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Abstract

Fusobacterium nucleatum (F. nucleatum), which has been associated with colorectal 

carcinogenesis, can impair anti-tumour immunity and actively invade colon epithelial cells. 

Considering the critical role of autophagy in host defence against microorganisms, we 

hypothesised that autophagic activity of tumour cells might influence the amount of F. nucleatum 
in colorectal cancer tissue. Using 724 rectal and colon cancer cases within the Nurses’ Health 

Study and the Health Professionals Follow-up Study, we evaluated autophagic activity of tumour 

cells by immunohistochemical analyses of BECN1 (beclin 1), MAP1LC3 (LC3), and SQSTM1 
(p62) expression. We measured the amount of F. nucleatum DNA in tumour tissue by quantitative 

PCR. We conducted multivariable ordinal logistic regression analyses to examine the association 

of tumour BECN1, MAP1LC3, and SQSTM1 expression with the amount of F. nucleatum, 

adjusting for potential confounders, including microsatellite instability status, CpG island 

methylator phenotype, long-interspersed nucleotide element-1 methylation, and KRAS, BRAF and 

PIK3CA mutations. Compared with BECN1-low cases, BECN1-intermediate and BECN1-high 

cases were associated with lower amounts of F. nucleatum with odds ratios (for a unit increase in 

three ordinal categories of the amount of F. nucleatum) of 0.54 (95% confidence interval, 0.29–

0.99) and 0.31 (95% confidence interval, 0.16–0.60), respectively (Ptrend < 0.001 across ordinal 

BECN1 categories). Tumour MAP1LC3 and SQSTM1 levels were not significantly associated 

with the amount of F. nucleatum (Ptrend > 0.06). Tumour BECN1, MAP1LC3, and SQSTM1 levels 

were not significantly associated with patient survival (Ptrend > 0.10). In conclusion, tumour 

BECN1 expression is inversely associated with the amount of F. nucleatum in colorectal cancer 

tissue, suggesting a possible role of autophagy in the elimination of invasive microorganisms.
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Introduction

Accumulating evidence supports the importance of the gut microbiota in intestinal 

carcinogenesis through modulation of tumour immune microenvironment [1–5]. 

Fusobacterium nucleatum (F. nucleatum) has emerged as a potentially influential driver of 

colorectal carcinogenesis due to its contribution to the formation of proinflammatory 

condition [6–8]. Studies have shown an enrichment of F. nucleatum in colorectal cancer 

tissue compared with the adjacent normal colon [7–9], and revealed an association of high F. 
nucleatum levels with distinct clinical and tumour molecular features including proximal 

tumour location, high-level microsatellite instability (MSI), lower levels of tumour-

infiltrating CD3+ cells, and poor patient prognosis [9–12]. Given incomplete knowledge of 

the interaction between microbes and the host immune system, a better understanding of 

mechanism through which specific microbes can localise in colorectal cancer tissue would 

inform efforts to develop cancer prevention and treatment strategies [13–15].

Autophagy involves the lysosomal degradation and recycling of intracellular components. 

The BECN1 (beclin 1) and MAP1LC3 (LC3) proteins are key positive regulators of 

autophagy that initiate autophagosome formation, while the SQSTM1 (p62) protein plays a 

crucial role in lysosomal degradation of ubiquitinated substrate [16–19]. This homeostatic 

process adjusts cellular biomass and function in response to diverse stimuli, including 

metabolic stress, inflammation, and pathogen infection. Autophagic activity of tumour cells 

may enhance anti-tumour immune response by presenting tumour antigens [16–18,20,21]. 

Autophagy also plays a key role in determining microbial composition in the 

microenvironment. Further evidence suggests that activated autophagic activity may 

eliminate intracellular microorganisms [22–28]. Therefore, we hypothesised that autophagic 

activity of tumour cells might influence tumour bacterial load including levels of F. 
nucleatum in colorectal cancer tissue.

Even the best experimental model could not recapitulate the complexity of human tumour 

microenvironment, which is influenced by genetic and epigenetic alterations, environmental 

exposures, gut microbiota, and host factors [29,30]. Thus, the importance of large-scale 

human studies on tumour molecular characteristics and microbiota cannot be 

overemphasised. To test our hypothesis, we utilised a molecular pathological epidemiology 

database of colorectal cancer cases within two large U.S. prospective cohort studies, with 

data on demographic, clinical, pathological, and tumour molecular characteristics. This 

comprehensive dataset enabled us to examine the association of autophagic activity of 

tumour cells with tumoural bacterial load including the amount of F. nucleatum as well as 

Bifidobacterium genus in the tumour tissue, taking into account the distinct features of 

microbial species.
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Materials and methods

Study population

We collected data from two prospective cohort studies in the U.S., the Nurses’ Health Study 

(NHS, 121,701 women aged 30–55 years followed since 1976) and the Health Professionals 

Follow-up Study (HPFS, 51,529 men aged 40–75 years followed since 1986) [31]. Study 

participants have been followed with biennial questionnaires on lifestyle factors and newly-

diagnosed diseases including colorectal cancer. The response rate has been more than 90% 

for each follow-up questionnaire cycle in both cohort studies. The National Death Index was 

used to ascertain deaths of study participants and identify unreported lethal colorectal cancer 

cases. Participating physicians, who were blind to exposure data, reviewed medical records 

of identified colorectal cancer cases to confirm the disease diagnosis and to collect data on 

clinical characteristics including tumour size, tumour anatomical location, and disease stage 

based on the American Joint Committee on Cancer TNM classification.

Among 724 patients with available data on the amount of F. nucleatum, we analysed 628 

patients with available data on tumour BECN1 expression, 689 patients with available data 

on tumour MAP1LC3 expression, and 674 patients with available data on tumour SQSTM1 
expression in colorectal cancer tissues diagnosed up to 2008. We included both colon and 

rectal carcinomas based on the colorectal continuum model [12,32]. Patients were followed 

until death or the end of follow-up (June 30, 2014 for the NHS; and January 1, 2014 for the 

HPFS), whichever came first. We collected formalin-fixed paraffin-embedded (FFPE) 

tumour tissue blocks from hospitals throughout the U.S. where colorectal cancer patients 

had undergone surgical resection. A single pathologist (S.O.), blinded to other data, 

reviewed haematoxylin and eosin-stained tissue sections from all collected blocks and 

recorded pathological features. Tumour differentiation was categorised into well/moderate 

vs. poor (> 50% vs. ≤ 50% gland formation, respectively).

Informed consent was obtained from all study participants at enrollment. This study was 

approved by the institutional review boards of Brigham and Women’s Hospital and Harvard 

T.H. Chan School of Public Health (Boston, MA, USA), and those of participating registries 

as required.

Immunohistochemical evaluation of BECN1, MAP1LC3, SQSTM1, and CTSB

We constructed tissue microarrays of colorectal cancer cases with sufficient tissue materials, 

including up to four tumour cores from each case in one tissue microarray block [33]. 

Immunohistochemical studies of BECN1, MAP1LC3, and SQSTM1 were performed to 

evaluate autophagic activity of tumour cells. The BECN1 and MAP1LC3 expression have 

been positively associated with autophagic activity, while SQSTM1, degraded by autophagy, 

has been inversely associated with autophagic activity [16–18]. As secondary analysis, we 

evaluated tumour cell expression of CTSB (cathepsin B), which is one of the lysosomal 

enzymes involved in autophagic degradation and various other intracellular proteolytic 

processes [34].

For immunohistochemistry, deparaffinised tissue sections were heated in a microwave using 

a pressure cooker for 17 minutes in Antigen Retrieval Citra Solution, pH 6 (BioGenex 
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Laboratories, San Ramon, CA, USA). Tissue sections were incubated with a dual 

endogenous enzyme block (Dako, Glostrup, Denmark) for 30 minutes and then serum-free 

protein block (Dako) for 10 minutes. Slides were incubated for 16 hours at 4 °C with a 

primary antibody against BECN1 [rabbit polyclonal antibody (ab55878), Abcam, 

Cambridge, MA, USA; dilution, 1:600], MAP1LC3A and MAP1LC3B [rabbit polyclonal 

antibody (ab58610), Abcam; dilution, 1:100], and SQSTM1 [mouse monoclonal antibody, 

clone 2C11, Abnova, Taipei, Taiwan; dilution, 1:1500]. The EnVision HRP-labeled polymer 

(Dako) was then applied to the sections for 30 minutes, followed by visualization with 3,3-

diaminobenzidine and counterstaining with haematoxylin. Sections processed with the 

replacement of the primary antibody with Tris-buffered saline were used as negative 

controls.

The cytoplasmic expression levels (intensity) of BECN1, MAP1LC3, and SQSTM1 were 

recorded as low, intermediate, or high (Figure 1, Figure 2, and Figure 3). The 

immunostained slides were interpreted by the blinded study pathologists (S.A.K. for 

BECN1, Z.R.Q. for MAP1LC3, and Y.M. for SQSTM1). A subset of cases (N = 118 for 

BECN1, N = 111 for MAP1LC3, and N = 143 for SQSTM1) was scored independently by 

the second blinded pathologists (Y.M. for BECN1 and MAP1LC3, and A.d.S. for SQSTM1). 

The weighted κ values for the ratings of the two observers were 0.76 for BECN1, 0.69 for 

MAP1LC3, and 0.63 for SQSTM1 [20], indicating reasonably good interobserver agreement 

(all P < 0.001).

As previously described [35], we conducted immunohistochemical study of CTSB using an 

antibody against CTSB [goat polyclonal antibody (S-12), Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA, USA; 1:1250 dilution]. The cytoplasmic expression of CTSB was recorded 

as absent, weak, moderate, or strong, as previously described [35].

Quantitative polymerase chain reaction (PCR) for Fusobacterium nucleatum and 
Bifidobacterium genus

Genomic DNA was extracted from archival FFPE tissue sections of colorectal cancer using 

the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). As previously described 

[9,36], we performed a quantitative polymerase chain reaction (PCR) assay to measure the 

amount of F. nucleatum and Bifidobacterium genus DNA in the tumour tissue. Cases with 

any detectable F. nucleatum and Bifidobacterium genus DNA were categorised as low vs. 

high based on the median cut point amount of F. nucleatum or Bifidobacterium genus, while 

cases without detectable F. nucleatum and Bifidobacterium genus were categorised as 

negative.

Evaluation of tumour molecular characteristics

Tumour MSI status was analysed using PCR of 10 microsatellite markers (D2S123, 

D5S346, D17S250, BAT25, BAT26, BAT40, D18S55, D18S56, D18S67, and D18S487), 

and MSI-high was defined as presence of instability in ≥ 30% of the markers, as previously 

described [32]. Using bisulfite-treated DNA, methylation statuses of eight CpG island 

methylator phenotype (CIMP)-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, 

MLH1, NEUROG1, RUNX3, and SOCS1) and long-interspersed nucleotide element-1 

Haruki et al. Page 5

J Pathol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(LINE-1) was determined as previously described [32]. CIMP-high was defined as ≥ 6 

methylated promoters of eight promoters, and CIMP-low/negative as 0–5 methylated 

promoters as previously described [32]. PCR and pyrosequencing were performed for KRAS 
(codons 12, 13, 61, and 146), BRAF (codon 600), and PIK3CA (exons 9 and 20), as 

previously described [32].

Statistical analysis

All statistical analyses were conducted using SAS software (version 9.4, SAS Institute, Cary, 

NC, USA), and all P values were two-sided. We used the two-sided α level of 0.005 [37]. 

Our primary hypothesis testing was an assessment of the association of tumour BECN1, 

MAP1LC3, and SQSTM1 expression levels (low, intermediate, and high; as an ordinal 

predictor variable) with the amount of F. nucleatum DNA (negative, low, and high; as an 

ordinal outcome variable). All other tests, including analyses of Bifidobacterium genus, 

assessment of stratum-specific risk estimates, and survival analyses, represented secondary 

analyses.

We performed multivariable ordinal logistic regression analyses to control for potential 

confounders. The multivariable ordinal logistic model initially included sex (female vs. 

male), age at diagnosis (continuous), year of diagnosis (continuous), family history of 

colorectal cancer in any first-degree relative (present vs. absent), tumour location (proximal 

colon vs. distal colon vs. rectum), MSI status (MSI-high vs. non-MSI-high), CIMP status 

(high vs. low/negative), LINE-1 methylation level (continuous), KRAS mutation (mutant vs. 

wild-type), BRAF mutation (mutant vs. wild-type), and PIK3CA mutation (mutant vs. wild-

type). A backward elimination was conducted with a threshold P of 0.05 to select variables 

for the final models. Cases with missing data [family history of colorectal cancer in a first-

degree relative (1.1%), tumour location (0.3%), MSI (2.8%), CIMP (8.3%), KRAS (2.9%), 

BRAF (2.5%), and PIK3CA mutation (7.9%)] were included in the majority category of a 

given categorical covariate to limit the degrees of freedom of the models. For the cases with 

missing data on LINE-1 methylation (2.5%), we assigned a separate indicator variable. We 

confirmed that excluding the cases with missing information in any of the covariates did not 

substantially alter results (data not shown). We assessed the proportional odds assumption in 

an ordinal logistic regression model, which was generally satisfied (P > 0.1).

To assess the association between ordinal categories of the amount of F. nucleatum DNA and 

other categorical variables (except for tumour differentiation and pT stage, for which 

Fisher’s exact test was performed), the chi-square test was performed. To compare 

continuous variables, an analysis of variance assuming equal variances was performed.

We estimated cumulative survival probabilities using the Kaplan-Meier method, and 

compared the differences between categories using the log-rank test. For analyses of 

colorectal cancer-specific mortality, deaths as a result from other causes were censored. To 

control for potential confounders, Cox proportional hazards regression analysis was 

performed and hazard ratio was calculated for mortality. The multivariable Cox proportional 

hazards regression models initially included tumour differentiation (well to moderate vs. 

poor), disease stage (I/II vs. III/IV) in addition to the same set of variables as in 

multivariable ordinal logistic regression analysis. A backward elimination was conducted 
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with a threshold P of 0.05 to select variables for the final models. In secondary analyses, we 

assessed the statistical interaction between BECN1. MAP1LC3, and SQSTM1 expression 

(high vs. low/intermediate) and F. nucleatum status in colorectal cancer tissue (positive vs. 

negative) in relation to colorectal cancer-specific or overall mortality. We used the Wald test 

for the cross-product in multivariable-adjusted Cox proportional hazards regression models. 

We estimated hazard ratios for colorectal cancer and overall mortality comparing cases with 

high expression of BECN1, MAP1LC3, and SQSTM1 to cases with low/intermediate 

expression in strata of F. nucleatum status using re-parameterization of the interaction term 

in a single regression model [38]. Cases with missing data on tumour differentiation (0.1%) 

and disease stage (7.7%) were included in the majority category, and the other covariates 

were dealt as in the multivariable ordinal logistic regression models. The assumption of 

proportional hazards was generally satisfied using the assessment of a time-varying 

covariate, which was the cross-product of log-transformed survival time and the level of 

BECN1, MAP1LC3, and SQSTM1 expression in the whole population or in strata of F. 
nucleatum status (P > 0.08).

In ordinal logistic and Cox regression analyses, the inverse probability weighting (IPW) 

method was applied to reduce the potential bias due to the availability of tumour tissue [39–

41]. Using the multivariable logistic regression model for the entire dataset of colorectal 

cancer cases (regardless of available tissue), we estimated the probability of the availability 

of tumour tissue, as previously described [36]. Each patient with complete data was 

weighted by the inverse probability. Weights greater than the 95th percentile were truncated 

and set to the value of the 95th percentile to reduce outlier effects [41]. We confirmed that 

results without weight truncation did not change substantially (data not shown). The logistic 

and Cox regression analyses without IPW yielded similar results to the IPW-adjusted model 

(Supplementary Table S2 and S8).

Results

Among the 724 colorectal cancer cases from the two prospective cohort studies, F. 
nucleatum DNA was detected using a quantitative PCR assay in 99 (14%) cases. Tumour 

BECN1 (beclin 1) expression levels were low, intermediate, and high in 102 (16%), 289 

(46%), and 237 (38%) cases, respectively. Tumour MAP1LC3 expression levels were low, 

intermediate, and high in 201 (29%), 221 (32%), and 267 (39%) cases, respectively. Tumour 

SQSTM1 (p62) expression levels were low, intermediate, and high in 158 (23%), 309 (46%), 

and 207 (31%) cases, respectively. Table 1 and Supplementary Table S1 show clinical, 

pathological, and molecular features of colorectal cancer cases according to the amount of F. 
nucleatum DNA and Bifidobacterium genus DNA, respectively. As previously reported 

[9,11], a greater amount of F. nucleatum DNA was associated with poor tumour 

differentiation, higher pT stage, MSI-high status, and CIMP-high status (P < 0.005; with the 

α level of 0.005). Tumour BECN1 expression inversely correlated with the amount of F. 
nucleatum DNA (P < 0.001, by Spearman’s correlation test with the α level of 0.005), while 

tumour MAP1LC3 or SQSTM1 expression was not significantly correlated with the amount 

of F. nucleatum DNA (P > 0.061, by Spearman’s correlation test). There was no significant 

correlation between any of tumour BECN1, MAP1LC3, and SQSTM1 expression and the 

amount of Bifidobacterium genus DNA (P > 0.13).
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In our primary hypothesis testing, we used an ordinal logistic regression analysis to assess 

the association of tumour BECN1, MAP1LC3, or SQSTM1 expression levels with the 

amount of F. nucleatum DNA (Table 2, and Supplementary Table S3, S4, and S5). In the 

multivariable analyses, compared with BECN1-low cases, multivariable odd ratios (ORs) for 

the amount of F. nucleatum DNA were 0.54 [95% confidence interval (CI), 0.29–0.99] for 

BECN1-intermediate cases and 0.31 (95% CI, 0.16–0.60) for BECN1-high cases (Ptrend < 

0.001; with the α level of 0.005). We did not observe a statistically significant association of 

tumour MAP1LC3 or SQSTM1 expression levels with the amount of F. nucleatum DNA in 

colorectal cancer (Ptrend > 0.061; with the α level of 0.005).

In secondary analysis using a subset of cases with available CTSB data, we did not observe a 

statistically significant association of tumour CTSB expression with the amount of F. 
nucleatum DNA (Ptrend = 0.74; with the α level of 0.005) (Supplementary Table S6 and S7).

As secondary analyses to assess the prognostic association of BECN1, MAP1LC3, and 

SQSTM1 expression, we conducted Kaplan-Meier analyses and Cox regression analyses, 

and did not observe a significant association of BECN1, MAP1LC3, or SQSTM1 levels with 

colorectal cancer-specific or overall mortality (Ptrend > 0.10; with the α level of 0.005) 

(Table 3, Supplementary Table S8, and Supplementary Figure S1, S2, and S3). We further 

examined whether prognostic association of BECN1, MAP1LC3, and SQSTM1 expression 

in strata of F. nucleatum status and did not observe a significant interaction between 

BECN1, MAP1LC3, or SQSTM1 expression and of F. nucleatum status in relation to 

colorectal cancer-specific or overall mortality (Pinteraction > 0.25; with the α level of 0.005) 

(Supplementary Table S9).

Discussion

Using two large prospective cohort studies in the U.S., we tested the hypothesis that 

autophagic activity of tumour cells might influence the amount of F. nucleatum in colorectal 

cancer tissue. Notably, we found an inverse association of tumour BECN1 expression level 

with the amount of F. nucleatum, but not with the amount of Bifidobacterium genus in 

colorectal cancer tissue. Our findings suggest a possible role of tumour autophagic activity 

in the elimination of a specific microorganism within the colorectal cancer 

microenvironment.

There is growing interest in the role of the gut microbiota in cancer biology, especially F. 
nucleatum in colorectal cancer. A translational study has shown that F. nucleatum is 

associated with colorectal cancer recurrence through the promotion of chemoresistance by 

engaging autophagic activity [42]. F. nucleatum binds host epithelial CDH1 (E-cadherin) via 

the fusobacterial adhesin FadA and invades epithelial cells, resulting in the promotion of 

inflammation and tumour cell growth in transformed cells [6,43,44]. Moreover, invasive F. 
nucleatum is persistently associated with distant metastases from primary colorectal cancers 

[45]. In contrast, the members of Bifidobacterium genus have been considered to inhibit 

colorectal carcinogenesis through the prevention of enteropathogenic infection and the 

inhibition of secondary bile acid production [46–48]. Our previous population-based study 

has shown that intratumoural Bifidobacterium genus may reflect loss of intestinal barrier 
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function in poorly differentiated colorectal cancer [36]. These distinct characteristics of F. 
nucleatum and Bifidobacterium genus are supported by our results of differing associations 

with autophagic activity. Our finding suggests the autophagy may target only highly virulent 

bacteria which can cause stress to the tumour cells, while autophagy is not associated with 

the presence of Bifidobacteria genus. From an immunological point of view, F. nucleatum 
may suppress the adaptive immune responses and inhibit T-cell- and natural killer cell-

mediated immune response against colorectal cancer through the immune cell receptor 

TIGIT [6,49]. In line with these studies, our previous population-based studies have shown 

an inverse association of F. nucleatum in colorectal cancer tissue with CD3+ pan-T cell 

density and adaptive anti-tumour immune response in MSI-high tumours [9,50]. Hence, the 

elimination of F. nucleatum may potentiate the effect of current front-line 

immunotherapeutic treatments.

Invasion of bacterial pathogens into epithelial cells triggers various innate immune 

responses, such as proinflammatory signaling and cell-autonomous restriction of bacterial 

growth. Among these host defence mechanisms, autophagy plays a critical role in the 

targeting and degradation of intracellular bacteria [24,28,51]. The autophagic machinery 

targets intracellular bacterium and promotes protective immune and stress responses, as the 

invasion of bacterium triggers the rapid induction of the intracellular starvation state [52]. 

There are three main autophagic mechanisms that provide a series of barriers against 

invading microorganisms. The first anti-microbial function is xenophagy, which is the 

uptake of intracellular microorganisms into double membrane autophagosomes regulated by 

BECN1 and MAP1LC3 [24,25]. The second is MAP1LC3-associated phagocytosis which 

promotes phagosome fusion with lysosomes [26]. Finally, a group of autophagic adaptors, 

known as SQSTM1-like receptors, are involved in the elimination of microorganisms from 

the cytoplasm [27]. In this study, tumour BECN1 expression level was inversely associated 

with the amount of F. nucleatum and tumour MAP1LC3 expression had the same trend as 

that of BECN1, however there was no correlation of tumour SQSTM1 expression with the 

amount of F. nucleatum. Potential reason for the difference might be caused by distinct 

features of autophagy markers. BECN1 and MAP1LC3 are involved in the same phase of 

autophagy (i.e. autophagosome formation), while SQSTM1 contributes to a different phase 

and also regulates transcriptional factors, suggesting that F. nucleatum might be eliminated 

through xenophagy and MAP1LC3-phagocytosis [17,18]. Autophagic machineries are not 

only required to eliminate microorganisms but also contribute to major histocompatibility 

complex class II presentation of their derived antigens that stimulate the CD4+ T-cell 

adaptive response [22,23]. Moreover, autophagy is likely to influence the efficacy of 

immune checkpoint blockade therapy as well as gut microbiota [4,5,16,53]. Collectively, a 

better understanding of autophagy in relation to gut microbiota would have considerable 

therapeutic implications by its connection to tumour cells, host cells, and microorganisms in 

the tumour microenvironment. We did not observe significant association of tumour 

BECN1, MAP1LC3, and SQSTM1 expression levels with colorectal cancer mortality. 

Prognostic roles of tumour BECN1, MAP1LC3, and SQSTM1 in colorectal cancer remain 

controversial, possibly due to differences in study populations, designs and methods as well 

as a multifaceted nature of autophagic process [54–61].

Haruki et al. Page 9

J Pathol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We acknowledge potential limitations of the current study. First, we designed a cross-

sectional study, by which we cannot exclude the possibility of reverse causation. While there 

is a possibility that F. nucleatum might modify autophagic activity of tumour cells, our 

specific hypothesis was based on several lines of experimental evidence indicating that 

autophagic activity eliminates microorganisms [22–28]. Second, our study only concentrated 

on a limited number of microbial species and genus. Accumulating evidence suggests that 

various species of microbiota and dysregulated microbial communities are involved in 

carcinogenesis and anti-tumour immune response [1,3–5]. Although F. nucleatum has 

garnered considerable attention as a potential cancer promoting microbe, other bacteria, such 

as Bacteroides fragilis, colibactin-producing Escherichia coli, and Peptostreptococcus 
stomatis, have been reported to be enriched in colorectal cancer and to be associated with 

colorecral cancer carcinogenesis [62,63]. Therefore, more comprehensive analyses including 

16S rRNA gene sequencing and whole metagenomic shotgun sequencing would provide 

further insight into the relationship between microbiota and autophagy. Third, we evaluated 

the autophagic activity using a limited number of autophagic markers. Autophagy is a 

complex multistep process where more than 30 autophagy-related genes have been identified 

to make up the core machinery [16–19]. Although BECN1, MAP1LC3, and SQSTM1 have 

been widely used as immunohistochemistry-based autophagy markers in human FFPE 

tissues [54–61], a simultaneous multimarker evaluation of other components of the 

autophagic pathway might further enlighten the interactions between autophagy and 

microbiota. Finally, we used the quantitative PCR assay for F. nucleatum and 

Bifidobacterium genus in FFPE tissue specimens; therefore, the detection rates might have 

been influenced by histopathology procedures and storage conditions. However, our 

previous validation study using the quantitative PCR assay showed a good concordance in 

detection of F. nucleatum in paired FFPE and frozen tissue specimens [9]. We also observed 

high linearity and reproducibility of F. nucleatum and Bifidobacterium genus measurements 

in FFPE tissue specimens [9,36].

The current study has notable strengths, including the utilisation of a molecular pathological 

epidemiology database [14,15,64] derived from two U.S.-based large prospective cohort 

studies. The integrated data on autophagic activity, tumour molecular characteristics, 

pathological findings, and microbial features enabled us to comprehensively examine 

possible roles of autophagy in relation to microorganisms in colorectal cancers. Importantly, 

our study population was derived from a large number of hospitals located throughout the 

U.S., which increases the generalisability of our findings. Nevertheless, our findings need to 

be validated in independent studies.

In conclusion, we have shown an inverse association of tumour BECN1 expression level 

with the amount of F. nucleatum in colorectal cancer tissue allowing us to derive a possible 

role of autophagy in the elimination of invasive microorganisms such as F. nucleatum from 

the tumour microenvironment. Our population-based data, if validated, may inform future 

translational research on anti-microorganism therapy including treatment strategies targeting 

autophagy in colorectal cancer.
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Figure 1. 
Tumour BECN1 (beclin 1) expression in colorectal cancer. Tumour BECN1 expression was 

scored as low (A), intermediate (B), or high (C), according to cytoplasmic expression level 

of BECN1.
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Figure 2. 
Tumour MAP1LC3 (LC3) expression in colorectal cancer. Tumour MAP1LC3 expression 

was scored as low (A), intermediate (B), or high (C), according to cytoplasmic expression 

level of MAP1LC3.
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Figure 3. 
Tumour SQSTM1 (p62) expression in colorectal cancer. Tumour SQSTM1 expression was 

scored as low (A), intermediate (B), or high (C), according to cytoplasmic expression level 

of SQSTM1.
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Table 1.

Clinical, pathological, and molecular characteristics of colorectal cancer cases according to the amount of 

Fusobacterium nucleatum (F. nucleatum) DNA in tumour tissue

Amount of F. nucleatum DNA in colorectal cancer tissue

Characteristic*
All cases
(N = 724)

Negative
(N = 625)

Low
(N = 50)

High
(N = 49) P value

†

Sex 0.14

 Female (NHS) 423 (58%) 361 (58%) 27 (54%) 35 (71%)

 Male (HPFS) 301 (42%) 264 (42%) 23 (46%) 14 (29%)

Mean age ± SD (years) 69.3 ± 8.9 69.3 ± 8.9 70.5 ± 8.7 68.0 ± 8.5 0.38

Year of diagnosis 0.17

 1995 or before 223 (31%) 200 (32%) 8 (16%) 15 (31%)

 1996–2000 222 (31%) 191 (31%) 16 (32%) 15 (31%)

 2001–2008 279 (39%) 234 (37%) 26 (52%) 19 (39%)

Family history of colorectal cancer in first-degree 
relative(s) 0.37

 Absent 574 (80%) 492 (79%) 43 (88%) 39 (81%)

 Present 142 (20%) 127 (21%) 6 (12%) 9 (19%)

Tumour location 0.020

 Cecum 129 (18%) 102 (16%) 11 (22%) 16 (33%)

 Ascending to transverse colon 244 (34%) 209 (34%) 18 (36%) 17 (35%)

 Descending to sigmoid colon 197 (27%) 180 (29%) 7 (14%) 10 (20%)

 Rectum 152 (21%) 132 (21%) 14 (28%) 6 (12%)

Tumour differentiation <0.001

  Well to moderate 660 (91%) 581 (93%) 42 (86%) 37 (76%)

 Poor 63 (8.7%) 44 (7.0%) 7 (14%) 12 (24%)

pT stage 0.003

 pT1 55 (8.2%) 52 (9.0%) 1 (2.1%) 2 (4.3%)

 pT2 135 (20%) 124 (22%) 9 (19%) 2 (4.3%)

 pT3 443 (66%) 373 (65%) 33 (70%) 37 (79%)

 pT4 37 (5.5%) 27 (4.7%) 4 (8.5%) 6 (13%)

pN stage 0.29

 pN0 396 (61%) 349 (62%) 23 (51%) 24 (53%)

 pN1 158 (24%) 132 (24%) 15 (33%) 11 (24%)

 pN2 95 (15%) 78 (14%) 7 (16%) 10 (22%)

M stage 0.11

 M0 572 (86%) 493 (86%) 43 (93%) 36 (78%)

 M1 96 (14%) 83 (14%) 3 (6.5%) 10 (22%)

AJCC disease stage 0.008

 I 150 (22%) 141 (24%) 6 (13%) 3 (6.5%)

 II 223 (33%) 187 (32%) 16 (35%) 20 (43%)

 III 199 (30%) 165 (29%) 21 (46%) 13 (28%)

 IV 96 (14%) 83 (14%) 3 (6.5%) 10 (22%)
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Amount of F. nucleatum DNA in colorectal cancer tissue

Characteristic*
All cases
(N = 724)

Negative
(N = 625)

Low
(N = 50)

High
(N = 49) P value

†

MSI status < 0.001

 Non-MSI-high 588 (84%) 527 (87%) 32 (67%) 29 (59%)

 MSI-high 116 (16%) 80 (13%) 16 (33%) 20 (41%)

CIMP status < 0.001

 Low/negative 546 (82%) 484 (84%) 35 (78%) 27 (59%)

 High 118 (18%) 89 (16%) 10 (22%) 19 (41%)

Mean LINE-1 methylation level ± SD (%) 62.4 ± 9.6 62.1 ± 9.6 62.7 ± 10.0 65.0 ± 9.2 0.12

KRAS mutation 0.16

 Wild-type 414 (59%) 363 (60%) 21 (46%) 30 (62%)

 Mutant 289 (41%) 246 (40%) 25 (54%) 18 (38%)

BRAF mutation 0.009

 Wild-type 597 (85%) 523 (86%) 40 (83%) 34 (69%)

 Mutant 109 (15%) 86 (14%) 8 (17%) 15 (31%)

PIK3CA mutation 0.66

 Wild-type 566 (85%) 493 (85%) 36 (84%) 37 (80%)

 Mutant 101 (15%) 85 (15%) 7 (16%) 9 (20%)

BECN1 (beclin 1) expression
‡ < 0.001

 Low 102 (16%) 77 (14%) 14 (31%) 11 (28%)

 Intermediate 289 (46%) 251 (46%) 20 (44%) 18 (46%)

 High 237 (38%) 216 (40%) 11 (24%) 10 (26%)

MAP1LC3 (LC3) expression
‡ 0.062

 Low 201 (29%) 163 (27%) 17 (36%) 21 (46%)

 Intermediate 221 (32%) 199 (33%) 12 (26%) 10 (22%)

 High 267 (39%) 234 (39%) 18 (38%) 15 (33%)

SQSTM1 (p62) expression
‡ 0.83

 Low 158 (23%) 131 (22%) 15 (33%) 12 (28%)

 Intermediate 309 (46%) 278 (48%) 18 (39%) 13 (30%)

 High 207 (31%) 176 (30%) 13 (28%) 18 (42%)

*
Percentage indicates the proportion of patients with a specific clinical, pathologic, or molecular characteristic among all patients or in strata of the 

amount of F. nucleatum DNA.

†
To compare categorical data between subgroups classified by the amount of F. nucleatum DNA (except for tumour differentiation and pT stage, 

for which the Fisher’s exact test was performed), the chi-square test was performed, unless otherwise noted. To compare continuous variables, an 
analysis of variance was performed.

‡
To assess associations between the amount of F. nucleatum DNA in colorectal cancer tissue (negative, low, and high) and tumour BECN1, 

MAP1LC3, and SQSTM1 expression level (low, intermediate, and high) and, the Spearman’s correlation test was performed.

Abbreviations: AJCC, American Joint Committee on Cancer; CIMP, CpG island methylator phenotype; HPFS, Health Professionals Follow-up 
Study; LINE-1, long-interspersed nucleotide element-1; MSI, microsatellite instability; NHS, Nurses’ Health Study; SD, standard deviation.
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Table 2.

Inverse probability weighting (IPW)-adjusted ordinal logistic regression analysis to assess the association of 

tumour BECN1 (beclin 1), MAP1LC3 (LC3), and SQSTM1 (p62) expression level (Predictor) with the 

amount of Fusobacterium nucleatum (F. nucleatum) DNA (Outcome)

Amount of F. nucleatum DNA in colorectal cancer tissue

Univariable
OR (95% CI)*

Multivariable

OR (95% CI)*,
†

Tumour BECN1 expression (N = 628)

 Low 1 (referent) 1 (referent)

 Intermediate 0.48 (0.26–0.88) 0.54 (0.29–0.99)

 High 0.27 (0.14–0.52) 0.31 (0.16–0.60)

 Ptrend
‡ < 0.001 < 0.001

Tumour MAP1LC3 expression (N = 689)

 Low 1 (referent) 1 (referent)

 Intermediate 0.46 (0.25–0.83) 0.46 (0.25–0.85)

 High 0.55 (0.32–0.95) 0.57 (0.33–0.99)

 Ptrend
‡ 0.043 0.061

Tumour SQSTM1 expression (N = 674)

 Low 1 (referent) 1 (referent)

 Intermediate 0.54 (0.30–0.97) 0.55 (0.30–1.01)

 High 0.88 (0.48–1.60) 0.89 (0.48–1.65)

 Ptrend
‡ 0.75 0.79

*
IPW was applied to reduce a bias due to the availability of tumour tissue after cancer diagnosis (see “Statistical analysis” subsection for details).

†
The multivariable ordinal logistic regression model initially included age, sex, year of diagnosis, family history of colorectal cancer, tumour 

location, microsatellite instability, CpG island methylator phenotype, long-interspersed nucleotide element-1 methylation level, and KRAS, BRAF, 
and PIK3CA mutations. A backward elimination with a threshold P of 0.05 was used to select variables for the final model. The variables which 
remained in the final models are shown in Supplementary Table S3, S4, and S5.

‡
Ptrend was calculated by the linear trend across the ordinal categories of tumour BECN1, MAP1LC3, and SQSTM1 expression level (low, 

intermediate, and high, as an ordinal predictor variable) in the IPW-adjusted ordinal logistic regression model for the amount of F. nucleatum DNA 
(negative, low, and high, as an ordinal outcome variable).

Abbreviations: CI, confidence interval; IPW, inverse probability weighting; OR, odds ratio.
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