine biosynthesis pathway genes, including GFPT2. These studies provide new 

evidence of histologically specific tumor stromal properties associated with glucose uptake 

in NSCLC and identify GFPT2 as a critical regulator of tumor metabolic reprogramming in 

adenocarcinoma. In ongoing work, GFPT2-expression is associated with CT features of 

tumor progression in NSCLC. High-dimensional phenotypic malignant cell states induced 

by stromal-derived factors have been characterized,35 and these states demonstrate 

expressions for differential drug sensitivity. This work provides new compelling evidence of 

tumor-stromal metabolic reprogramming, which contributes to tumor progression and may 

inform drug selections and therapeutic responses. Similar approaches are now being applied 

to pancreatic adenocarcinoma.

Multiplex Explorations of Inflammation in Cancer and Pancreatitis

One of the major challenges in studying benign and malignant pancreatic disease has been 

tissue access. This has hampered not only investigation of disease pathogenesis but also 

ways to monitor and follow disease course. In inflammatory bowel disease for example, 

endoscopic guided tissue sampling has allowed for progress in assessing disease state and 

using stringent metrics to define disease activity and remission. As a result, simultaneous 

access to disease site and cells in circulation has allowed the study of vast numbers immune 

cells and signals using flow-based mass cytometer or cytometry time-of-flight.36 The 

findings from this study offer ways to decipher disease heterogeneity, response to therapy, 

and future blood-based cellular assays to classify and monitor patients with high degree of 

precision noninvasively. Such tools are now being applied in experimental pancreas disease 

models to study disease induction, recovery, and progression from acute to chronic 

inflammatory states. With the support of NIDDK and National Cancer Institute sponsored 

Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer, an in-

depth study to investigate circulating immune cells in patients with different forms of 

pancreatitis and associated diabetes is underway. Investigators are also obtaining human 

pancreata from deceased organ donors and from patients with refractory CP undergoing total 

pancreatectomy and islet autotransplantation for studies of the various cell types in the 

pancreas.37

Flow-based assays used for any omics studies rely on isolating cells from their natural 

and/or existing environment; thus, complementary omics-based imaging studies are 

necessary to determine not only geographic but also functional localization of cells. Many 

imaging studies that allow for detecting over 30 to 60 antigens and that depend on assays 

such as mass cytometry, chemical quenching, or in situ polymerization-based indexing 

procedures have been developed in the past few years.38–40 Such technologies provide a 

closer look at in situ cellular interactions and have a higher likelihood of developing targeted 

therapies and are now being used to study benign and malignant pancreatic diseases.
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PRECISION IMAGING: FROM MACRO TO MICRO

Over the past 5 years, the technologies to image a broad range of biologic molecules and 

tissue structures in vivo and in tissue samples has dramatically advanced. With these 

advances has come the need to standardize tissue preparations as well as the assays of 

function and content and to develop algorithms that can integrate a broad range of data 

inputs. To make these data broadly accessible and maximize the extraction of information, 

AI is being used to discover novel relationships, and new methods of dynamic data display 

are being developed. These advances are being used to tissues in vivo, excised normal and 

diseased tissues, and tissue sections. This session reviewed new approaches ranging from 

whole body imaging to integrated 3D localizations of multiple molecules in tissue fragments 

and discussed how they aid precision medicine for pancreatic disease.

Quantitative Imaging of CP

One of challenges in clinical pancreatology has been the assessment of the presence and 

severity of CP. A central histopathological feature of this disease is fibrosis. The precise role 

of fibrosis in the development of other disease features such as loss of endocrine and 

exocrine cell mass and function, pain development, and enhanced cancer risk remains 

unclear. This lack of knowledge is very much a reflection of our inability to assess 

pancreatic fibrosis with noninvasive or minimally invasive technologies, particularly in early 

stages. Recently, significant efforts have been made to incorporate parenchymal changes 

seen with MRI to complement the ductal changes in identifying CP. The extracellular matrix 

can broadly affect tissue function by multiple mechanisms including cell signaling by 

soluble ligands, signaling through mechanotransducers, and vascular compression.

Prior studies have shown that the magnetic resonance (MR) T1 signal decreases in CP, which 

can be objectively quantified using T1 mapping, correlated with pancreatic exocrine 

dysfunction.41,42 Extracellular volume (ECV) imaging is a quantitative MR method that 

exploits changes to the extracellular matrix and can detect fibrosis in patients with CP. 

Magnetic resonance elastography, which has been successfully used to evaluate hepatic 

fibrosis by assessing tissue stiffness, is now being adapted for assessment of pancreatic 

fibrosis.43 Fibrosis and acinar cell loss can also be quantitatively assessed by estimating the 

ECV fraction with gadolinium-enhanced MRI.44 Finally, MR cholangiopancreatography, in 

conjunction with stimulation of the pancreas by secretin, has been used to assay pancreatic 

secretory responses by quantitative assessment of fluid secreted into the gut lumen and for 

simultaneous assessment of duct morphology and compliance.45 There is need for a 

quantitative scoring system as a biomarker for CP. Such a scoring system is the focus of the 

MINIMAP study (MRI as a noninvasive method for the assessment of pancreatic fibrosis), 

which is funded by NIDDK.

Advances in Molecular Imaging

There is also an impetus for developing new molecular imaging reagents because the use of 

MRI and CT has not imparted long-term benefits to pancreatic cancer patients.46 The 

shortcomings may be owing to the inability of these modalities to detect early neoplasms or 

identify potential therapeutic targets. Optimal targets would be specific, disease related, in 

Lowe et al. Page 10

Pancreas. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sufficient density to be easily detected, and expressed on the cell surface. Potential ligands 

include antibodies, nanoparticles, proteins, and peptides.47 An example of a potential target 

is the intracellular scaffolding protein plectin that redistributes to a cell surface on pancreatic 

cancer cell and other types of cancer cells.48 In addition, the protein can be used selectively 

as a target for anticancer agents.49

Next-Generation MALDI IMS: Enabling Molecular Microscopy in the New Age of Biology 
and Medicine

The application of matrix-assisted laser-desorption/ionization (MALDI) imaging mass 

spectrometry (IMS) to detect biologic and pharmacologic substances in tissue sections is an 

important adjunct to precision medicine.50 Peptides, proteins, carbohydrates, lipids, 

oligonucleotides, and pharmacologic agents and their metabolites can be imaged by MALDI 

IMS. It can be used with frozen or fixed tissues, although detection of lipids can be 

compromised by tissue processing. Resolution of the technique is at the cellular level (about 

10 μm), and 2D and 3D reconstructed images can be generated. A great potential advance 

for IMS is the potential for merging data images from this technique with other forms of 

imaging such as autofluorescence and immunolabeling.51 Advanced computational 

processing also has the potential to merge a low-resolution image in one modality with a 

high-resolution image from another modality to produce a high-resolution image of both 

data sets. Finally, high-resolution immunology labeling of biologic specimens can be 

obtained by labeling antibodies with select heavy metals that can be detected by IMS. Over a 

dozen antibodies can be simultaneously imaged on the same specific using this technique.

Application of Machine Learning and Mass Spectrometry Imaging to Malignancy

Machine learning platforms can analyze and combine a range of data sets into 2D and 3D 

images that can be manipulated to show varied associations such as the relationships with a 

cancer cell and a metabolic product or a drug.52 Algorithms have been developed to discover 

new cancer networks and combined with structural and pharmacologic drug information to 

identify new therapeutic agents.53 This methodology integrates analytic tissue data with 

clinical information while recognizing the challenges presented by using distinct sources 

with varied nomenclature.54

GAPS, BARRIERS, NEEDS, AND HOW TO GET FROM PRECISION 

MEDICINE TO PERSONALIZED MEDICINE FOR PANCREATIC DISEASE

There remain multiple challenges in moving to personalized medicine approaches in 

pancreatitis and pancreatic cancer. This conference has reviewed some of the multiple 

opportunities and challenges in transitioning from nonspecific therapies to individually 

targeted therapies. This section focuses on some novel approaches and an overview of the 

gaps, barriers, and research needed to facilitate progress toward personalized medicine in 

pancreatic diseases.
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Translating Regulatory Network-Based Personalized Medicine for Pancreatic Cancer

Personalizing treatment, by identifying individual patient characteristics or tumor types, is 

increasingly becoming the standard clinical practice for cancer in general. Treatment has 

transitioned from nonspecific therapies directed toward proliferating cells to targeted 

therapies specific to the tumor susceptibility of each patient. However, in the case of 

pancreatic cancer, improvements in patient outcomes have been incremental. Personalized 

medicine approaches in pancreatic cancer are the culmination of decades of investment in 

understanding the molecular responses of tumor cells to targeted interventions. To date, 

personalized medicine paradigms have largely focused on genomic alterations encoded in 

tumor genomes, using a fairly limited set of therapeutic tools that are known or theorized to 

have selective efficacy in a tumor-specific genetic context. When successful, this approach 

can be extremely effective, as evidenced by several high-profile successes such as 

checkpoint blockade inhibitors for rare microsatellite-high pancreatic cancers. 

Unfortunately, the majority of tumor genes lack such actionable alterations or their 

alterations frequently fail to respond to targeted interventions or relapse quickly. Thus, 

context matters, which is challenging to define and then target. One approach to consider is 

to evaluate RNA expression rather than DNA content of the tumor.

RNA expression serves as a sensitive snapshot of cellular regulatory states.55 However, 

challenges in systematically interpreting RNA expression profiles have constrained their 

practical use for precision or personalized medicine. Regulatory network analysis is a 

systems biology approach that addresses these challenges and forms the basis for an RNA-

guided personalized medicine paradigm that identifies master transcriptional regulators that 

are hyperactivated or hyperrepressed in a patient’s tumor and matches them to drugs that 

invert their activity.56 For example, a pancreatic cancer implementation model has been 

developed using this approach. The model has received Clinical Laboratory Improvement 

Amendments certification, making it more likely to be available for clinical use. The 

technology has led to the launching of a phase Ib clinical trial for metastatic pancreatic 

cancer patients. Moreover, application of regulatory network techniques to bulk tissue, laser 

capture microdissection, and single cell expression profiles has enabled a deeper 

understanding of the molecular subtypes that comprise this disease and their association 

with tumor stroma.57,58 This model represents one promising personalized medicine 

approach example in pancreatic cancer.

The Need for Deeply Phenotyped Data Sets

Improving the prognosis of pancreatic cancer may lie not only in treatment but also in early 

detection, enabled by longitudinal deep phenotyping and analysis of routine laboratory tests, 

genomics, metabolomics, proteomics, microbiomics, and even lifestyle. For example, the 

Institute for Systems Biology generated a deeply phenotyped longitudinal data set from a 

real-world population for over 6200 individuals across the wellness to disease spectra who 

participated in a consumer wellness program between 2015 and 2019 and shared their 

deidentified data for research purposes.59,60 For each individual, a personal, dense, dynamic, 

data (PD3) cloud that included genomics and longitudinal measures of clinical laboratories, 

metabolomics, proteomics, and gut microbiomics was generated. This also included data 

from wearable monitors and questionnaires to capture user-reported measures of lifestyle, 
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physical health, and mental health. These data are supporting new approaches to quantifying 

wellness and disease states, and influencing our thought process about personalized 

medicine biomarkers of wellness to disease transition. Analysis of such cohorts can improve 

our understanding of major unmet needs in precision medicine, specifically in pancreatic 

diseases.

Preliminary work on atypical value analysis within these PD3 clouds has yielded several 

promising population-level observations and individualized case studies. Divergence 

profiles,61 a bioinformatic approach based on reference populations matched by age, sex, 

and ethnicity, can be calculated for participants who received a cancer diagnosis while 

enrolled in the program. These profiles showed consistently extreme values over time in 

important systems related to general and tissue-specific cancer processes, such as immune 

system responses for leukemia and β islet cell-specific responses for pancreatic cancer. In 

the case of a seemingly healthy 60-year-old woman, later diagnosed with stage IV pancreatic 

cancer, PD3 analysis of the plasma proteome identified 5 of 16 proteins associated with 

tumor necrosis factor signaling with atypical values 4 months before diagnosis. Five extreme 

values within a PD3 cloud with thousands of analytes is not surprising. However, finding 

that these 5 proteins are part of a single network or system becomes highly significant and 

biologically meaningful. Longitudinally, an atypical increase in the cancer-associated (and 

pancreas-specific) protein concentrations over the 1.5 years before diagnosis was observed. 

The most extreme example is the delta-like noncanonical Notch ligand 1, a regulator of cell 

growth and neuroendocrine differentiation that is expressed in β cells of the adult pancreas. 

From a systems-based perspective, it was clear that the number of dysregulated pathways, 

analyzed by a modified version of the Differential Rank Conservation algorithm,62 increased 

longitudinally, well before a clinical diagnosis was made in this participant. The Differential 

Rank Conservation algorithm is an early application of a strategy to develop metabiomarkers 
based on atypical results of properties of known pathways or systems. The pancreas-specific 

protein that was identified in the blood, along with the divergent manifestation of tumor 

necrosis factor signaling proteins, may serve as potential early biomarkers for pancreatic 

cancer detection.63

Although still in its early stages, PD3 cloud analysis has demonstrated that deep 

phenotyping can transform our thinking about diagnostic discovery and, ultimately, ways to 

deploy personalized therapies into clinical practice. The analysis of deeply phenotyped data 

sets for real-world populations and characterizations of precancer to postcancer transition 

dynamics will facilitate the development of new diagnostics, improve our understanding of 

organ pathology, and advance the field to provide medical interventions for pancreatic 

diseases. This approach also demonstrates the massive amount of data, which can be 

collected on individual patients in a personalized medicine paradigm.

Barriers and Research Priorities for Precision Medicine

Although the high-level concepts of precision medicine are becoming clearer, there remain 

many information, integration, translation, logistic, and acceptance barriers that future, well-

designed, basic and clinical research projects will need to sur-mount before personalized 

medicine becomes a reality for pancreatic diseases.
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Barriers to collecting information must be overcome. Precision medicine depends on 

accurate information about patients’ health history, genetics, metabolism, and toxic 

exposures in the context of other environmental and social factors from many individuals 

with and without pancreatic disease. At present, much available information is inaccurate or 

incomplete or difficult to extract from electronic medical records. The technology to 

accurately collect and store the large amounts of data required by precision medicine is 

improving, but more refinements are needed.

Genetic information can establish an association with disease, but association does not prove 

causality. Additional functional studies are required to define the potential pathogenicity of 

each genetic variant associated with disease. Ideally, the mechanism should be evaluated 

under strict conditions in appropriate cell or animal models. This mechanistic information 

must be stored and integrated with genetic, clinical, metabolic or biomarker, environmental, 

and life-style data to define the complex mechanisms underlying pancreatic diseases. 

Understanding the mechanism underlying each genetic variant can only be done from the 

ground-up approach of basic science.

Discoveries of basic science must then be translated into new therapies and clinical practice. 

Historically, investigators have used randomized controlled trials to determine if new 

diagnostic tests or therapies are effective in patients with a particular disease. This model is 

limited in complex heterogenous disorders such as pancreatic disease. Thus, efforts to better 

subclassify patients and innovative designs for clinical trials are needed to facilitate the 

identification and translation of new concepts or treatments from the literature to clinical 

practice.

Even if the barriers listed previously are overcome, the application of precision medicine 

still faces logistical barriers. Accessing health care data outside of a health system is often 

difficult, and even if overcome, the data are often incomplete. In addition, the ability to fund 

large multidisciplinary programs needed to gather and process the information that enables 

precision medicine is difficult. New processes for reviewing and funding these programs are 

essential. Once new approaches are identified, regulatory agencies must adapt and accept 

new criteria for efficacy and innovative models for prospective clinical studies and trials.

Lastly, health systems, payers, providers, and patients must accept the utility of precision 

medicine. We must demonstrate the value of precision medicine in improving health at a 

cost and efficiency that are acceptable to all parties. Convincing them will take education 

and demonstrations of improvements in the health and lives of patients with pancreatic 

disorders.

SUMMARY OF GAPS, BARRIERS, RESEARCH NEEDS

• Formulating clinical questions and hypotheses to drive the technologies; creating 

teams of clinicians, biologists, radiologists, and others to translate the massive 

data into actionable steps and improve diagnostics; and developing therapeutics 

and preventive methods is a priority.

Lowe et al. Page 14

Pancreas. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Collaboration among institutions to generate and share large data sets, develop 

tools for analysis, and translate these data into actionable clinical steps including 

deep learning, machine learning, and AI for pancreatic diseases is essential.

• Multidisciplinary collaboration across expertise is also essential to maximize the 

value of existing data, specimens, and imaging data.

• Funding support for large teams across multiple areas of expertise and core 

facilities will be needed to achieve a goal of precision medicine for pancreatic 

diseases.

• Improved and more widely available advanced instruments, computational tools, 

and platforms are needed to derive insight from integrated multiomic data and 

other data streams.

• Information systems that collect, annotate, and quantify and deliver critical 

pieces of information are required to inform mechanistic and classification 

models.

• Multi-institutional data repositories for early detection of pancreatic cancer using 

AI and machine learning are needed.

• New tools to understand the roles of genetics on complex outcomes of pancreatic 

diseases must be developed.

• Incorporating stroma and cancer-stroma crosstalk into AI analyses is a priority.

• Standardized definition and normal ranges or typical values across thousands of 

poorly characterized analytes, including the characterization of the importance of 

confounding variables (sex, age, genetics, body mass index, etc) for each analyte, 

is required to allow comparisons among different studies.

• Longitudinal profiles of measurements and analytes in individuals, such as the 

characterization of the personalized trajectories of individuals transitioning into a 

disease state, are also needed. For diseases that are dynamic (pancreatic cancer 

undergoing therapy, pediatric pancreatitis), longitudinal studies with careful 

biomarker collection including immune biomarkers, microbiome, MRI/MR 

cholangiopancreatography, genomics, epigenetics, and environmental, 

psychosocial, and socioeconomic factors are a necessary research goal.

• Using omics, multiplex immunostaining, and 3D scanning electron microscopy 

to study intercellular interactions and the microenvironment and to develop 

efficacious and nontoxic drugs is an important goal.

• Developing easily measurable biomarkers such as blood biomarkers or anatomic 

imaging methods with which to design therapies, follow response and resistance 

to treatment, and avoid toxicity is needed.

• Understanding the impact of the overwhelming volume of minor variants in 

noncoding regions requires a large volume of patients with ethnic and racial 

diversity, of all ages, and from varied geography.
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• Radiomics including T1 mapping, ECV, diffuse-weighted imaging, and MR 

elastography of the pancreas to stage CP across age groups and validation in 

large cohorts is an important research priority.

• Molecular imaging or MALDI IMS of pancreas samples from humans or animals 

that mimic human disease to study targets of inflammation, fibrosis, and cancer; 

identify biomarkers; and develop therapeutics is an essential goal.

• Obtaining pancreas tissues from humans is a major barrier especially early in the 

disease course. Therefore, it is paramount to share and procure precious healthy 

and diseased human tissues.

• Tissue access, sharing, and standardization for preservation, processing, and 

reporting, ideally through Clinical Laboratory Improvement Amendments–

approved laboratories for omics, are essential to provide accurate data.

• Developing animal models that more accurately mimic human pancreatic disease 

is a research priority.

• Prospective clinical studies and trials are needed to determine if the predictions 

of precision medicine models are accurate and how they can be improved.

• A value assessment framework to demonstrate and quantify for institutions and 

payers the benefit from each dollar that is spent on health care in a precision 

medicine model for health systems, payers, providers, and patients is needed.

• The effects of privacy laws on access to clinical information and materials are a 

barrier that needs to be addressed.

CONCLUSIONS

Precision medicine has great promise to improve the lives and health of many and to be of 

value to the health care system. Fortunately, methods to collect, organize, and analyze large 

data sets and imaging and omic technologies to implement precision medicine are moving 

forward rapidly. Still, there remain many barriers to implementation of precision medicine 

for pancreatic disorders. The largest barriers are developing and funding task forces that can 

obtain the types of information that are critical for understanding biological processes and 

responses to injury in relevant cells and tissues in the context of genetic and environmental 

factors. Second, there needs to be the development of information systems that collect, 

annotate, quantify, and deliver critical pieces of information to inform mechanistic and 

classification models. Third, there need to be creative prospective clinical trials to determine 

if the predictions of precision medicine models are accurate and how they can be improved. 

Finally, there needs to be a valid value assessment framework to demonstrate and quantify 

for institutions and payers the benefit from each dollar that is spent on health care in a 

precision medicine model for health systems, payers, and patients.
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