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Significance of this study

What is already known on this subject?
►► Irritable bowel syndrome (IBS) is a functional 
bowel disorder of unknown aetiology affecting 
up to 15% of the population.

►► There may be a link between the gut 
microbiome and IBS symptoms, since a subset 
of patients seems to respond to antibiotics.

►► Several studies have described gut microbiome 
composition in IBS, but found different taxa to 
be over-represented or under-represented.

►► Pathologies might confound microbiome 
results in IBS studies, however population-
studies where pathology has been excluded by 
colonoscopy have not been conducted yet.

What are the new findings?
►► In a population sample, IBS was not associated 
with an altered microbiome either in stool nor 
mucosa.

►► The degree of heterogeneity observed between 
IBS patients is higher than that observed 
between healthy individuals.

►► A significant correlation was observed between 
microbiome diversity and self-rated health for 
both stool and sigmoid biopsies.

How might it impact on clinical practice in the 
foreseeable future?

►► Although commercial testing of stool 
microbiome is available, such testing in IBS 
is unlikely to help guide current therapeutic 
interventions as IBS did not have a clear 
microbial signature.

Abstract
Objective  The ethiopathogenesis of irritable bowel 
syndrome (IBS) is unknown. While a link to the 
gut microbiome is postulated, the heterogeneity of 
the healthy gut makes it difficult to draw definitive 
conclusions. We aimed to describe the faecal and 
mucosa-associated microbiome (MAM) and health 
correlates on a community cohort of healthy and IBS 
individuals with no colonoscopic findings.
Design  The PopCol study recruited a random sample 
of 3556 adults; 745 underwent colonoscopy. IBS 
was defined by Rome IV criteria and organic disease 
excluded. 16S rRNA gene sequencing was conducted 
on sigmoid biopsy samples from 376 representative 
individuals (63 IBS cases) and faecal samples from 185 
individuals (32 IBS cases).
Results  While sigmoid MAM was dominated by 
Lachnospiraceae, faeces presented a higher relative 
abundance of Ruminococcaceae. Microbial richness in 
MAM was linearly correlated to that in faeces from the 
same individual (R²=0.255, p<3E-11) as was diversity 
(R²=0.06, p=0.0022). MAM diversity decreased with 
increasing body mass index (BMI; Pearson’s r=−0.1, 
p=0.08) and poorer self-rated health (r=−0.15, 
p=0.007), but no other health correlates. Faecal 
microbiome diversity was correlated to stool consistency 
(r=−0.16, p=0.043). Several taxonomic groups were 
correlated to age, BMI, depression and self-reported 
health, including Coprococcus catus associated with 
lower levels of depression (r=−0.003, p=0.00017). The 
degree of heterogeneity observed between IBS patients 
is higher than that observed between healthy individuals.
Conclusions  No distinct microbial signature was 
observed in IBS. Individuals presenting with low self-
rated health or high BMI have lower gut microbiome 
richness.

Introduction
The pivotal role played by the human micro-
biome in health and disease is being increasingly 
recognised.1 2 At the same time, there is a growing 
understanding of the heterogeneity of the healthy 
human microbiome, which has led to population-
based cohorts of faecal microbiome communities, 
such as the Flemish Gut Flora and Dutch LifeLines-
Deep studies.3 Without an adequate understanding 
of which demographic parameters influence the gut 
microbiome, it is difficult to plan adequate studies 
into its role in disease.

A major area of clinical interest is the role of the 
microbiome in functional gastrointestinal disorders, 
including the irritable bowel syndrome (IBS).4 IBS 
is estimated to affect 15% of the population, but 
its aetiopathogenesis remains unclear.5 In addition 
to dietary, behavioural and lifestyle risk factors, 
mounting evidence suggests a role for the gut 
microbiome. Among the indirect evidence for this 
is IBS induction6 or amelioration7 in response to 
antibiotics. Several studies have attempted to iden-
tify IBS-specific alterations of the gut microbiome 
(reviewed in48). There is, however, still no clearly 
delineated IBS gut microbiome profile.

Most large-scale studies of the human gut micro-
biome have focused on faecal samples. However, 
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the bulk luminal microbial community only partially reflects 
the mucosa-associated microbiome (MAM).9 While numeri-
cally smaller, the mucosal community’s close association to the 
host epithelium and its immune system may be more important 
in protecting the host or promoting disease.9 The logistic 
difficulties in attaining a broad cohort of human gut mucosal 
samples has meant that its role in health has been relatively 
neglected, with published studies settling for low numbers (9–29 
individuals).10–13

Here, we take advantage of the PopCol cohort to analyse the 
faecal and MAM of a representative sample of an adult urban 
population. This study recruited a random sample of 3556 adults 
living in Stockholm, of which 745 agreed to a colonoscopy.14 
During colonoscopy, biopsies of the large bowel were collected. 
Faecal samples were collected in a subset of participants.

In addition to these samples, volunteers filled extensive ques-
tionnaires on their health, lifestyle and bowel habits to define 
phenotypes. The colonoscopy provided information on disease 
state, including the presence of polyps, diverticula, and inflam-
mation, as described in previous studies.15–17 However, except 
for a smaller cohort of faecal samples with a focus on abdominal 
pain,18, the microbiome of these patients has not been studied.

In the present study, we aimed to compare the sigmoid MAM 
and faecal microbiome of a representative population-sample. 
We hypothesised that while the microbial composition of faeces 
differs from the MAM in an individual, factors specific to each 
individual would also be observable. Furthermore, we hypoth-
esised that IBS would be characterised by an altered MAM. To 
our knowledge, this is the first study to investigate the mucosa-
associated gut microbiome of an adult population-based cohort.

Methods
Participants
The present study is part of PopCol, a population-based colonos-
copy study previously described in detail.14 A random sample of 
3556 adults living in Stockholm, Sweden, were sent a validated 
Abdominal Symptom Questionnaire (ASQ).19 All responders 
(n=2293) were contacted by phone with an invitation to a 
hospital visit, including medical history taken by a gastroen-
terologist, blood sampling and completion of further question-
naires. All participants partaking in the hospital visit (n=1244), 
except for those fulfilling exclusion criteria for colonoscopy 
(see15), were invited to undergo a colonoscopy with biopsies. A 
total of 745 participants accepted (mean age=51.7 years (range 
18–70); 57.2% women). Individuals participating in colonos-
copy reported in general more symptoms, although one third 
were still symptom free.14 A subset of participants (n=741; all 
participants recruited in the latter half of the study) were also 
asked to collect a faecal sample at home and send it by post to 
the study centre (all but four complied). The colonoscopy proce-
dure has been previously described.14 In this study, the sigmoid 
biopsies and the faecal samples were analysed in the volunteers 
without any observed colonic pathology at colonoscopy or on 
histopathological examination of the biopsy.

Variables
Irritable bowel syndrome
At the time of sampling, volunteers filled in the ASQ19, which 
contains all questions later included in Rome IV. IBS was there-
fore defined in accordance with the Rome IV definition as recur-
rent abdominal pain, at least 1 day/week in the last 3 months, 
associated with two or more of the following criteria: (1) related 
to defecation (relieved or induced by defecation), (2) associated 

with a change in frequency of stool and (3) associated with a 
change in form (appearance) of stool using the ASQ.19 In total, 
152 IBS cases were identified.

Four questions were used to define the IBS types:
1.	 Do you have looser stools when you have abdominal pain or 

discomfort?
2.	 Do you use the toilet more often when you have abdominal 

pain or discomfort?
3.	 Do you have harder stools when you have abdominal pain 

or discomfort?
4.	 Do you use the toilet less often when you have abdominal 

pain or discomfort?
Volunteers answering ‘yes’ to questions 1 or 2 but neither to 

3 nor 4 were classified as IBS-D. Conversely, those answering 
‘yes’ to questions 3 or 4 but neither to 1 nor 2 were classified as 
IBS-C. Those who answered ‘yes’ to either one of 1 or 2 as well 
as either one of 3 or 4 were classified as IBS-M. The remaining 
were labelled IBS-U (unclassified).

IBS symptom burden was assessed using the Gastrointestinal 
Symptom Rating Scale (GSRS).20

Proxy for stool consistency
Stool form correlates with colonic transit time.21 Questions 
on stool pattern were used to estimate a score, based on the 
following questions from the ASQ:
a.	 Have you had any of the following symptoms at least one-

fourth of the time (occasions or days) in the last 3 months 
(check all that apply):
1.	 Fewer than three bowel movements a week.
2.	 More than three bowel movements a day.
3.	 Hard or lumpy stools.
4.	 Loose, mushy or watery stools.

b.	 Did you have loose, mushy or watery stools, during more 
than three quarters (3/4) of your bowel movements?

Questions associated with a faster transit time (a2, a4, b) were 
given a score of +1 for each question. Questions associated with 
a slower transit time (a1, a3) were given a score of −1 for each 
question. In this way, each participant’s estimated stool consist-
ency could be placed on a scale from −2 to +3.

Body mass index
Body mass index (BMI) was calculated from height and weight 
measurements taken at the first hospital visit.

Use of antibiotics and probiotics
Participants were asked at the hospital visit whether they had 
taken any antibiotics or probiotics during the last 3 months.

Tobacco usage
Smoking and use of Scandinavian snus were reported at the 
hospital visit. Number of cigarettes smoked per day were cate-
gorised into four categories: 0=none, 1=<10, 2=10–19 and 
3>=20 cigarettes per day. Snus was categorised as current user 
(at least one dose/week) or non-user. Smoking and snus were 
combined into four categories such that one unit was added to 
the tobacco score if the volunteer used snus on a weekly basis.

Depression and anxiety
Psychological distress was assessed using the validated Hospital 
Anxiety and Depression (HAD) scale,22 a widely used self-
assessment scale.
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Self-rated health
Self-rated health was assessed using the question: “How would 
you rate your general state of health” rated on a 5-point scale 
from ‘1=Excellent’ to ‘5=Poor’.

Microbiome analysis
Sample collection and selection
Bowel preparation and ileocolonoscopy were performed as previ-
ously described.14 During ileocolonoscopy, a biopsy from the 
sigmoid was taken by pinch biopsy and immediately preserved 
in freezer medium at −80°C. Faecal samples were collected by 
the participants at home, up to 3 months before ileocolonoscopy, 
posted to the hospital and frozen at −80°C on arrival. Seven 
hundred and forty-five ileocolonoscopies were performed, and 
284 faecal samples delivered, of which 423 and 186, respec-
tively, had DNA extracted and amplified as described below.

Library preparation and sequencing
Biopsy samples were thawed, spun-down and had DNA extracted 
for 16S rRNA gene sequencing as previously described.22 About 
170 ng of DNA, or 25 µL of DNA solution in case an appro-
priate concentration could not be reached, were submitted to 
a 30 cycle 1-step PCR amplification.22 Samples were spread 
randomly across 9 DNA extraction runs and four sequencing 
runs, yielding 12 004–241 925 high-quality 16S read-pairs per 
approved sample (median 28 335). There were small but signif-
icant effects of DNA extraction batch (Analysis of Similarity 
ANOSIM r=0.044, p=0.004) and of sequencing run (r=0.059, 
p=0.004) on Jensen-Shannon beta-diversity.

Faecal samples were thawed, spun-down and had DNA 
extracted as previously described.22 About 50 ng of DNA were 
submitted to a 25 cycle 1-step PCR amplification. Samples 
were spread randomly across 6 DNA extraction runs and four 
sequencing runs, yielding 12 565–57 537 high-quality 16S read-
pairs per approved sample (median 32 964). No batch effects 
were observed.

At each extraction run, a mock sample (ZymoBIOMICS 
Microbial Community Standard, Zymo Research, Irvine, Cali-
fornia, USA) was included as a positive control and an extraction 
blank was performed as negative control. Likewise, during PCR 
a DNA mock sample (ZymoBIOMICS Microbial Community 
DNA Standard, Zymo Research) was included as the positive 
control and a PCR as negative. All four controls were sequenced 
together with its respective plate and any run where one or more 
of the controls did not perform as expected was performed 
again. All sequencing was conducted on an Illumina MiSeq with 
2×300 bp reads.

Bioinformatics processing
Cutadapt v1.1423 was used to trim 3′ bases with Phred score 
lower than 15 and 5′ primer sequences. Reads that did not 
contain both primer sequences, that had less than 120 bp left 
after trimming or that contained more than 3 n calls were 
discarded. Reads were merged and dereplicated with Usearch 
v10.0.240.24 Singleton sequences and non-merging reads were 
discarded. ASV (amplified sequence variants) were picked with 
the unoise3 denoising algorithm. All merged reads from each 
sample were mapped back to the centroids at a minimal identity 
of 98% for quantification. A total of 4297 ASV were produced 
from the combined faecal and biopsy dataset. Function isCon-
taminant from the Decontam package25 was used to assess for 
the presence of taxa overly abundant in the negative controls. 
Fisher’s method was used to combine across extraction plates. 

Four ASV were flagged as contaminants and removed from the 
analysis. Taxonomy was assigned to centroids by mapping them 
to a curated taxonomy of the SILVA v132 database26 as imple-
mented in the DADA2 package (v1.6.0) with functions assign-
Taxonomy and addSpecies.27 The final ASV table is available as 
online supplementary table 1. Samples were kept if they reached 
12 000 approved reads. This excluded one faecal sample and 50 
MAM samples, leaving a total of 185 faecal samples and 376 
MAM samples. ASV were kept if their total counts reached at 
least 5% of the total number of samples, that is, 29 counts or 
higher. In total, 2793 ASV were kept.

Statistics
Each sample was normalised to one before all analyses except 
richness. In the case of richness and diversity, subsampling to 
12 000 reads was performed. Chao1 was used for estimating 
sample richness and Shannon’s entropy for alpha-diversity. All 
computations were performed in R v3.3.2 using the packages 
Vegan v.2.4–3,28 Pheatmap v.1.0.829 and Vioplot v. 0.2.30

Linear models were calculated between Shannon’s entropy 
and Chao1 richness for each dataset against the following vari-
ables: age (years), BMI, self-assessed health, anxiety HAD score, 
depression HAD score, stool consistency and GSRS score, both 
by stepwise forward and reverse regressions. Linear models were 
also used to assess the relationship between richness and diver-
sity in paired samples from the same individual.

Correlation between taxa across paired samples was analysed 
with Pearson’s and Spearman’s rank correlation and corrected 
for multiple testing with the Benjamini-Hochberg procedure 
separately at each taxonomic level. Only clades with an observed 
abundance larger than 0 in at least 10 faecal samples and 10 
biopsies were analysed.

Multivariate Association with Linear Models (Maaslin31) was 
run separately for faecal and biopsy samples, with Benjamini-
Hochberg correction and only analysing clades with abundance 
and prevalence >1%. The metadata included was sex, age, BMI, 
self-rated health, anxiety HAD score, depression HAD score, 
GSRS sum and IBS type.

For variation partitioning, these data were used in addi-
tion to the technical parameters month of ileocolonoscopy 
and DNA extraction plate. Month was included as a proxy of 
sample temperature during sample transport. Mantel’s test was 
performed with Pearson’s correlation and 999 permutations.

Beta-diversity was calculated on Bray-Curtis distance except 
on cluster analyses, where Jensen-Shannon was used. Heatmap 
rows and columns are clustered by ward-linkage. Presence of 
discrete clusters was assessed both at the genus- and at the ASV-
level, but only the former results are shown. Scatter plots are 
based on non-metric multidimensional scaling (NMDS).

Results
Sample selection
The PopCol cohort is highly comparable to the background 
population.14 However, since a subset of individuals and samples 
were excluded in this study (figure 1), the representativeness of 
this subcohort was assessed. Sigmoid biopsy samples from 376 
individuals and faecal samples from 185 individuals were kept 
(overlap of 178). This is summarised in table 1. The exclusion 
of individuals with diverticulosis leads to a somewhat younger 
cohort (all: mean age 51.7 years; included faecal: mean 50.4, 
p=0.07; included MAM: mean 49.1, p<10E-10). As a conse-
quence, the cohort is also less overweight (all: mean BMI 
24.9 kg/m2; included faecal: mean 24.0, p=0.0015; included 

https://dx.doi.org/10.1136/gutjnl-2019-318717
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Table 2  Co-occurrence of IBS and other diseases, and prevalence of 
IBS in the population study and the samples analysed

Not IBS All IBS IBS-C IBS-D IBS-M IBS-U

All colonoscopies 581 119 22 28 49 20

Excluded due to

 � IBD 2 4 0 4 0 0

 � Spirochetosis 11 5 1 1 2 1

 � Microscopic colitis 0 3 0 3 0 0

 � Polyps 167 30 5 7 15 3

 � Diverticula 102 19 2 3 10 4

Included

 � Faecal sample 153 32 9 5 12 6

 � Sigmoid sample 313 63 16 11 28 8

 � Both faecal and 
sigmoid

149 29 8 4 12 5

IBD, inflammatory bowel disease; IBS, irritable bowel syndrome.

Figure 1  Flow diagram of participants and samples included in this 
study. IBD, inflammatory bowel disease; IBS, irritable bowel syndrome.

Table 1  Comparison of crucial clinical and demographic parameters between included and excluded samples

Faeces No faeces

P value

Biopsy No biopsy

P valueN M (SD)/% N M (SD)/% N M (SD)/% N M (SD)/%

Age (years) 260 52.8 (12.1) 484 51.1 (13.0) 0.12 545 51.7 (12.6) 200 51.7 (12.6) 0.86

Sex (man) 260 45.8% 484 41.3% 0.24 545 44.0% 200 39.5% 0.27

Self-rated health 259 2.54 (0.94) 443 2.58 (0.94) 0.63 522 2.51 (0.93) 181 2.73 (0.97) 0.01

BMI 259 24.4 (3.6) 478 25.1 (4.1) 0.03 540 24.7 (3.98) 198 25.2 (3.86) 0.09

Abdominal pain 259 27.4% 441 30.2% 0.44 521 28.4% 180 31.1% 0.49

BMI, body mass index.

MAM: mean 24.4, p=0.0005). There was a significant correla-
tion between age and BMI in our population (r=0.22, p=2E-9).

The prevalence of IBS subtypes was similar in the included 
individuals and in those excluded due to the presence of polyps, 

diverticula or spirochaetosis. Individuals with inflammatory 
bowel disease (IBD, n=6) and/or microscopic colitis (n=3) were 
more likely to present with IBS-D like symptoms (table 2).

Within-sample (alpha) diversity
The effect of seven quantitative factors on microbiome richness 
and diversity of non-diseased subjects was assessed: age, BMI, 
self-rated health, anxiety (HAD score), depression (HAD score), 
severity of symptoms (GSRS score) and a proxy measure of stool 
consistency. Online supplementary table S2 presents the correla-
tion strength and uncorrected significance for richness, evenness 
and diversity for each of the parameters assessed. MAM diver-
sity was negatively correlated to self-rated health (r=−0.15, 
p=0.007). Faecal microbiome diversity was correlated to 
consistency (r=−0.16, p=0.04). Looser stools were associ-
ated to lower richness, but this trend was not significant (stool: 
r=−0.11, p=0.18; MAM: r=−0.94, p=0.097).

Since no strong effects were found on the richness and diver-
sity of the gut microbiome among healthy individuals, the 
comparison between these and IBS individuals was done on the 
full cohort. No significant differences were found between the 
richness or diversity of either faeces or MAM between healthy 
controls and IBS cases or in IBS subtypes.

About 24 faecal sample donors and 41 biopsy donors had used 
antibiotics on the 3 months prior to the study, comprising at least 
15 different antibiotic classes. Of these individuals, 12 had also 
taken probiotics in the same time period. Individuals exposed to 
antibiotics did not display reduced richness or diversity in their 
MAM or stool microbiome at the time of sampling, considering 
either IBS-free or all individuals. No difference was observed 
concerning probiotic usage. Likewise, tobacco usage had no 

https://dx.doi.org/10.1136/gutjnl-2019-318717
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Figure 2  Taxonomy barplots for each sample at the (A) family and (B) genus level. In each panel, biopsies are to the left, and faecal samples to the 
right. Within each sample type, healthy individuals are depicted first, followed by the IBS cases, as noted by the colour bar above each barplot. Only 
clades corresponding to on average >10% over all samples or >30% of a single sample are depicted. IBS, irritable bowel syndrome.

Table 3  Association between bacterial clades in the MAM and 
patient data

Variable Clade Coefficient N N.not.0 P value Q value

Age Bifidobacterium −0.00155 375 354 7.8E-06 0.0169

Age Bifidobacterium 
bifidum

−0.00022 375 141 1.84E-04 0.0397

Depression Coprococcus 
catus

−0.00366 375 355 1.69E-04 0.0397

Self-rated 
health

Coprococcus_2 −0.00231 375 155 7.80E-05 0.0267

MAM, mucosa-associated microbiome.

significant effect on richness and diversity, treating it either as a 
Boolean or a quantitative variable.

Taxonomic composition
Both faecal samples and biopsies were dominated by Clostridi-
ales, followed by Bacteroidales. Differences between faeces and 
MAM became more notable at the family and genus levels. While 
MAM was dominated by Lachnospiraceae, faeces presented a 
higher relative abundance of Ruminococcaceae (figure 2A). At 
the genus level, Blautia and other, unclassified, Lachnospiraceae 
were conspicuous in MAM, while faecal samples presented a 
higher proportion of Faecalibacterium (figure 2B).

To mine biomarkers, we ran Multivariate Association with 
Linear Models (Maaslin). The parameters considered were the 
same quantitative factors as in the alpha-diversity analysis, as 
well as IBS subtype. On the faecal dataset, the only significant 
association was a negative correlation between Lachnospira 
pectinoschiza and BMI (L. pectinoschiza ~0.0032×BMI; p<3E-
10). For the biopsy dataset, four clades were found to covary 
with different demographic parameters (table  3). No associa-
tions were found with diagnosis of IBS, IBS type or GSRS score.

Between-sample (beta) diversity and cluster analysis
The vast majority of the inter-sample variation in the datasets 
cannot be explained by any of the demographic, technical or 
clinical parameters assessed (90.2% for biopsies; 96.5% for 
faecal samples; online supplementary figure S1). Indeed, the 

largest fraction of the variability is explained by technical arte-
facts alone (5% of total).

Nevertheless, IBS might have an effect on MAM, as evidenced 
by an ANOSIM analysis of beta-diversity (figure 3). Individuals 
without IBS are more similar to each other, and those with IBS 
are less (MAM: r=0.131, p=0.003; faeces: r=0.078, p=0.089). 
When splitting by IBS type, this observation still holds for IBS-U 
and IBS-M (online supplementary figure 2a,b; MAM: r=0.155, 
p=0.001; r=0.091, p=0.09).

BMI also has an effect on MAM composition, with under-
weight (BMI <18.5) and obese (BMI >30) individuals 
presenting a greater spread in their sample composition than 
individuals with normal weight (online supplementary figure 
S2c; r= 0.093, p=0.002). Self-rated health was also associated 
with beta-diversity spread, with increasing spread in the MAM 
of individuals with lower self-rated health (online supplementary 
figure S2d; r= 0.042, p=0.016). No significant effect was found 
for faecal samples.

Generally, the observed microbiome profiles did not segregate 
on the basis of IBS type or total GSRS sum (figure  4; online 
supplementary figure S3).

Comparison of stool and sigmoid MAM
To directly contrast the microbiome in stool and sigmoid 
MAM, a pairwise analysis was done on the subset of individ-
uals for which both sample types were present (n=29 IBS, 
149 controls). The microbial richness in MAM was linearly 
correlated to that in faeces from the same individual (R²=0.255, 
p<3E-11; figure 5A). This was also true for diversity, but to a 
lesser extent (R²=0.06, p=0.0022). Bray-Curtis divergence was 
smaller between faecal and biopsy samples taken from the same 
individual than between MAM and faecal samples taken from 
different individuals (mean values: 0.641 vs 0.791; p<2.2E-16; 
Mantel’s test r=286, p=0.001; online supplementary figure 4). 
Importantly, the difference in sample type dominated over the 
individual signature (figure 5B).

We also assessed how each taxon correlates between these 
paired samples. For each taxonomic level from phylum to genus, 
the correlation between taxa was calculated, showing that 57 
out of 242 (24%) clades analysed have a significant Pearson 
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Figure 3  Comparison of the Bray-Curtis beta-diversity dispersion between IBS and healthy individuals (A) MAM (B) faeces. IBS, irritable bowel 
syndrome; MAM, mucosa-associated microbiome.

correlation between paired samples, while 98 (41%) had a 
significant Spearman rank correlation (online supplementary 
table S3). Likewise, 171 of 528 (32%) ASV analysed presented 
a significant Pearson correlation (Spearman: 208 (39%)) (online 
supplementary table S3). Correlations are generally stronger at 
the ASV level (Pearson’s third quartile 0.229, maximum 0.966) 
than at lower taxonomic levels (Pearson’s third quartile 0.159, 
maximum 0.637).

Discussion
In this study, we present the microbial composition of paired 
sigmoid biopsy and faecal samples from a broad randomly 
selected population cohort with and without IBS and with an 
otherwise healthy gut. We observed that faecal microbiome 
diversity correlated to a proxy measure of stool consistency. 
We also observed that those with poorer self-rated health had a 
decreased MAM diversity. The between-sample divergence was 
higher in IBS compared with controls from the same population 
sampling frame, but no clear biomarker of IBS was found.

There is emerging evidence that the microbiome may play 
a role in IBS, but the data are conflicting in terms of associ-
ations with specific bacterial taxa. Unlike some previous IBS 
studies,8 32–36 we did not find any significant differences in the 
faecal sample composition of IBS subjects and healthy controls. 
It is possible that this reflects the larger size of the current cohort 
(379 sigmoid biopsies, 185 faecal samples) as well as the rela-
tively low number of IBS individuals included (20%). However, 
we argue that this is at least in part due to the exclusion of 
subjects with comorbidities, honing in on the true microbiolog-
ical effects of IBS, and not on other intestinal alterations that 
may induce IBS-like symptoms. Our findings may also explain 
the limited effects from faecal microbial transfer in IBS.37 While 
rifaximin, a non-absorbable antibiotic, is efficacious in a subset 
of IBS cases, it is unknown whether this is due to an antimicro-
bial or anti-inflammatory effect, or where the site of action may 
occur.38 39

In a recent meta-analysis by Pittayanon and colleagues,40 22 
papers were included; two Chinese studies assessed colonic tissue 

while the rest only assessed stool microbiome. The reported data 
at the phylum level was conflicting. Similarly, of the nine papers 
reporting alpha-diversity, five showed a decrease and four did 
not, while two studies reported no beta-diversity differences. 
These results are in general consistent with ours, but the current 
study is conducted in a random population sample with adequate 
controls, and our sample size is much larger than any reported 
by Pittayanon et al.40 One previous study by Pozuelo et al with 
a comparably large faecal cohort (113 IBS cases and 66 healthy 
controls) did observe differences in the stool microbiome of 
IBS-M and IBS-D.41 Specifically, families Methanobacteriaceae, 
Ruminococcaceae, Erysipleotrichaceae, and one unknown Clos-
tridiales family were all found to be decreased in these patients. 
While Methanobacteriaceae are methane producers, the latter 
three are butyrate producers. Whether differences in the 
cohort or in methodology account for this difference is unclear. 
Pozuelo et al also reported many discrepancies with the previous 
literature.

Gut transit time, or its proxy, the Bristol stool scale, is 
recognised as one of the most important factors shaping the 
faecal microbiome.42 In good agreement with this and with a 
preliminary analysis of this cohort,43 we found that diversity in 
the faecal microbiome was dependent on frequency of defeca-
tion and stool consistency, but that this did not impact the MAM. 
Diversity was affected by self-rated health, BMI and stool consis-
tency. These parameters were not correlated to each other in 
our cohort, although loose stools were associated to BMI >25. 
While the link between obesity and diarrhoea is well established 
(eg44 45), a connection between BMI and alpha-diversity is less 
clear. Although it has been reported several times, recent meta-
analyses have not found sufficient evidence to support lower 
alpha-diversity as a biomarker of obesity.46 47 A single bacte-
rial species, Lachnospira pectinoschiza, was found to correlate 
between faecal samples and BMI. This is a butyrate-producing 
pectinophile.48 49 Family Lachnospiraceae has previously been 
connected to a Westernised lifestyle and to obesity,50 the latter 
possibly due to the butyrate-producing members of this family.51
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Figure 4  NMDS highlighting IBS diagnosis (red: IBS-D; blue: IBS-C; orange: IBS-M; purple: IBS-U) and total GSRS score (circle size). (A) MAM (B) 
inset of (A), highlighting the most densely populated area of the NMDS. (C) Faecal samples. (D) Inset of (C), highlighting the most densely populated 
area of the NMDS. IBS, irritable bowel syndrome; MAM, mucosa-associated microbiome.

A particular strength of this work is presenting both colonos-
copic findings and MAM from individuals of the general popula-
tion. The communities observed in faecal samples were markedly 
different from those attached to the sigmoid following colonos-
copy preparation.11 13 There was a significant subject-specific 
signature between stool samples and distal colonic samples,12 13 
but only 24% of the taxa assessed present a significant linear 
correlation between their relative abundances in faeces and in 
MAM. Therefore, the choice of sample type has to take into 
account the hypotheses being tested. Here we have sequenced 
a biopsy from the sigmoid, but previous studies have found that 
the colonic MAM is, despite patchiness, fairly unchanging along 
its length.10 52 Our results do not exclude a role for MAM in 
IBS pathogenesis at other sites. We did not evaluate the small 
intestinal microbiome, which is important as increased small 
intestinal permeability and increased circulating small intestinal 
T cells may be found in a subset of the IBS population.53 54

Interestingly, richness was not correlated to the same factors 
as diversity, which suggests that a similar number of species is 
present in every individual, but in individuals with short transit 
time, only fast-growing bacteria have time to proliferate. Unfor-
tunately, it wasn’t possible in this cohort to assess total bacterial 
density per gram of stool, which might play a related role.32

Another intriguing aspect of our observations is the connec-
tion between MAM diversity and self-rated health. While this 
measure is significantly correlated to anxiety, depression and 
GSRS score, none of these factors, by themselves or in combina-
tion, were correlated to diversity. Most diagnoses that have been 
studied in connection to the gut microbiome have been char-
acterised by decreased richness.42 Therefore, it is not entirely 
surprising that individuals with low self-rated health also have 
a lower gut microbiome richness. Still, it is possible that the 
connection between a general feeling of health and the richness 
of the gut microbiome could be mediated by immune or neuro-
logical pathways. Coprococcus catus was associated to lower 
levels of depression. A similar connection at the genus level has 
been previously reported.3 Genus Coprococcus_2 which includes 
C. eutactus and uncultured organisms, was also associated to 
higher self-rated health. We also found a negative correlation 
between age and genus Bifidobacterium and B. bifidum in partic-
ular. This association, together with 11 others, was also found 
in the LLDeep study,3 but has not been reported for other large 
cohort studies, possibly due to regional effects.55

A common thread in our findings is that healthy individuals 
were more similar to each other than diseased ones, a phenom-
enon sometimes called the Anna Karenina effect.56 Individuals 
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Figure 5  Relationship between faeces and MAM from the same individual. (A) Scatterplot of Chao1 richness for each sample type per individual, 
including linear trend line. (B) NMDS with a line connecting each pair of samples. biopsies are highlighted in orange and faecal samples in red. MAM, 
mucosa-associated microbiome.

with IBS, most notably IBS-U and IBS-M, were less alike than 
healthy individuals. A greater spread in beta-diversity in the 
MAM was also observed for both underweight and overweight 
individuals. This spread also increased with decreasing self-rated 
health.

A limiting factor in our analysis of the faecal microbiome is 
that samples were transported at room temperature without 
preservatives. To assess what effect, if any, this had on our 
results, every analysis was performed twice, once with the full 
dataset and once excluding six common bloom bacteria, namely 
Enterobacteriaceae, Enterococcaceae, Lactobacillaceae, Pseudo-
monadaceae, Bacillaceae and Staphylococcaceae. These six fami-
lies did not make up more than 1.1% of the total community in 
any sample, and typically less than 0.001%. Excluding them had, 
accordingly, no effect on our analyses. In recent studies sampling 
faeces from thousands of individuals, no more than 10%–15% 
of the observed variance in the microbial community could be 
explained by the extensive metadata gathered.57 The metadata 
available here was not as comprehensive, and the explained 
variance is comparably smaller. It is clear that some important 
factors cannot be accounted for in our study, as evidenced by 
the lack of observed effect of probiotics and antibiotics. While 
the use of antibiotics has most likely had an effect on individual 
microbiomes, these effects were not severe enough to differen-
tiate the antibiotic users from the general population weeks or 
months after treatment.

In conclusion, no distinct microbial signature was observed in 
IBS. The degree of heterogeneity in the gut of healthy individ-
uals is in the same order of magnitude as the difference between 
healthy and IBS individuals, but individuals presenting with 
poor self-rated health have, on average, a lower gut microbiome 
richness and a larger spread in composition. This same spread 
in composition was observed for individuals with IBS-U and 
IBS-M, as well as for underweight and overweight individuals.
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