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Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context
of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that
influence immune cell function and cellular persistence in chronic infections.We also highlight the role of nutrients in altering the
tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune
responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background,
previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly
defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells
and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while
curbing unwanted, non-productive inflammation.
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Introduction

Clinical immunologists have (re)discovered that the profile of
cellular metabolism shapes the outcome of cellular develop-
ment and immune functions: immunometabolism [1–3]. This
prompted cross-fertilizing preclinical and clinical research be-
tween immunology, nutrition, and biochemistry [4]. The field
of immunometabolism is marked by the impact of metabolic
reprograming on the immune response as well as studying the
fate of immune cells [5, 6]. The immunometabolic profile of
cells influences their activation, their proliferative capacity,
their quiescent state in tissues and in the systemic circulation.
The functional specificity of each immune cell subset deter-
mines its biochemical requirements which is associated with
different metabolic phenotypes [2, 7, 8]. These phenotypes
are linked with variations in nutrient and oxygen availability,
pH, as well as fluctuations during immune cell trafficking [2].
Thus, a well-founded understanding of molecular interactions
between nutrient availability, biochemical requirements, and
cellular metabolism is crucial to recognize how these compo-
nents jointly affect immunodynamics in pathological conditions
and ultimately shape the host immune response [9, 10]. We
rev i ew the re fo re he re more recen t in s igh t s in
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immunometabolism in infections and cancer—a timely exer-
cise since (i) nutrients are often limited in resource-
constrained countries, (ii) immunonutritional concepts are often
not considered in vaccine or adjuvant treatment protocols in
patients with infections, (iii) similar molecular pathways are
functional in “chronic antigen stimulation” in patients with bac-
terial and viral infections or cancer. Insights from curbing im-
munopathology and eliciting protective immune responses in
patients with cancer will therefore cross-fertilize the advance-
ment of new treatment concepts of patients with infectious
diseases—particularly where nutrients are limited. We would
also like to point out that such a review provides the platform of
discussing individual mechanistic concepts. However, although
a more individual approach in patient management is scientif-
ically sound, the clinical reality is often different: individuals
have a different genetic background, they have been exposed to
different pathogens/commensals and may suffer from different
infections—at the same time or in different orders that may
shape the quality and quantity of immune responses. A more
recent, prominent example [11] is the acquired capacity of the
organism—in early life—to differentiate between commensal
bacterial that colonize the skin versus potential pathogenic bac-
terial species, where antigen-specific regulatory T-cells (Tregs),
tolerance mechanisms, and the IL-1-receptor–IL-1β axis play a
prominent role. It is obvious that age, the country, nature of
exposure to commensals and potential pathogens plays a pivot-
al role. The need to integrate these variations in different
networks—and to extract biologically and clinically relevant
concepts—is appreciated and fueled the discussion to obtain
better models that integrate anatomical and biological diversity
[12].

The study of metabolism has revealed six core biochemical
pathways which impact on immune cell reprograming: gly-
colysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation
(FAO), fatty acid synthesis (FAS), pentose phosphate path-
way (PPP), and amino acid synthesis (AAS) [13, 14].
Additional pathways have been described as modulators of
the complexity of the immune response, mainly those leading
to the biosynthesis of polyamines, cholesterol, hexosamines,
and nucleotides [15]. The biochemical demands of each im-
mune cell type are intrinsically liked to its function, especially
those related to quiescence/memory and activation/
proliferation [14, 16]. That said, different immune cell func-
tions are, in fact, associated with distinct metabolic configu-
rations: resting immune cells utilize energetically efficient
processes such as the tricarboxylic acid (TCA), linked to the
generation of ATP via oxidative phosphorylation (OXPHOS),
whereas activated cells prefer glycolysis to generate adequate
levels of energy storage to support survival and produce nu-
merous biosynthetic intermediates to allow for cellular growth
and proliferation [14]. CD8+ T-cells are believed to be depen-
dent on FAO in regard to immune effector functions and tissue
homing, yet more recent evidence suggests that memory T-

cells may use alternate pathways for these immune effector
functions [17–22]. This plasticity of immune cells modulates
metabolic reprogramming from an inflammatory to anti-
inflammatory or immunomodulatory phenotype or vice versa
[7, 8, 23], which is of special interest for exploitation as an
anti-tumor immune-based strategy [24]. In fact, cancer cells
behave more like activated immune cells with increased bio-
chemical demands and rely on glycolysis for survival [25–27].

Nutrients play a pivotal role in the context of immune cell
metabolic phenotypes, further supported (and influenced) by
gut microbiota and gastrointestinal organs such as the pancre-
as, colon, and liver [28, 29]. Immunonutrition is a growing
biomedical discipline [30] that aims to affect immune cell
functions directly by delivering signaling metabolites by reg-
ulating nutrient availability [31]. Figure 1 summarizes differ-
ent metabolic pathways and biological cell functions.

Integration of metabolism and immunity

Cellular metabolism of immune cells

As stated earlier, the main metabolic pathways involved in
immune cell survival, proliferation, and activation are glycol-
ysis, TCA cycle, PPP, FAO, FAS, and AAS (particularly
those of glutamine, arginine, and tryptophan). Glycolysis oc-
curs in the cytosol and generates two ATP molecules by
substrate-level phosphorylation and pyruvate that enter mito-
chondria and are converted to acetyl–coenzyme A (acetyl
CoA). Glycolysis is a relatively inefficient pathway for the
generation of cellular ATP but is involved in several processes
due to its capacity of being rapidly activated via the induction
of key enzymes such as pyruvate kinase, glyceraldehyde 3
phosphate dehydrogenase, aldolase, and enolase [32, 33].
Cells requiring rapid production of ATP will switch to glycol-
ysis as increased cell growth kinetics demand an equally (if
not higher) turnover of biosynthetic intermediates [13,
34–36]. For example, glycolysis inhibition by modulation of
pyruvate kinase M2 induces the polarization of macrophages
towards an alternatively activated phenotype (M2 macro-
phages) in terms of gene expression, in addition to boosting
IL-10 production [32, 37, 38]. It has been recognized that
activating cell signals such as cytokines may lead to the gen-
eration of ATP, which will support the TCA cycle in provid-
ing intermediates for PPP, glycosylation reactions, and the
biosynthesis of key biomass constituents like serine, glycine,
alanine, and acetyl-CoA [13, 33]. This is true for macrophages
(phagocytosis, inflammatory cytokine production) [39, 40],
dendritic cells (Ag presentation) [41], as well as T-cells (ef-
fector cytokines, IL-17 for Th17) [42].

PPP is a metabolic pathway parallel to glycolysis. It gen-
erates NADPH, pentoses, and ribose 5-phosphate [43]. This
pathway involves oxidation of glucose but is an anabolic
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pathway rather than a catabolic one [43]. NADPH is generated
during the oxidative phase, whereas pentoses are produced
during the non-oxidative phase of PPP. NADPH will, there-
fore, be used to generate ROS during respiratory burst and as a
counterbalance to generate glutathione and other antioxidants.
This is used by macrophages differently according to their
phenotype [44, 45].

The TCA cycle (also known as the citric acid cycle or
Krebs cycle) is a metabolic pathway for generating ATP and
carbon dioxide through the oxidation of acetyl-CoA derived
from carbohydrates, fats, and proteins [46]. Additionally, the
TCA cycle also provides NADH to be used in diverse bio-
chemical reactions while TCA cycle-derived citrate, uridine
diphosphate N-acetylglucosamine (UDP-GlcNAc), itaconic
acid, and succinate are important for immune cell physiology
[46]. The TCA cycle operates both in normoxia and hypoxia
[33, 38].

Fatty acid (FA) metabolism consists of both (energy-
generating) catabolic and anabolic processes necessary for
the synthesis of important biological building blocks such as
triglycerides, phospholipids, secondary messengers

(arachidonic acid and free fatty acids), hormones, and ketone
bodies. When compared to other macronutrient classes, FAs
generate the most ATP on an energy per gram basis when
completely oxidized to CO2 and water by beta oxidation and
the TCA cycle. Many immune cells that are not inflammatory
in nature and exhibit increased cellular lifespans (M2 macro-
phages, regulatory T-cells (Treg), memory CD8+ T-cells)
have been demonstrated to rely on FAO, as previously men-
tioned [20, 47, 48]. Nevertheless, FAS seems to positively
regulate the generation and function of pro-inflammatory in-
nate and adaptive immune cells [49]. The efficacy of lipid
oxidation for energy generation and the necessity of lipid syn-
thesis for biosynthesis and cell growth suggest that pro-
inflammatory and regulatory immune cells show fundamental
differences in their reliance on ATP generation for growth
[20].

Glutamine, arginine, and tryptophan are the most well-
studied amino acids affecting the immune system.
Insufficient supply of glutamine has been related to increased
mobilization from muscles and low plasma levels [50, 51].
Human studies have demonstrated that these low plasma

Fig. 1 Cellular metabolism of immune cells and factors influencing
metabolic reprogramming. (1) Six core metabolic pathways are
involved in fueling cells for biological functions and differentiation,
generating ATP from nutrients. (2) Resting immune cells usually rely
on TCA and FAO for obtaining ATP and require immune
reprogramming for activation. (3) Activated immune cells use different
metabolic pathways to obtain ATP for proliferation. (4) Some external

factors condition metabolic reprogramming of immune cells, such as
hypoxia, nutrient deprivation and abundancy, catabolism, anabolism,
and the microbiome. (5) These factors influence quality and quantity of
immune reactivity in infection(s) and cancer. GLU, glucose; AA, amino
acids; FA, fatty acids; TCA, tricarboxylic acid cycle; FAO, fatty acid
oxidation; FAS, fatty acid synthesis; PPP, pentose phosphate pathway;
AAS, amino acid synthesis
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levels of glutamine are related to reduced B-cell differentia-
tion [52], decreased IL-2 production (and IL-2R expression),
downregulation of HLA class II expression on and reduced
antigen presentation by macrophages [51, 53]. Glutamine can
be used by macrophages for NADPH production [53]. Murine
macrophages and neutrophils involved in pinocytosis have, in
fact, been shown to prefer/require NADPH supplied by gluta-
mine metabolism rather than PPP, since glucose supplied by
the latter pathway is used for fat storage [54]. In murine T-
cells, glutamine is used as a resource in nucleic acid synthesis
and as an energy source [55]. Pertaining to arginine metabo-
lism and immune cells, arginase-1 is responsible for the break-
down of arginine to ornithine and plays a role in the immune
function regulation of activated T-cells through depletion of
arginine in the local microenvironment (as controlling argi-
nine bioavailability leads to control of nitric oxide produc-
tion), which has been described in experimental models of
cancer and tuberculosis [56–58]. Arginine depletion has been
related to T-cell suppression, mainly by reduced expression of
the CD3-ζ chain (and concomitant lower expression of the
TCR complex) as well as downregulation and subdued enzy-
matic activity of the cyclin D3/CDK4 complex which is
known to regulate cell cycle progression [59, 60].
Interestingly, elevated levels of arginase-1 have been found
in the splenocytes of tumor-bearing mice [61]. Moreover, can-
cer and postoperative patients present with a lack of the
CD3-ζ chain, dysfunction and reduced number of T-cells,
and increased arginase-1 activity [62–64]. Idoleamine-2,3
dioxygenase (IDO), which oxidatively degrades tryptophan
in the kynurenine pathway, has been considered a key enzyme
in host immune function [65]. The properties exhibited by
some innate immune cells, i.e., human CD123+ DC subset
(CD11c+ CD8α+ DC subset in mice) and macrophages to
induce IDO, have been demonstrated to be responsible for
the modulation of not only T-cell function mainly via trypto-
phan depletion but also IDO-cytotoxic metabolites [65–67],
although the latter mechanism requires further elucidation.

Aerobic glycolysis appears to be a characteristic feature of
many rapidly dividing cells, including cancer and immune
cells, even when sufficient oxygen is present to support
OXPHOS [8, 35]. In proliferating cells, the increase in lactate
production may result from the contribution of growth factor-
mediated increases in glucose uptake, increased ATP con-
sumption associated with cell growth, and low NAD+/
NADH ratio secondary to oxidative biosynthesis [68–70].
The advantage of this metabolic phenotype in proliferating
cells is to help meeting the biochemical requirements of bio-
synthesis and allow differentiation [71]. Aerobic respiration
produces a larger fraction of cellular ATP from mitochondrial
OXPHOS, while glycolytic cells produce relativelymore ATP
from glycolysis [72]. Some immune cells transition between
OXPHOS and glycolytic metabolic phenotypes over the
course of an immune response; manipulation of this

dichotomy can have an effect on the regulation of host immu-
nity [73]. Increased glycolysis (the Warburg effect) has been
described as a feature of inflammatory as well as cancer cells
(for adaptation [74]), whereas cells involved in immunoregu-
lation or in the resolution of inflammation display FAO and an
intact TCA cycle as hallmarks of their metabolism [33, 75],
inevitably affecting their cellular phenotypes as will be
discussed in the following subsection.

Systemic metabolism and immune cell ontogeny

Macrophages and metabolism

Macrophages have several functions in tissue homeostasis and
inflammation, with their metabolic characteristics reflecting
functionality [76]. Immunometabolism has been recently
studied in macrophages, as metabolic pathways not only pro-
vide energy but also regulate macrophage phenotype and
function [77, 78]. In this regard, comparison between classi-
cally activated, pro-inflammatory macrophages (M1) and al-
ternatively activated, anti-inflammatory macrophages (M2)
with reparative capacity, reflecting functional polarity, is of
especial relevance [73, 76]. The expression of toll-like recep-
tors (TLRs) on the surface of macrophages promotes a M1
phenotype (mainly TLR2 and TLR4), whereas IL-4 and
efferocytosis promote a M2 phenotype [79, 80]. These two
phenotypes are distinct in their function as well as the prefer-
ential biological mediators produced. M1 macrophages are
known for their ability to produce pro-inflammatory cytokines
(IL-1β, IL-18, IL-12, TNF-α, IL-6) and reactive oxygen spe-
cies (ROS), while M2macrophages release anti-inflammatory
cytokines (IL-4, IL-10, TGF-β) and promote angiogenesis
and fibrosis [73, 81].

The differences between the M1 and M2 macrophage phe-
notypes are also evident in their cellular metabolic profiles. In
general, M1 macrophages are highly glycolytic, whereas M2
macrophages use FAOmetabolism and OXPHOS [37, 49, 80,
82]. In M1 macrophages, glycolysis would allow for rapid
ATP production to fuel activation during acute inflammation
[80, 82], while in M2 macrophages, OXPHOS occurs during
the lengthy process of resolving tissue inflammation and re-
pair or in promoting anti-parasite immunity [80, 82, 83].

Metabolomic and transcriptomic data have provided useful
insights into revealing the metabolic changes in macrophage
polarization. In fact, the presence of two breaks in the TCA
cycle of M1 macrophages has been described [73], thereby
suggesting an “interrupted” TCA cycle for this phenotype.
One of the breaks was described at the isocyanate dehydroge-
nase step and the other after the succinate step, with evidence
for a variant of the pathway: the aspartate-arginosuccinate
shunt [41, 84]. This disruption in the TCA cycle in M1 mac-
rophages leads to the accumulation of citrate and nitric oxide
(NO) production [41]. Jha and colleagues showed that the
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TCA cycle in M1macrophages is rather a fractionated than an
undisrupted cycle [73]. Interestingly, inhibition of aspartate
aminotransferase (a key enzyme in the TCA shunt pathway)
suppressed IL-6 and NO production, revealing the importance
of the arginosuccinate shunt for M1 macrophage function
[73]. M1 macrophages convert arginine into NO through in-
ducible NO synthase (iNOS) activity [85], while in M2 mac-
rophages, arginine is metabolized by arginase-1 [86]. Despite
the core belief that glycolysis is merely associated with in-
flammation and OXPHOS with anti-inflammatory responses,
it is now accepted that this dogma is more fluid that previously
perceived and demands revision [39, 77, 79, 80]. Macrophage
metabolism remains a very interesting field especially in mo-
dalities with an urgent need for novel therapeutic targets, i.e.,
cancer. This subject will be discussed later.

T and B cells and metabolism

Oxidative metabolism is preferred by resting lymphocytes,
where glycolysis or aerobic glycolysis meets their cellular
demands after stimulation [87]. Resting precursor T-cells re-
quire energy and active replenishment of basic biological
building blocks for survival and migration as they continually
migrate through lymphoid tissue for immune surveillance
[88]. These ATP-intensive functions are mainly achieved by
FA β-oxidation as well as pyruvate and glutamine oxidation
via the TCA cycle [87]. It is also known that mature resting T-
cells exhibit a dynamic regulatory pattern rather than fixed
metabolism [89].

During activation, and to sustain rapid clonal proliferation,
the increased metabolic needs of T-cells are met by converting
glucose to lactate through aerobic glycolysis—that increases
glucose and glutamine metabolism while decreasing lipid ox-
idation as cell proliferation requires the activity of mammalian
target of rapamycin (mTOR)-dependent pathways [55, 90]. It
is known that OXPHOS can still be used by activated T-cells
as a source of energy; however, strong evidence supports the
induction of the glycolytic pathway as a lineage-decisive
event for Th1, Th2, and Th1 development [89]. These line-
ages display a strong bias towards glycolysis over mitochon-
drial metabolism; Th17 development, for instance, involves
hypoxia-inducible factor 1 alpha (HIF-1α), which is an
oxygen-sensitive transcription factor also responsible for gly-
colytic gene expression regulation in Th17 cells [47, 91].
Conversely, induced Treg lineage displays a mixed metabolic
signature involving glycolysis, lipid oxidation, and OXPHOS
[91]. Also, blocking glycolysis during Th17 differentiation
may favor Tregs over Th17 development [91], which may
be detrimental in early stages of infections [92, 93] and poten-
tially in patients with cancer [94, 95]. Interestingly, decreased
T-cell proliferation and activation, T-cell anergy or cell death
may be observed if inadequate nutrient supply or metabolic
inhibition occur during T-cell ontogeny [89].

Much less is known about how metabolism directs the fate
of normal B cells. As these cells develop into specialized
antibody-secreting plasma cells and memory cells [9, 96],
specific metabolic and nutritional requirements may be at
play. Anergic human peripheral blood B-cells, following
LPS stimulation, have been shown to only moderately in-
crease their glycolytic rate, while unstimulated B-cells exhib-
ited a balanced upregulation of lactate production and aerobic
glycolysis concomitant with a steady increase of glucose
transporter 1 (Glut1) expression following LPS or B-cell re-
ceptor (BCR) activation [97]. Indeed, BCR-mediated B-cell
proliferation is stunted following inhibition of glycolysis [96],
reminiscent of the scenario in activated T-cells. How B cell
subsets are metabolically regulated in different human dis-
eases and stages warrants further investigation using appropri-
ate clinically welldefined samples.

Dendritic cells and metabolism

The activation of DCs implies phenotypic, secretory, and
functional modifications that cause an increase in glucose up-
take and lactate production; however, a metabolic
reprogramming from OXPHOS towards glycolysis occurs af-
ter DC activation by TLRs [7, 98, 99]. During cellular activa-
tion, ATP is generated by OXPHOS, and therefore, lactate
production does not reflect commitment to the Warburg effect
[100]. Moreover, the need for citrate by activated DCs for
fueling FAS involved in ER and Golgi apparatus turnover
seems to be biochemically supported by glycolysis [100].
This glycolytic metabolism is dependent on the activation of
HIF-1α and PI3K/Akt pathways and indicates a possible role
for mTOR downstream of PI3K/Akt [99, 101], whereas in-
duction of the OXPHOS mediator AMPK antagonizes the
glycolytic pathway, inhibiting DC maturation [102].
Nevertheless, DCs with immunogenic (promoting effector
T-cells) and tolerogenic (promoting suppressive Tregs) func-
tions have different metabolic profiles that reflect their func-
tion [103]. Tolerogenic DCs are predominantly catabolic and
rely on OXPHOS and FAO for ATP production, with low
glycolytic potential [103]. In contrast, immunogenic DCs ex-
hibit anabolic metabolism and are mainly glycolytic, with re-
duced OXPHOS and FAO. Anabolic demands of DC activa-
tion require rapid induction of glycolysis as an integral com-
ponent of TLR signaling, where the TBK1, IKKɛ, and Akt
kinases seem to be essential for engaging the mitochondrial
glycolytic enzyme HK-II [104]. The rapid loss of mitochon-
drial OXPHOS by TLR-triggered inflammatory DCs may be
explained by the NOS-2-mediated NO production, which ac-
companies the glycolytic switch that is able to direct inhibit
the mitochondrial ETC in an autocrine as well as paracrine
manner [105]. Conventional DCs, on the other hand, do not
express NOS-2 nor are they amenable to NOS-2 induction by
TLRs or inflammatory cytokines [105]. An interesting insight
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into energy and mitochondrial homeostasis in DC, supporting
immune activation, was highlighted by Thwe et al. in mouse
DC cultures [106]. In their research, early glycolytic metabo-
lism was observed during DC activation, supported by utili-
zation of intracellular glycogen reserves [106]. Moreover, the
authors also saw that glycogen-derived carbons preferentially
contributed to the TCA-dependent citrate pool, when com-
pared to glucose directly catabolized by mouse DCs [106].
IDO1 phosphorylation and subsequent cellular signalling in
CD11c+, IL-4, IFN-γ or TGF-β activated DCs has been
shown to be dependent on prior expression of Arg1 and
Arg1-dependent production of polyamines [107]. The latter
are either produced by DCs or released by Arg1+ myeloid-
derived suppressor cells (MDSCs) and may skew DCs to-
wards an IDO1-dependent, immunosuppressive phenotype
(via Src kinase activation) [107]. DC metabolism and its po-
tential edit the quality and quantity of immune responses are
likely to influence the design of immunotherapeutic strategies.

Cancer, the tumor microenvironment,
and metabolism

Immune cell competition for nutrients

In a more molecular perspective, we can objectify the rela-
tionship between nutrients and immune cells through the
role of the former in the control of cellular responses of
the latter. In fact, there are immune microenvironments
where some degree of nutrient limitation is present, which
provide the opportunity to study changes in signal transduc-
tion driven by nutrients and to understand the relevance of
nutrient availability in regulating immune responses (ele-
gantly reviewed in [108]). As the concept of unequal nutri-
ent availability to immune cells is emerging [6], competi-
tive nutrient uptake in immune microenvironments seems
to be of major importance for immune responses, hinting at
nutrients’ role in regulating the fate of immune cells. As
will be discussed later, competition for nutrients can be
observed in the tumor microenvironment (TME) and at
sites of pathogen infection [108]. Solid tumors exhibit an
increased demand for glucose to support growth and prolif-
eration, despoiling extracellular levels of glucose by in-
creasing blood supply into the TME via neovascularization
[108]. There is also evidence that in some tumors, compe-
tition for glutamine may lead to limiting glutamine resource
levels in the TME. This restriction of glucose and glutamine
supply in the tumor seems to inhibit immune cell infiltra-
tion, as observed in local resistance to to adoptive T-cell
therapy [108, 109], which will be revisited later in this
review. A similar competition for nutrients has been ob-
served in virus-infected cells, which are reprogrammed
for increased glucose metabolism, glycolysis, and

glutaminolysis (glutamine breakdown) and decreasing ex-
tracellular concentrations of these nutrients in the surround-
ing microenvironment [108, 110, 111].

Role of nutrients metabolism in the TME

The metabolism of proliferating cells is quite different from
that of non-proliferating ones (which obtain energy from
OXPHOS) [112]. Proliferating cells, like cancer cells, show
increased requirements of energy and nutrients for rapid
growth and dissemination (metastasis) and exhibit an increase
in the uptake of glucose, amino-acids, fatty acids, minerals,
and vitamins [113]. In fact, a central feature of nearly all
cancers is impaired cellular energy metabolism [112]. To re-
spond to the high energy demands of active proliferation, can-
cer cells convert great amounts of glucose into pyruvate (aer-
obic glycolysis), in a low-efficiency pathway – albeit their
dependence on glucose for survival and growth [114]– thus
the Warburg effect [115, 116]. Cancer cells use glucose ca-
tabolism via glycolysis as a major energy-generating pathway,
generating several biosynthetic molecules and NADPH.
Depriving cancer cells of glucose can, in fact, promote muta-
tions in the KRAS pathway which, in turn, induces increased
sensitivity to glucose in transformed cells, leading to GLUT1
upregulation and enhanced glucose uptake from the immedi-
ate microenvironment [117]. The Warburg effect can be de-
scribed as a state of mitochondrial dysfunction, as cancer cells
are unable to undergo mitochondrial OXPHOS [112].
Metabolic reprogramming of cancer cells can be viewed as
an enhancer of adaptation to intratumoral metabolic stress
and immune surveillance, contributing to maintaining “cancer
stemness” [118]. This has been considered indispensable and
to the advantage of the pathological biological processes oc-
curring in cancer cells [119].

The TME is also characterized by extracellular acidosis
resulting from lactate accumulation [119–121]. This is
due to the synergy between HIF-1α and Myc in promot-
ing expression of glycolytic enzymes driving glucose in-
flux and lactate production in response to the (i) poor
clearance of acid accumulation outside the TME (gener-
ating a low pH within the TME) and (ii) upregulation of
monocarboxylate transporter (MCT) 4, favoring the mi-
gration of extracellular lactate to the extracellular matrix
[114, 119]. MCT4 upregulation is especially relevant, as
it is transcriptionally upregulated by the hypoxia-driven
HIF-1αε enzyme, and tumor cells usually localize in hyp-
oxic environments [122]. While not applicable to the en-
tire TME, there may be distinct hypoxic areas due to
aberrant neovascularization and subsequent impaired ac-
cess to nutrients, metabolic changes that may promote
disease progression [27]. Vascular endothelial growth fac-
tor (VEGF), the cardinal mediator of angiogenesis, is ab-
errantly expressed in several cancers and is clinically
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t a rge ted cance r s o f d i f f e ren t h i s to logy [123] .
Nevertheless, it has been shown in patients with breast
cancer that VEGF blockade with bevacizumab—under
hypoxic conditions—leads to reoxygenation of the TME
but also promotes acute hypoxia in treatment-resistant pa-
tients [124]. Anti-angiogenic therapy would deprive the
tumor of nutrients necessary for survival—which would
inevitably also affect the immune cell compartment there-
in. In fact, to escape from anticipated senescence or death,
tumor cells engage autophagy to survive the potentially
hostile TME [125, 126]. Thus, overexpression of GLUT
and downstream glycolytic enzymes (pyruvate kinase iso-
zymes M2, serine hydroxymethyltransferase, carbonic
anhydrase 9) [118] has been observed in several cancers
[127–131]. Oncogenes (Akt, PI3K, mTOR, Ras, Raf)
[132] and loss of tumor suppressor genes (VHL, PTEN,
p53) also contribute to the increasing growth and meta-
bolic activity of tumor cells [132]. Glucose can either be
used in glycolysis or metabolized by PPP, promoting pro-
duction of glutathione, FAs, sterols and nucleic acids,

which are considered relevant for reducing oxidative
stress and increasing DNA repair in cancer cells, confer-
ring resistance to cancer treatments [133, 134]. Figure 2
presents a schematic compilation of stressors in TME.

The TME also hosts tumor-associated macrophages
(TAMs), cancer-associated fibroblasts (CAFs), and endothe-
lial cells involved in tumor stroma formation [135]. Evidence
suggests that TAMs and CAFs interact in a reciprocal manner
[136, 137], have a role in tumor progression [138, 139], and
are associated with cancer invasion and metastasis [135, 140].
Also, the TME is infiltrated by T-cells (tumor-infiltrating T
lymphocytes, TILs), whose functions are impaired, often in
association with the volume of the tumor lesion. Generally,
TILs are considered a pro-inflammatory and/or cytotoxic pop-
ulation of T-cells able to recognize tumor antigens and, there-
fore, mediate tumor regression, constituting a critical clinical
biomarker of prognosis [141, 142]. The complex cellular com-
position of the TME, along with the hostile conditions of
nutrient deprivation caused by intense energy requirements
of cancer cells, imposes an important question: how do cancer

Fig. 2 Stressors, e.g., (increased) potassium, reduced oxygen and nutrient
access in tissue environment, act on T cells (Li et al., Immunity, 51, 491–
507, 2019). One of the key factors modulating tissue resident T cells’
activity is the transcription factor Bhlhe40 (top) in infections and cancer.
Reduced Bhlhe40 leads to reduced capacity to contain infections or
cancer in preclinical models, in part via effecting mitochondrial
activity—that impacts on the T-cell epigenome. OXPHO (oxidative

phosphorylation) and TCA activity are associated with memory
immune cells. HDAC inhibitors and the fatty acid acetate replenish
mitochondrial function and cytokine production. This is a simplified
sketch and clinical outcomes of HDAC treatment that may be different
depending on the pathogen, previous exposures of immune cells to drugs,
viral and bacterial species, as well as the nominal T-cell receptor
repertoire available in the microenvironment
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cells obtain enough “food” in these adverse conditions? This
appears to be achieved by despoiling neighbor cells of energy
and nutrients to survive and proliferate [143]. Some of these
afore-mentioned nutrients, i.e., amino acids, acetate, and lac-
tate are used as alternative fuels by cancer cells and are sum-
marized in Table 1.

Some of these nutrients become crucial for cancer cells,
which sometimes exhibit some degree of “addiction” [144,
145]. To prevent inadequate tumor perfusion due to low nu-
trient availability, cancer cells resort to multiple scavenging
strategies to take up nutrients from cells in the immediate
microenvironment [146]. These strategies include integrin-
mediated scavenging, receptor-mediated scavenging of albu-
min, and scavenging via micropinocytosis and entosis [147],
as a way of obtaining final products for ATP generation and
anabolism [146].

The despoiling of neighboring cells nutrients is of special
concern for TILs, which is evidenced by the negative impact
by the TME on TIL metabolism and its contribution to func-
tional exhaustion of TIL, also marked by the induction of
programmed cell death 1 (PD-1) expression by T-cells
[148]. PD-1 is a co-inhibitor that blocks CD28-mediated acti-
vation of the mTOR pathway and reduces glycolysis but en-
hances FA metabolism [149]. The increase in PD-1 may fa-
cilitate the metabolic switch of energy production to TCA
cycle and OXPHOS, which is observed in continuous
antigen-driven stimulation during chronic infections [150].
In cancer, therapeutic targeting of PD-1+ (immunologically

“exhausted”) TIL has revolutionized oncotherapy and
established the newly coined field of immuno-oncology
[151]. Additionally, TILs must deal with the hostile environ-
ment of glucose deprivation and hypoxia, which alters their
anti-tumor activity. The absence of glucose has profound ef-
fects on CD8+ T-cells, as this nutrient is crucial for the differ-
entiation of naïve CD8+ T into effector subsets [152].
Although differentiation may still occur in this situation, ef-
fector clones present reduced effector functions [153, 154]. In
this context, TILs have additional challenges as the TME is a
glucose-deprived environment, and regardless of high expres-
sion of GLUT1 by TILs, tumor cells are more efficient at
consuming glucose [153]. Also, high concentrations of lactate
in the TME lowers pH, which inhibits PPK and consequently
reduces TILs glycolysis [155]. Thus, hypoglycemia in the
TME leads to reduced glycolysis, leaving TILs relying on
OXPHOS. Further challenges arise with oxygen restriction;
TILs face severe hypoxic conditions when infiltrating tumors
from well-oxygenated peripheral blood vessels [148]. In this
condition, HIF-1α is activated and performs two important
functions: it adjusts metabolism by enhancing TIL glycolysis
due to lactate dehydrogenase A induction and increases PDK1
expression preventing OXPHOS [156–158]. Consumption of
glucose is, therefore, increased to allow glycolysis to proceed.
It has been demonstrated that in hypoxic conditions, T-cell
activation is inhibited, with their proliferation and capacity
to cytokine production reduced [159]. In fact, oxygen depri-
vation negatively impacts metabolism and function of TILs, as

Table 1 Non-glucose nutrients
used by transformed cells as
alternative fuels

Non-glucose
nutrients

Essential uses by cancer cells for survival and proliferation References

Glutamine Carbon and nitrogen source

c-Myc activation

Inhibition of Akt-mediated glycolysis

Lipid biogenesis by direct supply of acetyl-CoA in hypoxic conditions or in
presence of IDH1 mutation

Redox homeostasis

[374–381]

Asparagine Regulation of mTORC1 activation and autophagy

Regulation of serine uptake and metabolism gene expression

Exchanging with extracellular essential amino acids

[382, 383]

Leucine Autophagy regulation [384]

Arginine Maintenance of viability by stability of checkpoints (mainly G1 checkpoint) [385]

Methionine Influence epigenetic state and promotion of tumor initiation [386]

Cysteine Reduction of cell death by oxidative stress

ROS detoxification

[387, 388]

Serine and
glycine

Fueling one-carbon metabolism

Activation of PKM2, supporting aerobic glycolysis and lactate production

[388, 389]

Acetate Activation into acetyl-CoA, used as a crucial central metabolite for TCA cycle,
as a source of acetyl groups used for DNA acetylation modifications and for
regulation of histone acetylation and gene expression program

[390–392]

CoA coenzyme A,mTORC1mammalian target of rapamycin complex 1, PKM2 pyruvate kinase muscle isozyme
M2, ROS reactive oxygen species, TCA tricarboxylic acid
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hypoxia is immunosuppressive and induces ROS accumula-
tion in association with the apoptosis of activated TILs [160].
Thus, hypoxia in the TME inhibits OXPHOS by TILs and
reprograms their metabolism to use glycolysis; however, most
solid tumors combine both hypoglycemia and hypoxia to ren-
der TILs inactive in the TME. How TILs survive in these
adverse conditions is still being investigated. It has been pro-
posed that TILs may resort to using ketone bodies, similar to
other cells under the same conditions [148, 161]. What seems
certain is that these conditions are unfavorable for TILs –
impairing immune cell function, immune exhaustion and re-
ducing anti-tumor reactivity. As cancer cells also rely on al-
ternative nutrients for their metabolism, they affect not only
the use of glucose by TILs but also other nutrients, i.e., amino-
acids and FAs [162, 163]. Overall, low availability of these
nutrients impairs both differentiation and cytokine production,
which in turn reduces effector cytotoxic functions [164], as
summarized in Table 2.

Nutrient availability also impacts metabolic pathways in
TAMs, which affects their functions as well as TIL immune
surveillance competence. TAMs display different phenotypes
which go beyond the conventional M1/M2 dichotomy.
Ultimately, five TAM phenotypes are present in the TME:
activated (IL-2+, MCHIIhi, iNOS+, TNF-α, CD80/CD86), im-
munosuppressive (Arg1+,MARCO+, IL-10+, CCL22+), angio-
genic (VEGFR1+, VEGF+, CXCR4+, TIE2+), invasive (WNT
signaling, EGF+, MMP9, CCL3), and metastasis-associated
(VEGFR1+, VEGF+, CXCR4+, CCR2+) macrophages [165].
The nature of the TMEmay edit TAMs in order to compete for
nutrients, mostly glucose, which reprograms TAMs towards a
phenotype consistent with tumor growth, progression and me-
tastasis [23, 166, 167]. The central features of this metabolic
reprogramming have been identified as activation of glycoly-
sis, modifications of TCA cycle that include fueling with alter-
native non-glucose nutrients, FA synthesis, and altered nitro-
gen cycle metabolism. In cell cultures, cancer-cell stimulated
macrophages have exhibited upregulation of glycolysis, in-
creased expression of hexokinase-2, activation of
AKT1/mTOR, and increased lactate receptors. Upregulation

of REED1, with consequent inhibition of mTOR and glycoly-
sis, has been observed in TAMs during hypoxic conditions.
This can be linked to an augmented angiogenic response and
the development of vascular leakage. Lipids and amino acids
have important roles in sustaining the altered TCA cycles of
TAMs. TAMs exhibit increased FA biosynthesis, uptake and
storage (with important intensification of arachidonic acid me-
tabolism), while glutamine seems relevant for macrophages
polarization, especially towards a M2-like phenotype although
the role of different amino acids in TAMs metabolism remains
poorly studied [168, 169]. Arg1 is upregulated in TAMs, con-
suming arginine for NO production and protein synthesis
(reviewed in [170]). In terms of lipids, polyunsaturated (PU)
FA linoleic acid (18:3) and saturated FA (SFA) stearic acid
(18:0) have been considered relevant for macrophage polariza-
tion and function in TME. In fact, linoleic acid-enriched, as
opposed to stearic acid-enriched TAMs, appear to exhibit cy-
totoxicity against some cancer cells [168]. Thus, TAMs also
compete with TILs for nutrients, functionally impairing the
latter (Table 2). MDSCs also play relevant roles in the TME
and in modulating the efficacy of anti-cancer therapies (recent-
ly reviewed by Yan et al. [171]). Tumor-infiltrating MDSCs,
as opposed to their circulating (peripheral blood) counterparts,
appear to have preference for FAO as energy source in com-
parison, suggesting that they undergo metabolic
reprogramming—like macrophages—in the TME [171].
Also, the switch from glycolysis to FAO demands an increase
in lipid uptake that is associated with tumor progression and
suppression of T-cells [171]. Targeting lipid metabolism in
MSDCs may, therefore, be a potential target in anti-cancer
strategies and warrants further investigation.

All aspects of the TME, including empowering anti-cancer
ability of TILs, have been considered potential therapeutic
targets for more rationally designed cancer treatments. For
example, metformin treatment may improve memory CD8+

T-cell responses by targeting AMPK (inducing activation) as
well as mTOR (inhibitory effect leading to c-Myc and HIF-1α
downregulation) [17, 172, 173], which manifest in improved
FA metabolism in CD8+ T-cells leading to memory

Table 2 Competition between
cancer cells/TAMs and T-cells for
non-glucose nutrients: effect of
nutrient despoiling on cellular
functions

Deprived by cancer cells and/or TAMs Effect on T-cells References

Glutamine Reduced proliferative capacity and cytokine
production

[55, 162]

Arginine Reduced effector function and survival

Impaired memory subsets differentiation

Impaired TCR

[57]

Cystine Reduced proliferative capacity and cytokine
production

[162]

Tryptophan Downregulation of CD3-ζ chain in CD8+ T cells

Inhibition of Th17 differentiation

[393–395]

PUFAs Absence of memory [17]

PUFAs polyunsaturated fatty acids, TAMs tumor-associated macrophages, TCR T cell receptor
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Table 3 Examples of approved drugs and candidates in clinical trials targeting some TME characteristics and immunometabolism in solid tumors

Target Drug Mechanism Type of cancer Situation (Ref.)

Hypoxia and
acidosis

Panzem
(2-methoxyestradiol,
2ME2) +
temozolomid

Inhibition of HIF-1α and HIF-2α protein
synthesis

Recurrent glioblastoma
multiforme

Phase 2: NCT00481455

Topotecan Inhibition of HIF-1α expression, angiogenesis,
and tumor growth in human xenograft models

Ovarian and small cell lung
cancers

Phase 1: NCT00117013
[396]

Metformin Oxygen concentration improvement in cancer
tissue

Head and neck SCC cancer Proof of principle:
NCT03510390
(completion for 12/2020)

Everolimus (RAD001) Inhibition of tumor cell HIF-1 activity, VEGF
production, and VEGF-induced proliferation
of endothelial cells

Advanced renal cell cancer Phase 4: NCT01206764
(completed, first data
posted 24/06/2019)

Everolimus (RAD001)
+ lenvatinib

Inhibition of tumor cell HIF-1 activity, VEGF
production, and VEGF-induced proliferation
of endothelial cells

Renal cell carcinoma Phase 2: NCT03324373
(completion for 4/2021)

Digoxin (DIG-HIF1) Inhibition of VEGFR1,2 and 3; FGFR1, 2, 3, and
4; PDGFRα, KIT, and RET

Blockade of HIF-1α

Operable breast cancer Phase 2: NCT01763931
(completion for 7/2020)

Angiogenesis Pazopanib Inhibition of VEGFR, PDGFA and -B receptors
and c-Kit

Advanced renal cell
carcinoma and soft tissue
sarcoma

Approved for clinical use

Sunitinib Inhibition of c-kit activity Several Approved for clinical use

Sorafenib Inhibition of tyrosine kinase and Raf kinase
activity

Several Approved for clinical use

LY01008 +
bevacizumab

Anti-VEGF; inhibition of neovascularization Non-small cell lung Phase 3: NCT03533127
(completion for 12/2020)

Cediranib Anti-VEGF; inhibition of neovascularization Ovarian Phase 3: NCT03278717
(completion for 12/2023)

Ramucirumab
(LY3009806)

Anti-VEGF; inhibition of neovascularization Gastric and
gastroesophageal
cancers

Phase 3: NCT02898077
(completion for 8/2020)

Everolimus (RAD001) Inhibition of VEGF production, and
VEGF-induced proliferation of endothelial
cells

Advanced renal cell Phase 4: NCT01206764
(completed, first data
posted on 24/06/2019)

Aflibercept Anti-VEGF; inhibition of neovascularization Large choroidal melanoma Phase 3: NCT03172299
(completion for 12/2024)

Phase 3: NCT02885753
(completion for 6/2023)

TAMS,
MDSCs

Pexidartinib Inhibition of CSF1R, recruitment blockade Giant cell Phase 3: NCT02371369
(completion for 12/2019)

PDR001 + MCS110 Inhibition of CSF1R, recruitment blockade Gastric Phase 2: NCT03694977
(completion for 12/2019)

ARRY-382 +
pembrolizumab

Inhibition of CSF1R, recruitment blockade Advanced solid Phase 1b/2: NCT02880371

Emactuzumab Anti-CSF1R, recruitment blockade Advanced squamous cell Phase 2: NCT03708224
(completion for 11/2025)

Cabiralizumab Anti-CSF1R, recruitment blockade Metastatic pancreatic Phase 2: NCT03697564
(completion for 12/2021)

Biliary tract Phase 2: NCT03768531
(completion for 1/2023)

Vemurafenib Inhibition of BRAF kinase, recruitment blockade Metastatic melanoma Approved for clinical use
[397]

Aerobic
glycolysis

Dichloroacetate Inhibition of glycolysis, by PDK inhibition Head & Neck SCC Phase 2: NCT01386632
(completion for 10/2019)

AZD3965 Inhibition of glycolysis, by MCT1 inhibition Several advanced Phase 1: NCT01003769
(completion for 6/2020)
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generation. Table 3 shows a non-exhaustive list of approved
drugs and candidates in clinical trials targeting some TME
characteristics as well as immunometabolism for patients with
solid cancer as a paradigm how these repurposed drugs can be
used in the treatment of patients with infectious diseases
(reviewed for pulmonary infections in reference [174]).

Nutritional status, nutrient metabolism,
and susceptibility to infection

Infections and parasitic diseases are the most common cause
of death [175] in low-income countries, where malnutrition
appears to be the precipitating factor [176]. Children and ad-
olescents with lower BMI-for-age, as well as underweight
adults, are at higher risk for infections and infection-
associated morbidity and mortality [175–177], e.g., for malar-
ia and pulmonary tuberculosis [178, 179]. Nutrition, infec-
tion(s), and subsequently altered immune function(s) affect
each other [180]: changes in nutritional status (especially en-
ergy and protein depletion) are associated with alterations in
the systemic metabolism that affects immune cell regulation,
immune competence, and disease susceptibility. Host factors
associated with infectious diseases lead to increased metabo-
lism (catabolism) paired with decreased appetite and subse-
quently to malnutritional [179]. However, the nutritional sta-
tus favors maintenance of T-cells with “stem cell-like fea-
tures” that are important for long-term immune memory
[181].

Although malnutrition remains a concern in low-income
countries, it is also present—in a “different format” in
higher-income countries. Economic disparities within a coun-
try (poverty, malnutrition, and obesity) represent a major chal-
lenge for twenty-first century societies and health profes-
sionals. Obesity is no longer considered to be a consequence
of the abundance of food, but rather a result of poor education,

lower income, and access to affordable high-energy-dense
food along with the lack of physical activity [182] and, possi-
bly, the composition of the microbiome [183]. In general,
changes in the nutritional status of populations shape immune
competence, the ability to resist, fight off infections and to
productively respond to vaccinations [184–186].

The relationship between malnutrition and immunity will
be discussed in detail below; immunometabolism and the im-
plications for protective immune responses and host-directed
therapies have been extensively reviewed in Rao and co-
workers [174].

Nutritional immunology

Definition and historical aspects

Beginning with J.F. Menkel’s notes on thymic function
and adequate nutrition in the nineteenth century, malnu-
trition has been related to alteration(s) in organs of the
immune system [187]. However, the publication
Interactions of nutrition and infection by Scrimshaw
et al [188] in 1959 postulated the first steps pertaining
to nutritional immunology. Almost a decade later, the
World Health Organization (WHO) released the first edi-
tion of an extended monograph with a similar sounding
concept [189]. The name of Professor Nevin Scrimshaw
(1918–2013) will, thus, remain forever associated with
nutritional immunology, not only due to these two publi-
cations but also owing to other works devoted to under-
standing the interrelationship between nutrition and infec-
tion, and the evidence of higher mortality in malnourished
populations [190–198]. Since the 1969 WHO monograph,
the hallmark of nutritional immunology as a discipline has
been the recognition that almost any specific and suffi-
ciently severe nutritional deficiency can interfere with

Table 3 (continued)

Target Drug Mechanism Type of cancer Situation (Ref.)

Amino acids CB-839 Inhibition of glutamine metabolism Renal cell carcinoma,
melanoma, and
non-small cell lung
cancer

Phase 1: NCT02771626
(concluded 6/2019)

Solid tumors Phase 1: NCT02071862
(completion for 9/2019)

ADI-PEG Degradation of circulating arginine Tumors requiring arginine Phase 1: NCT02029690
(completion for 5/2020)

Hepatocellular carcinoma Phase 1: NCT02102022
(completion for 10/2020)

BRAF proto-oncogene B-Raf, CSF1R colony-stimulating factor 1 receptor, HIF hypoxia-inducible factor,MCT monocarboxylate transporter, PDGFA
platelet-derived growth factor subunit A, PDGFR platelet-derived growth factor receptors, PDK pyruvate dehydrogenase kinase, RET RET proto-
oncogene, VEGF vascular endothelial growth factor, VEGFR vascular endothelial growth factor receptor
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immunological functions, affecting infectionassociated
morbidity and mortality [191, 199].

The synergistic relationship of nutrient reserves
and immune responses

Early observations following the advent of nutritional immu-
nology showed that malnourished patients were more suscep-
tible to infection and presented with an increased risk of mor-
tality due to sepsis [200]. In fact, the impact of malnutrition on
immune defense constituted, for many years, the core of and
justification for immunonutrition in immunosuppressed
patients—inclusively referred to as nutritionally acquired im-
mune deficiency syndrome. The new challenges faced by hu-
manity, mainly overnutrition, aging, and stressors, are
redirecting research in the field of nutritional immunology
and rewriting the applications of immunonutrition.

Nutrition and immunology have a multi-level synergistic
interaction that has been described in conjunction with the 4
“Is”—Infection, Immunity, Inflammation, and Injury [31].
However, as stated above, the relationship between nutrition
and immunology was first confined to the effect of poor nu-
trition due to the risk of infectious diseases as well as recovery
after a bout of infection [191]. This was understandable in a
context were nutrition was seen merely as protein and energy,
and nutritional problems as “protein-energy” malnutrition
(PEM). In fact, malnutrition was always a considerable clini-
cal issue at hospital admission. Epidemiological evidence that
malnutrition screening at admission and nutritional interven-
tion during hospitalization positively impact patients’ quality
of life, reduce hospital stay, increase resistance to infection,
and reduce costs have been instrumental recognizing the im-
pact of nutrition in preventing and recovering from infection
[201, 202]. The relationship between PEM and infection, es-
pecially the impact on immune cells and non-cellular compo-
nents are summarized in Table 4.

A relationship between nutrition and immunity was
established following recognition of multiple micronutrient
deficiencies which affect immune cells and other components
of the immune system, for example ascorbic acid deficiency
and scurvy accompanying states of malnutrition. In fact, the
idea that proper nutrition also nourishes the immune system
gained scientific credibility [203]. Vitamins and minerals ex-
ert profound effects on immune cells—in terms of physiology
and ontogenesis—that should be considered when treating a
patient. Also, the acknowledgement that nutrition may be used
to re-establish immunity provides a new perspective for this
adjuvant therapy. Table 5 summarizes the main effects of
selected vitamins and minerals on the immune system, with
significant knowledge arising from studies undertaken to ob-
tain a better picture of nutritional deficiencies in relation to
immunity.

The inc rea se in p r eva l ence o f ch ron ic non-
communicable diseases and the recognition of adipose tis-
sue as a metabolic organ with the capacity to produce spe-
cific cytokines (adipokines) and infiltrated with specialized
macrophages marked the era of inflammation research. In
the inflamed visceral adipose tissue, a phenotype switch in
macrophages occurs, establishing the prevalence of classi-
cally activated (M1) over alternatively activated (M2) sub-
sets. This increase in HIF-1α and iNOS, thus, provides a
propitious environment to metabolize L-arginine into NO,
increasing hypoxia and insulin resistance and altering the
expression of adhesion molecules responsible for the ho-
meostasis of the vascular endothelium [204–208]. This
low-grade chronic inflammation underlies several patho-
logical conditions and is considered a hallmark of obesity,
diabetes, coronary arterial disease, chronic infections
(tuberculosis) [209, 210], to some extent, sequelae associ-
ated with cancer [206, 211]. The central role of inflamma-
tion and metabolism in chronic non-communicable dis-
eases has strengthened the relationship between nutrition
and immunology. “Classical” obesity and the paradigm of
sarcopenic obesity have been gradually replacing PEM as
major problems at hospital admission, independently of the
underlying pathology [212–214]. Cachexia and sarcopenic
obesity are relatively common in patients with cancer and
are extremely challenging for clinicians and researchers.
Skeletal muscle morphology is now recognized to reflect
a relevant prognostic factor for these patients, as the role of
skeletal muscle mass (SMM) and metabolism in health and

Table 4 Relationship between protein-energy malnutrition (PEM) and
infection: effects of PEM on immune cells and non-cellular components

Effect of PEM

Innate immunity Adaptive immunity Organs

Mucus: reduced
production and altered
structure

Intestinal mucosa:
reduced integrity

Complement: reduced C3
concentration in blood

NK cell: reduced activity
Neutrophils: reduced

respiratory burst and
bacterial killing

Acute phase proteins:
reduced concentration
in blood

Monocytes/macrophages:
reduced production of
TNF, IL-1, and IL-6

WBC counts: increased
or maintained

CD3+ proliferation:
reduced

CD3+CD4+: reduced
counts and IL-2 and
IFN-γ production

CD3+CD8+: reduced
counts

Antibodies: increased or
maintained
concentration in
blood; decreased or
maintained response
to immunization;
reduced
concentration of IgA
in saliva and tears

Thymus, lymph
nodes, spleen,
tonsils: reduced
weight

C3 complement protein C3, PEM protein-energy malnutrition, WBC
white blood cells
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disease is being established [215–218]. SMM loss, as ob-
served in sarcopenia and cancer-related cachexia, is driven
by the increase of systemic inflammation [219–221].
Intracellular signaling responsible for muscle wasting is
regulated by IL-6, TNF-α, and transforming growth factor
beta (TGF-β) in response to several distinct stimuli
[219–222]. These cytokines have been mechanistically
linked to SMM wasting and disruption of metabolic ho-
meostasis in cancer-related cachexia [223]. Evidence also
suggests that these pro-inflammatory cytokines can reduce
mitochondrial biogenesis by decreasing the activity of the
peroxisome proliferator-activated receptor gamma coacti-
vator 1-alpha (PGC-1α), which in turn has an effect on
nuclear respiratory factor 1 (NRF-1) and sirtuin 1 (Sirt-1)
expression in cells [220]. Cachectic muscle shows in-
creased autophagy (through induction of microtubule-
associated protein light chain 3 (LC3B) Beclin-1, p62,

Atg 5, and Bnip3, and dysregulated dynamics (increased
FIS-1 and Drp-1 and decreased MFN-1, MFN-2, and OPA-
1 expression). These factors contribute to decreased mito-
chondrial function and ATP synthesis in skeletal muscle.
Mitochondrial damage induced by mild oxidative stress
can be repaired by mitophagy (targeted autophagic clear-
ance of mitochondria), whereas high levels of oxidative
stress lead to mitochondrial fission and ultimately en-
hanced ROS production [224]. The evidence that loss of
SMM is present even when patients seem well nourished
(sarcopenic obesity) is sparking more extensive research
into the area of body muscle composition as compared to
classical assessment based on an individual’s physical stat-
ure. In patients with cancer, recovery of SMM has been
related to weight maintenance, as sarcopenia is associated
with delayed recovery and longer hospital stays
postsurgery [225], increased susceptibility to toxicity of

Table 5 Relationship between nutrition and immunity: effect of selected vitamins and minerals on innate and adaptive immunity

Vitamins/
minerals

Innate immunity Adaptive immunity

A Generation of antibacterial and anti-fungal immune responses
Maintenance of barrier integrity, gut permeability, and mucus

secretion
Killing through NK cells, macrophages, and neutrophils
Maintenance of ILCs homeostasis, balancing ILC2 and ILC3 subsets
Differentiation of pre-μDCs into CCR9+ plasmacytoid DCs and

conventional DCs subsets, preferentially developed into intestinal
CD103+ conventional DCs [398, 399]

Promotion of gut-associated immunity by facilitating induction of
IgA-producing B cells, gut-tropic CD4+ and CD8+ T cells, Th17,
γδ T cells

Generation of mucosal and splenic CD11b+ DC subsets with
important role in the generation of Th2, Th17, and antibody
responses

Balancing of Th1/Th2 subsets, favoring Th2 polarization

C Enhancing chemotaxis and phagocytosis and thereby promotes
microbial killing

Protection of phagocytes against ROS-induced damage
Reduction endothelial cell expression of the adhesion molecule

ICAM-1 in response to TNF-alpha
Suppression of systemic neutrophil extravasation during bacterial

infections
Inhibition of p38MAPK pathway and endothelial NF-kappa B activity
Suppression of endothelial permeability and vascular leakage

Enhancing of differentiation and proliferation of T cells, particularly
enhancing the selection of functional TCRαβ after the stage of
β-selection

Balancing of Th1/Th2 subsets, favoring Th1 and Th17
differentiation

Increasing the induction of CTLs due to production of IL-15 and
IL-12 by DCs

Regulation of Treg function via epigenetic regulation of Foxp3?

D3 Increasing cathelicidin transcription (VDRE, C/EBPα, SWI/SNF
complex) in monocytes/macrophages, keratinocytes, IECs,
placental trophoblasts, and LECs

Suppression of IL-2 transcription in Th1, by blockade of
NFAT/AP1 complex and sequestration of Runx1

Suppression of IFN-γ transcription in Th1
Induction of Foxp3 transcription in Treg (VDRE in the conserved

non-coding region of the Foxp3 gene)
Suppression of IL-17 transcription in Th17, by blockade of NFAT

binding, sequestration of Runx1, and inhibition of RORγt

Selenium Improving NK cell activity Increasing of lymphocyte proliferation
Increasing expression of IL-2R
Balancing of Th1/Th2 subsets, favoring Th1

Zinc Increase of phagocytosis, NK cell activity Cytosolic defense against oxidative stress
Induction of DTH and antibody response
Induction of CTLs

Iron Differentiation of NK cells, monocytes, and macrophages and
enhancing of cytotoxic activity

Differentiation and proliferation of Th1, IL-2 production, increasing
in immunoglobulin levels

AP activator protein, DC dendritic cell, Foxp3 forkhead box P3, ILCs innate lymphoid cells, C/EBPα CCAAT/enhancer-binding protein alpha, CTL
cytotoxic T-cell, DTH delayed type hypersensitivity, ICAM intercellular adhesion molecule, IEC intraepithelial cell, LEC lymphatic endothelial cell,
MAPKmitogen-activated protein kinase,NFAT nuclear factor of activated T-cells,ROR retinoic acid receptor-related orphan receptor, SWI/SNF SWItch/
sucrose non-fermentable, TCR T-cell receptor, TNF tumor necrosis factor, VDRE vitamin D response element
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chemotherapy, and reduced quality of life and survival
[226]. Therefore, SMM reflects a negative prognosis for
patients with cancer and warrants greater attention in treat-
ment regimens.

Knowing that inflammation and body composition (fat
mass, SMM, free fat mass, and water) are related, it is impor-
tant to also understand how nutrients may reverse chronic
inflammation. Tocopherols (many with the properties of vita-
min E), retinol (vitamin-A1-alcohol), zinc, essential fatty
acids (omega-3/omega-6 balance), amino acids and nucleo-
tides are able to modulate the intensity of inflammatory re-
sponses, more specifically metaflammation or chronic meta-
bolic inflammation [227]. This may in part be responsible why
individuals in countries with a high burden of infectious dis-
eases are more susceptible to severe pathology, as many of
those who succumb to infectious diseases under-nourished,
particularly children [228]. Perinatal nutrition and supply of
micronutrients to neonates, including via breast feeding, has
already been discussed in light of their paramount importance
in priming innate immune responses against bacterial infec-
tions in very early childhood [229, 230]. While nutrition is
indispensable for muscle mass anabolism, the regulation and
fine-tuning of inflammation and immune cell composition in
tissue compartments by micronutrients deserves a closer look
in clinical studies. It is, therefore, necessary to design future
clinical trials (vaccines, drugs, immunotherapy) and treatment
plans with the inclusion of the fundamental aspects of nutri-
tion, metabolism, and inflammation.

The relationship between nutrition and immunology can
also be extended to injury. It has been widely accepted that
nutrition and wound healing are closely related, so that proper
nutrition is required to allow progression through all stages of
wound healing: inflammatory, proliferative, and remodeling/
maturation phases. PEM or nutrient deficiencies negatively
impact wound healing by extending the inflammatory phase,
decreasing fibroblast proliferation, and reversing collagen
synthesis [231]. Malnourished patients are recognized to be
at risk of pressure ulcers, infections, delayed wound healing,
and chronic non-healing.

Nutrition has been considered one of the most relevant
modifiable factors influencing chronic non-communicable dis-
eases. The importance of nutrition is being increasingly recog-
nized by clinicians as a biologically and clinically factor in
clinical performance and recovery [232–234], more well-de-
signed clinical studies are need combining clinical endpoints
with biological marker analyses, particularly in patients with
cancer [235–239]. Recent data from the PREDyES® study
revealed that nutritional risk is present at hospital admission
in 33.9% of patients, with an increase at discharge from hos-
pital (36.4%) [239]. In a recent report involving a prospective
cohort including 1588 patients with cancer, Byung-Gon Na
and colleagues demonstrated that malnutrition appears to be
more frequent in patients with esophageal, pancreaticobiliary,

or lung cancer (52.9%, 47.6%, and 42.8%), followed by stom-
ach, liver, and colon cancers (29.1%, 24.7%, and 15.9%,)
[240]. Also, malnourished, patients with cancer who
underwent surgical procedures had longer hospital stays and
poorer quality of life than those who were well nourished
[240].

Nutritional immunology is now considered clinically rele-
vant, to pave the way for novel research paths with the ulti-
mate aim to provide improved nutrition, increased, competent
immune function and overall 'better' healthcare.

The role of the microbiome in regulating nutrient
bioavailability and immune responses

The study of the microbiome is an emerging area of research
with an influence on all aspects of health—cancer [241–243],
depression [244], metabolic disease [245], and susceptibility
to and control of infections [246, 247]. The gut microbiota is
directly involved in the metabolism of drugs [248], thus
forming an additional layer of pharmacokinetics further to
the role of the liver and kidneys in relation to treatment
efficacy.

The gut is considered a unique organ in humans due to the
sheer diversity of microflora performing a myriad of func-
tions, in addition to its direct exposure to the external environ-
ment. A healthy microbiome—also in other mucosal tissues,
i.e., lungs, skin, gums—is directly associated with general
well-being [249]. There are psychological, environmental,
and physical stressors that affect microbiome composition
and function (reviewed in [250]). A major nutritional compo-
nent linked to immune regulation are short- and long-chain
fatty acids (SCFAs and LCFAs) produced by gut commen-
sals. These have been shown to influence memory T-cell for-
mation and maintenance as well as activation of effector cell
populations in tissue [251]. The biosynthesis of micronutrients
such as vitamins and amino acids by gut commensals includ-
ing lactic acid bacteria (LAB) would—in the first place—
affect the physiology of parenchymal tissues, i.e., epithelial-
cell functions, for instance [252]. In fact, the microbiome is
also responsible for biosynthesis of vitamins like cobalamin,
folic acid, biotin, thiamine, riboflavin, nicotinic acid,
pyrodixine, pantothenic acid, and vitamin K [252, 253]. The
potential link between SMM and gut dysbiosis, particularly
with respect to aging, is being actively explored. Changes in
gut microbiota composition have been related to enrichment
of certain bacterial species, i.e., Bacteroidetes sp., Escherichia
sp., and reduced frequencies of Ruminococcus sp.which have
been observed in individuals older than 65 years of age in
northern Europe [254, 255]. Also, SMMdue to aging has been
associated with gut microbiota alterations, which contribute to
increased risks of systemic inflammation as well as fat accu-
mulation in skeletal tissue [256]. Consumption of particular
types of food have also been investigated as inducers of
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predictable alterations in existing host microbiota (reviewed in
[257]). All dietary proteins contribute to microbial diversity;
however, the sources of the protein seem to determine the
effect on specific bacterial genera. Animal proteins, particu-
larly red meat, favor Bacteroides, Alistipes, Bilophila, and
Ruminococcus, while reducing Bidobacterium; this phenom-
enon has been associated with increased levels of
trimethylamine-N-oxide (proatherogenic) [258] and reduction
of SCFA [257]. Proteins of plant origin favor Bidobacteria
and Lactobacillus and reduce Bacteroides and Clostridium
perfringens, which has been associated with increased pro-
duction of SCFA and an improved gut barrier, Treg induction,
and amelioration of inflammation [257]. Unsaturated fat fa-
vors Streptococcus, Lactobacillus, and Bifidobacteria that
seem to downregulate TLR activation and white adipose tis-
sue inflammation, while saturated fat is associated with in-
creases in Bacteroides, Bilophila, and Faecalibacterium
prausnitzzi promoting white adipose tissue inflammation,
TLR activation and impaired insulin sensitivity [257, 259,
260]. Concerning carbohydrates, natural and artificial sweet-
eners promote different effects on microbiota composition:
natural sweeteners tend to increase Bifidobacteria and reduce
Bacteroides, while artificial sweeteners seem to have the op-
posite effect [257]. There is no doubt that the Western diet is
associated with dysbiosis (increase in Bacteroides and
Enterobacter ia and reduct ion in Bif idobacter ia ,
Lactobaci l lus , and Eubacteria ) [261], whi le the
Mediterranean diet appears to have opposite and beneficial
effects on the gut microbiome [262]. In this context, both
obesity and malnutrition (despite the few studies available)
have a severe impact on gut microbiota as well as individual
micronutrient deficiencies [263]. Malnutrition results in per-
sistent impaired maturation of the intestinal microbiota that
seems difficult to revert even with refeeding [264]. As such,
this topic deserves further investigation in multicohort clinical
studies. A healthy “microbiome” does not sufficiently de-
scribe the commensal–host relationship and different layers
of shaping immune responses. Analysis of the “dark viral
matter,” i.e., known and not yet known viral sequences in
the gut revealed that a healthy gut microbiome is defined by
integrated prophages versus the shift from lysogenic to lytic
replication, associated with inflammatory bowel disease [265,
266].

Pertaining to individual micronutrients, vitamin D is an
interesting but somewhat controversial paradigm. Vitamin D
is necessary for the biosynthesis of cathelicidin (human LL-
37), a crucial antimicrobial peptide that is also produced in the
gut and linked to the IFN-γ, IL-32, and IL-15 signaling axis
[267, 268]. Several studies have gone further to show that LL-
37 has anti-cancer properties based on its ability to kill cancer
cells in vitro (reviewed by Kuroda et al. in [269]). LL-37
bioavailability in the colon, however, can affect gut microbi-
ota viability and potentially perpetrate dysbiosis, as shown in

chickens in the context of CATH-2 [270]. However, mice
lacking the antimicrobial peptide CRAMP (CRAMP-KO)
displayed oral dysbiosis following co-housing with wild-
type mice, possibly transferred to the gut of the CRAMP-
KO animals due to CRAMP presence in the feces of the latter
[271]. Strikingly, CRAMP-deficient mice exhibited compro-
mised intestinal morphology, i.e., reduced crypt length but
increased inflammatory events leading to tissue enlargement.
Due to the very high likelihood of inter-organ communication
pathways, i.e., gut-lung axis, LL-37 produced in the lungs
during an acute bacterial infection could translocate to the
bowel and eliminate certain commensal populations—a phe-
nomenon which can also occur in vice versa, at least with
regard to microbial metabolites and immune cells
[272–274]. Further clinical studies in addition to relevant
and well-designed translational models are necessary to better
understand how antimicrobial peptide biology plays into nu-
trient uptake and immune response development in humans.
For instance, fecal microbiota transplantation (FMT) for the
treatment of recurrent Clostridium difficile infections (CDI)
leads not only to clinical improvement in patients but also
the establishment of a corrective mechanism to introduce
gut-friendly commensals which would compete with
C. difficile for nutrients and ameliorate pathology [275].
Correcting the local immunoregulatory networks using FMT
also appears to be clinically beneficial in patients with ulcer-
ative colitis [276], where prebiotic therapy helps remodel
damaged colon tissue, as is likely the case in recurrent CDI.
It would be helpful if a more broader, objective appreciation
of mucosal dysbiosis could be performed. This could help to
devise more robust clinical studies measuring immune-com-
petence and clinical endpoints in patients with infectious dis-
eases or cancer.

Diet is most often seen as having a circular relationship
with the microbiome. However, it has been proposed that a
distinction be made between the role of the microbiome in
mediating the effects of diet on metabolism and the
microbiome itself as a modifier of the host response to diet
[277].

Future directions: is there a role
for tailor-made nutrition in cancer
and infections?

Cancer cachexia, muscle wasting, and metabolism

Along with the immunosuppression that results from a
reprogrammed TME, patients with cancer experience pro-
found alterations in body composition as a result of wasting
disease and anti-cancer directed treatments [278]. These alter-
ations are most evident in SMM, as muscle as well as adipose
tissue wasting are common features in cancer (affecting nearly
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80% of late-stage patients) and the major causes of morbidity
and mortality [279]. As SMM and adipose tissue are depleted
during cancer progression, patients experience weakness,
frailty, and loss of mobility [280], followed by a rapid decline
in total body weight and severe compromise of immune func-
tions [223]. SMM and adipose tissue depletion are closely
connected to increased levels of TNF-α, IL-1, and IL-6, the
key mediators of cancer-associated cachexia [281–283].
TNF-α has a direct catabolic effect on MM by induction of
the ubiquitin-proteasome system (full form), which dictates an
increase in gluconeogenesis, proteolysis and a decrease in
protein, lipid, and glycogen synthesis [283]. A comprehensive
review of the metabolic changes during cancer cachexia was
published recently [284]. However, besides the knowledge
that patients with cancer present with hypermetabolism in-
duced by cachexia [285], the effective role of metabolism in
muscle consumption deserves further investigation. Patients
with cancer exhibit altered glucose metabolism clearly marked
by sluggish glucose uptake, reduction of the conversion rate of
glucose to glycogen, lactate or CO2, and suppression of en-
zymes that support glycolysis and glucose oxidation [284].
Lipogenesis has been found to be lower in preclinical cachexia
(murine) models. However, lipolysis and FAO rates seem
similar in patients with cancer and healthy controls during
fasting [286, 287]. Not only protein synthesis and degradation
contribute to muscle atrophy, yet also age-related defects in
autophagy signalling [288, 289]. In fact, p38β MAPK was
identified as a key mediator of cancer-induced autophagy ac-
tivation in SMM of tumor-bearing mice [290]. The authors
demonstrated that this occurs through ULK1 activation and
upregulation of C/EBPβ-controlled LC3b and Gabarapl1
genes [290]. Fukawa and colleagues also demonstrated, using
human muscle stem cell-based models and human cancer-
induced cachexia models in mice, that progressive muscle
wasting was associated with excessive FA catabolism trig-
gered by complex pro-inflammatory factors, increased oxida-
tive stress, and activation of the p38 signaling pathway [279].
Mitochondrial dysfunction also seems to underlie SMM con-
sumption in cancer [220], with mitochondrial dynamics and
mitophagy signaling being identified as aberrant checkpoints
of the muscular-mitochondrial quality control axis associated
with cancer cachexia [291].

Chemotherapy-induced cachexia was recently associated
with metabolic dysregulation [292]. In a murine Colon26 ad-
enocarcinoma xenograft model, the authors compared the
metabolic derangements associated with cancer-induced ca-
chexia with a chemotherapy-induced cachexia model using
FOLFIRI (5-fluorouracil, irinotecan, and leucovorin) [292].
Using metabolomic techniques, FOLFIRI-induced cachexia
perpetrated slightly higher amino acid catabolism and carbon
flux through the TCA cycle and β-oxidation pathways, as
compared with cancer cachexia per se [292]. This study high-
lights the heterogeneity of cachectic phenotypes induced by

cancer and chemotherapy may be considered in future study
designs. Other clinical studies and reviews drawn a link be-
tween chemotherapy and cachexia induction [293–295] as
well as overall body composition [296–299]. This reveals that
cancer- and treatment-induced cachexia is complex, multifac-
torial, and personalized for each patient, especially in respect
of the circulating mediators secreted and pathways disrupted.
The understanding that this complexity and singularity makes
each patient unique, strongly argues for nutrition as an integral
component of personalized cancer treatment.

Immunonutrients: cancer and infection

Attempts to manipulate the complex network of cells and
circulating molecules of the human immune system have been
made throughout modern medical history. Considering nutri-
tion as part of these attempts, publications on the dietary ma-
nipulation of inflammatory responses date back to the late
1980s and early 1990s [300–303]. Nutrients studied for their
possible role on modulating immune responses were consid-
ered “immunonutrients,” wherein important contributions
have been made by Robert F. Grimble (main reviews [200,
301, 304, 305]). Immunonutrients have been historically di-
vided into omega 3 PUFAs (EPA and DHA), sulfur-
containing amino acids, their precursors and other thiol com-
pounds (methionine, cysteine, N-acetyl cysteine and L-2-
oxothiazolidine-4carboxylate lipoic acid), glutamine, argi-
nine, and nucleotides [200]. Other nutrients such as antioxi-
dants can also be used for this purpose [306]. These
immunonutrients have been studied in supra-physiological
doses, administered enterally or parenterally, to achieve some
degree of immune response modulation in different patholog-
ical conditions [200, 301]. The role of nutrients for immune
cell function and competence was discussed earlier in this
review. Therefore, profound metabolic and immunological
alterations characteristic of cancer provide a unique opportu-
nity for the study of nutritional modulation, especially in the
age of personalized precision medicine.

Currently, the nutritional recommendations for patients
with cancer, among other aspects, require the following: (i)
provision of adequate nutrition to prevent malnutrition, (ii)
avoidance of dietary provisions that restrict energy intake in
patients with or at risk of malnutrition, (iii) avoidance of sup-
plementation with branched-chain or other amino acids as
well as metabolites to improve fat-free mass, and (iv) supple-
mentation with EPA and DHA or fish oil to stabilize or im-
prove appetite, food intake, lean body mass, and body weight
[307]. However, some research questions were raised in these
guidelines: the influence of fasting or diets mimicking the
effects of anti-cancer drugs, the effect of leucine or hydroxy
methylbutyrate in unwanted weight loss assessed by large
randomized clinical trials (RCTs), the effect of EPA and
DHA on body composition and clinical outcome in patients
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with cancer undergoing treatment, and the effect of omega 3
on quality of life (QoL) and clinical outcome in cachexic
patients with cancer. These recommendations, nevertheless,
are in need of well-designed clinical trials to obtain solid
real-world evidence for clinical practice. Another important
issue is the missing link between the nutritional and immuno-
logical variables in most clinical studies. Commonly, nutri-
tional publications on the effect of nutrition in clinical out-
comes do not account for immunological profiles or immune
response parameters. Published studies describing the effect
of a single nutrient on immunity or inflammation frequently
fail to consider the evaluation of dietary intake or body com-
position. This is also true for studies evaluating the effect of
immunonutrition in cancer.

Three fundamental aspects should be addressed when con-
sidering immunonutrition administration and its effect on the
overall result: (i) route and (ii) timing of administration as well
as (iii) genetic variation among patients [200, 308].
Immunonutrition may be delivered enterally or parenterally,
as single nutrient(s) or combinations of two or more
immunonutrients. In the early days of immunonutrition, enter-
al or parenteral formulas were the preferred route for admin-
istration of immunonutrients, as the need to resort to artificial
nutrition was an opportunity to test the usefulness of these
nutrients [309, 310]. Enteral delivery of immunonutrients
may be achieved by tube feeding or using oral nutritional
supplements (ONS). Currently, oral formulations as capsules
are also used, alone or in combination with ONS [311, 312].
The major difference between parenteral and enteral routes is
that when the latter route is used, metabolic processing by the
liver is bypassed, affecting clinical outcome [200]. Although
debated for several years now, there is no consensus on the
best route for immunonutrition administration [31, 200, 313,
314]. Regarding timing, preoperative administration of
immunonutrition has been studied in the context of surgical
critical care, cancer surgery [315–320], as well as periopera-
tive administration [321–323]. Whether immunonutrition
should be delivered at the peak of or prior to an inflammatory
response remains to be answered. Genetic variation is also an
important factor to be considered when evaluating
immunonutrition efficacy [324–326]. Hundreds of genes
may shape host response to nutrition, contributing to some
degree of variability in results with immunonutrients
[327–329]. Among others, single-nucleotide polymorphisms
(SNPs) have been associated with lipemia owing to dietary
lipids and the ability of fish oil to abate TNF production
[330–332].

Studies on the effect of single immunonutrients or
immunonutrition formulas are heterogenous pertaining to the
routes of administration, time of initiation and duration of
immunonutrition treatment, the number and characteristics
of patients, cancer diagnoses, as well as the outcomes evalu-
ated. Gastrointestinal (GI) malignancies are prevalent

worldwide with a vast impact on nutritional status
[333–336]. Table 6 presents a compilation of clinical trials
on the effect of immunonutrition on GI cancers addressing
body composition and immunological parameters/immune re-
sponses as outcomes published for the 10 years. Besides sev-
eral ongoing clinical trials with immunonutrients in cancer, an
interesting phase 2b clinical trial on the effect of omega 3
supplementation before radical prostatectomy on prostate can-
cer proliferation, inflammation, and QoL (NCT02333435) is
expected to be concluded in due course [337]. Once again, this
study does not address whether immunonutrition may contrib-
ute to modulation of immune cell phenotype, especially in the
TME. In-depth immunological analyses are desirable in future
clinical studies assessing complete dietary evaluation and full
nutritional status assessment of patients prior and after
intervention.

Beyond classical immunonutrients, other dietary inter-
ventions are currently under investigation for their poten-
tial to modulate the TME. One example is fasting, fasting-
mimicking diets, and ketogenic diets [338]. Metabolic
pathways are activated in response to caloric restriction,
promoting inhibition of the mTORC1 pathway to contrib-
ute to reduced cancer growth. Additionally, modulation of
the ATP/ADP and NADPH/NADP+ ratio, reduction of
acetyl-CoA, and decreased serum insulin, glucose, and
IGF-1 levels have been associated with caloric restriction
[338]. Although not yet recommended for clinical practice
(as already discussed here), research in this area is aligned
with open questions raised by scientific societies [307].
Fasting, long-term fasting, fasting-mimicking diets, and
ketogenic diets are currently under investigation in lung
(NCT03700437; NCT01419587), breast (NCT03595540,
NCT03162289 , NCT01304251 ; NCT03962647;
NCT 0 3 5 3 5 7 0 1 ; NCT 0 2 0 9 2 7 5 3 ) , c o l o r e c t a l
( NCT 0 3 5 9 5 5 4 0 ) , o v a r i a n ( NCT 0 3 1 6 2 2 8 9 ) ,
pancreatobiliary (NCT03510429; NCT02964806), pancre-
atic (NCT01419483), head and neck (NCT01975766), and
prostate (NCT02710721) cancers, as well as malignant
CNS t umo r s (NCT03451799 ; NCT03278249 ;
NCT03075514 ; NCT02983942 ; NCT02939378 ;
NCT02302235 ; NCT02046187 ; NCT01865162 ;
NCT01754350; NCT01092247; NCT00575146) and stud-
ies involving multiple indications (NCT03340935,
NCT01954836 , NCT01175837 , NCT00936364;
NCT03162289 ; NCT03160599 ; NCT00936364 ;
NCT01175837; NCT01716468; NCT02516501).

Apart from restriction in total calorie intake, restricting
specific nutrients may also be an interesting addition to ther-
apeutic strategies. It has been proposed that specific nutrient
deprivations, for example K+, may allow TILs to persist in the
TME in a less differentiated status associated with strong anti-
tumor responses, rather than contribute to T-cell limitation as
it is observed for other nutrients [339]. This hypothesis has
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Table 6 RCTs testing the effect of immunonutrition on nutritional and immunological outcomes in digestive cancers, published during the last 10 years

Study (ref.) Participants Intervention Outcomes Results

Type Route Daily dose Timing

Ida et al., 2017
[400]

Gastric cancer
undergoing
gastrectomy

N = 63 (46 males)
65.1 (31–79) years

Omega 3 Enteral
ONS

2.3 g EPA 7 days to 1 day prior
to surgery

BW, CRP No effect

Miyata et al.,
2017 [401]

Esophageal cancer
N = 31 (27 males)
64.5 ± 8.4 years

Omega 3 Enteral
ONS

900 mg EPA + DHA After CT initiation
from day 3 to day
12 (total: 10 days)

Caloric intake
BW, IL-6, TNF-α
Toxicity

Reduced toxicity

Sorensen et al.,
2014 [402]

CRC undergoing
surgery

N = 74 (44 males)
69 ± 11 years

Omega 3 Enteral
ONS

2 g EPA
1 g DHA

7 days before
surgery

5-HEPE, 5-HETE
LTB5, LTB4

Reduction in LTB4
production

Increase in LTB5 and
5-HEPE
production

Mocellin et al.,
2013 [403]

CRC undergoing
CT

N = 6 (3 males)
55.2 ± 7.7 years

Omega 3 Oral
Capsules

350 mg EPA
240 mg DHA

9 weeks IL-1β, IL-10,
IL-17A, TNF-α,
CRP, BW, % BF,
LM

Reduction of CRP
levels

Silva et al., 2012
[404]

CRC undergoing
CT

N = 11 (8 males)
50.1 ± 8.2 years

Omega 3 Oral
Capsules

600 mg EPA + DHA
3 mg cholesterol

9 weeks TNF-α, IL-1β, IL-6,
CRP, BW

Reduction of CRP
levels

Improved BW

Bonatto et al.,
2012 [405]

Gastrointestinal in
CT and after
surgery

N = 19 (12 males)
53.8 ± 2.4 years

Omega 3 Oral
Capsules

300 mg EPA
400 mg DHA

8 weeks Number and function
of PMN

BW

Maintenance of PMN
number and
function

Improved BW

Trabal et al.,
2010 [406]

Advanced CRC in
CT

N = 8 (4 males)
61.5 ± 15.8 years

Omega 3 Enteral
ONS

1.6 g EPA 12 weeks BW, dietary intake Improved BW and
appetite

Rotovnik
Kozjek et al.,
2011 [407]

Rectal cancer
receiving RT

N = 14 (no reference
to gender
distribution)

60.5 ± 4.2 years

AA Oral
Powder

30 g glutamine At start of RT and for
subsequent
5 weeks

IL-6, blood count
CRP

Reduction of IL-6

Martin et al.,
2017 [315]

Pancreatic cancer
undergoing
surgery

N = 44 (30 males)
60 (27–61) years

Combined Enteral
ONS

12.6 g L-arginine
3.3 g EPA + DHA
1.29 g RNA

5 days prior to
surgery

BW, NRI Decrease in NRI

Seguin et al.,
2016 [408]

Liver cancer
undergoing
surgery

N = 18 (14 males)
68 ± 6 years

Combined Oral
Powder

11.4 g L-ARGININE
3 g EPA
1.2 g RNA

10 days prior to
surgery

CD3+, CD4+, CD8+,
NK, B cells,
phagocytosis
capacity

Increased
phagocytosis
capacity in
monocytes

Marano et al.,
2013 [409]

Gastric cancer
undergoing
surgery

N = 54 (34 males)
66.6 (55–78) years

Combined Enteral
Tube feeding

24 g L-arginine
3.3 g EPA + DHA
2.3 g RNA

From 6 h after
surgery to 7th day

CD4+, CD8+,
leukocyte count

Less impact of
surgery on CD4+

Okamoto et al.,
2009 [410]

Gastric cancer
N = 30 (20 males)
66.9 ± 11.5 years

Combined Enteral
ONS

9.6 g L-arginine
3.1 g EPA + DHA
0.96 g RNA

7 days prior to
surgery

CD3+, CD4+, CD8+,
NK, phagocytosis
capacity,
HLA-DR
expression on
monocytes, BW

Maintenance of
CD3+, CD4+,
CD8+, NK

Age is presented as mean ± standard deviation or median (range)

AA amino acids, BF body fat, BW body weight, CRC colorectal cancer, CRP C-reactive protein, CT chemotherapy, DHA docosahexaenoic acid, EPA
eicosapentaenoic acid,HEPE hydroxyeicosapentaenoic acid,HETE hydroxyeicosatetraenoic acid, LM lean mass, LT leukotriene,NK natural killer, NRI
nutritional risk index, ONS oral nutritional supplements, PMN polymorphonuclear leukocytes, RNA ribonucleic acid, RT radiotherapy
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been explored in publications [339–341] and deserves further
clinical investigation.

Immunonutrients are less well studied within clinical trials
concerning MTB. Experimental studies suggested that EPA
and DHA may improve host defense against infections by
limiting excessive inflammation and improving immune re-
sponses [342]. For example, in an experimental study with
guinea pigs infected with M. tuberculosis, McFarland and
colleagues demonstrated that omega 3 intake (13% w/w) for
3 or 6 weeks was associated with decreased lymphoprolifera-
tive responses and increased lung bacterial load compared to
intake of omega 6-enriched diet [343]. Transgenic mice (pro-
ducing PUFAs endogenously, Fat-1-trangenic mice) were
demonstrated to be more susceptible to MTB infection com-
pared to WT [344]. On the contrary, experimental incorpora-
tion of amino acids seems to stimulate TNF-α production by
M. tuberculosis-infected macrophages along with antibacteri-
al activity [345]. Epidemiological studies on this subject have
provided conflicting results. In selected populations as the
Inuit, higher intake of fish has been associated to increased
MTB incidence [346–348]. Yet in a large cohort of Chinese
men and women (63,257 participants aged 45–74 years old),
Soh and colleagues observed that marine omega 3 intake was
associated with reduced risk of active MTB in a dose-
dependent manner [349]. Regarding amino acids and MTB
infection, two RCTs were conducted, to the best of our knowl-
edge, and published during the last 10 years. Ralph et al. stud-
ied the effect of 6 g/daily of L-arginine hydrochloride for
8 weeks in MTB clinical outcomes of 99 participants, but no
effect was observed [350]. Schön et al. studied the effect of
daily intake of arginine-supplemented foods (wheat crackers
0.1 g arginine + 30 g peanuts 1 g arginine) for 4 weeks in
patients with smear positive pulmonary tuberculosis, with no
observed effects on the outcomes addressed [351]. At this
point, biologically relevant clinical studies are needed that
take the insights of immune cell activation and differentiation
into account.

Immunonutrition as a form of host-directed
therapy—ideation for future clinical possibilities

The vastly expanding fields of personalized nutrition and
immunometabolism deserve thorough clinical investiga-
tion to allow immunonutrition be part of clinical practice
in precision immuno-oncology. A specialized clinical
immunonutritionist, as a member of the medical care
team, would be able to perform a complete evaluation of
nutritional demands for each patient and to draft an
immunonutrition scheme tailor-made for each individual.
For example, the formulation of molecularly defined
immunonutrition recipes—akin to “molecular gastrono-
my” but built on scientifically and medically sound
bases—warrants testing in a patient-specific manner,

representing a form of personalized host-directed therapy
(HDT). There may also be patient groups who could ben-
efit from a particular immunonutrition package, present-
ing “off-the-shelf” options. Also the routes and time
schedule of administration of such 'immunonutrition' has
to be considered. Patients may require a certain set of
nutrients at a particular juncture and to be given via a
particular route (more of one nutrient and less of another
and administered in a specific anatomical location). These
immunonutrition packages may also be considered at the
same time as personalized cancer vaccines are being de-
livered (potentially with adjuvant-like properties) and/or
during the monitoring phase, which may enhance the im-
mune functions of T and B cells and partly compensate
for nutrient despoiling by cancer cells [114]. Equally im-
portant are well-designed clinical trials evaluating the ef-
fect of immunonutrients on phenotypic changes of cells
infiltrating the TME during immunotherapy. These can be
pursued in translational studies as well as early-phase
RCTs at suitable healthcare facilities.

Novel concepts in long-term memory
in protective immune responses
and mitochondrial fitness

TIL that resemble tissue resident memory T-cells are particu-
larly effective against solid cancers as well as against patho-
gens. Immune checkpoint blockers target this distinct T-cell
population [352]. This is of particular interest since pulmonary
tissue resident T-cells (Trm) are abundant in the healthy lung
and may play an important role in the first encounters of adap-
tive immune cells and pathogens invading into pulmonary
tissue: T-cells that invade into the pulmonary tissue to form
the granuloma could therefore stem from Trm, from regional
lymph nodes or, not mutually exclusive, from peripheral
blood. However, the phenotypes of Trm, i.e., CD8+, CD69,
CD103+, are also shared by exhausted or activated TIL that
express as well these markers [353], which makes it challeng-
ing to define what is a TIL and what a bona fide Trm. TIL as
well as Trm have been studied in the context of cancer and
chronic infections—and the key genes responsible for im-
mune protection have been identified. TIL and Trm display
both expression of transcription factors such as Hobit, Runx3f
and Bhlhe-40 [354, 355], with the latter factor promoting TIL
and Trm functions and tissue persistence [354]. Bhlhe-40 fa-
vored Th1-type responses and was therefore found to be as-
sociated with IFN and granzyme B expression—conversely,
Bhhe-40-deficient mice were shown to be inferior in contain-
ing melanoma or influenza infections [354]. TIL and Trem did
not only share a similar phenotype but also the response and
transcription pattern as compared to peripheral T-cells, de-
scribed as “mitochondrial” fitness [356]. Mitochondria do
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not only provide energy via ATP but also shape the epige-
nome. Memory T-cells use oxidative phosphorylation (see
above), a concept that was corroborated by the observation
that skin Trm access fatty acids and fuel them into the tricar-
boxylic acid cycle (TCA); a feature that is again shared be-
tween Trm and TIL, but not by peripheral T-cells. Bhlhe-40 is
preferentially expressed in TCF-1 low cells (see below) that
resemble rather Trm. This reflects an important biological
function, it designates stem cell-like antigen-specific T-cells
in the tissue, defined by strong TCF-1 and low Tim3 expres-
sion. These T-cells appear to respond to ICBs and give rise of
PD1 high-positive cells that mediate immune protection [356,
357]. HDAC inhibitors, as well as acetate, have been shown to
increase IFN-γ production in TIL where Bhlhe40 was down-
regulated [354] or in antigen-specific T-cells in an “immune
exhaustion”-rich environment with high potassium [340].
Increased serum acetate, as a response to bacterial infection,
is required for CD8+ T-cell memory formation showing that
exposure to pathogens does not only lead to immunopatholo-
gy but also shapes biologically and clinically relevant anti-
target-directed cellular immune responses [358].

Similarly to extrinsic factors, i.e., increased potassium in
the tumor microenvironment, or increased serum acetate in
infections, may shape the quality and quantity of cellular im-
mune responses: Acetylation has been described in the context
of histone modification, yet more detailed analysis, using
modern proteomic methodologies, showed that other proteins,
involved in cellular maintenance are also acetylated in cellular
physiology and pathophysiology. This is mediated by enzy-
matic reactions, i.e., the transfer of an acetyl-group, and also
occur via non-enzymatic reactions where acetyl-CoA plays a
major role (reviewed in [359]). Acetyl-CoA, present in mito-
chondria as well as in the cytosol, is produced from a key
enzyme in tumor cells, i.e., acetyl-CoA synthetase enzyme,
ACSS2, and contributes to (tumor cell) proliferation.
ACSS2, via the production of acetyl-CoA mediates the ma-
jority of acetate uptake into cells [360, 361] and presents an
alternate mechanisms to provide acetate.

Mitochondrial stress and mitochondrial fitness versus “mi-
tochondrial health” has also been shown to play a biologically
relevant role in TB and protective immune responses [362].
Type I interferons, i.e., IFNα and IFNβ are helpful to curb
viral pathogens, yet they may be detrimental in MTB infec-
tions [363–365]. In contrast to type I interferons, IL-1 produc-
tion has been shown to be protective in MTB, in part by
limiting type I interferon production [366]. This dichotomy
between type I interferon and IL-1 production may be depen-
dent on the timing, whether the infection is newly acquired or
chronic. Drug-induced, e.g., zileutin, reduction of IFNβ leads
to less pro-inflammatory, negative effects of infections. The
use of Zileutin has been explored as an adjunct therapy in
addition to standard antibiotic treatments of patients with
TB. IFNα and INFβ are produced during MTB infection

dependent on (i) MTB access to the cytosol in hosT-cells
and (ii) STING (stimulator of interferon’ signaling) via myco-
bacterial DNA (mDNA) binding to the GMP-AMP synthase.
A third mechanism has been described [362] where cGAS, a
cytosolic DNA sensing structure that binds to dsDNA from
stressed mitochondria, leads subsequently to IFNβ produc-
tion [367]. This links the observation that Bhlh40 provides
“mitochondrial health” and immune cell fitness with the no-
tion that mitochondria are able to sense “danger” as well as to
signal “danger” via the release of mitochondrial (mt) DNA
and reactive oxygen radicals, which has been corroborated
in other diseases, e.g., preclinical autoimmune diseases and
viral-associated, type I interferon responses [368–370].
Thus, promoting “mitochondrial fitness” may help to curb
non-productive inflammation, via downregulation of type I
interferon(s) and to enhanced immune effector functions in
antigen-specific tissues—resident T-cells and Trm. Re-
wiring immune responses by increasing mitochondrial health
both in T-cells and (infected) macrophages is not only associ-
ated with mitochondrial functions but also with improved cel-
lular metabolism [371]. For instance, MTB reduces glycolysis
and the use of the TCA cycle along with oxidative phosphor-
ylation in macrophages—with gradual differences between
MTB and BCG. MTB reprograms macrophages to use exog-
enous fatty acids as compared to endogenous. MTB infection
leads to reduced mitochondrial dependence on glucose and to
increased use of fatty acids. Thus, acetate and HDAC inhibi-
tors, which have been shown to “reprogram”mitochondria (in
TIL and Trm), impact on MTB-associated effects on the mi-
tochondrial competence in macrophages to produce reactive
oxygen radicals and oxidizing fatty acids, glutamine, and glu-
cose. The MTB-imprinted microenvironment is reminiscent
of the tumor microenvironment that is characterized by “func-
tional starvation,” defined by increased potassium, altered mi-
tochondrial metabolism, depletion of acetyl–coenzyme A
(CoA) and methionine intermediates, thereby limiting histone
acetylation and the possibility of epigenetic programming and
inducing effector molecules and T-cell differentiation [340].
Increased potassium in the (extracellular) space, most likely
derived from necrotic cells [341], resulted in a “starvation”
program of immune cells associated with increased TCF-1
expression, increased autophagy, and decreased
nucleocytosolic acetyl–coenzyme A (AcCoA). That provides
stronger persistence of (potentially anti-target-directed) T-
cells in TIL or granuloma-associated lymphocytes (GAL)
[372] which are associated with stemness, reminiscent of the
recent observation thatMTB granuloma lesions obtained from
a non-human primate model of TB did not exhibit strong
expression of immune exhaustion [373]. Thus, there may be
similarities between the TME and MTB granuloma lesions,
i.e., that hypoxia, necrosis, subsequent high potassium, and a
particularly nutrient pattern impose a starvation program fa-
cilitating immune cell stemness. A better understanding of
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these intricate pathway may help to individually map the pa-
tients “immune situation” and guide therapeutic options to
eradicate or to contain the pathogen (or transformed cells),
while preserving long-term memory and avoid overt tissue
damage by non-productive inflammation.

Conclusions

Modulating the immune system using nutrient supply may
benefit future treatment regimens for patients with cancer or
infections at healthcare centers. In addition, ongoing clinical
trials evaluating vaccine and drug efficacy may also consider
including molecularly defined nutrients and the microbiome
as part of their monitoring schemes. The same applies to stud-
ies on the microbiome and host directed therapies. Clinical
responses in patients with cancer or infections may be im-
proved if 'hol ist ic ' t reatment modali t ies, include
immmunonutrition and consider the patients unique genetic
and immunological background.
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