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Abstract. Automata models are well-established in many areas of com-
puter science and are supported by a wealth of theoretical results includ-
ing a wide range of algorithms and techniques to specify and anal-
yse systems. We introduce choreography automata for the choreographic
modelling of communicating systems. The projection of a choreography
automaton yields a system of communicating finite-state machines. We
consider both the standard asynchronous semantics of communicating
systems and a synchronous variant of it. For both, the projections of
well-formed automata are proved to be live as well as lock- and deadlock-
free.

1 Introduction

Choreographies are gaining momentum in the design and implementation of dis-
tributed applications also in the ICT industrial sector. This is witnessed by the
effort of defining standards for specification languages such as WS-CDL [31] or
BPMN [40] as well as the recognition of choreographies as suitable approaches
to describe modern architectures such as microservices [2,12]. Choreographic
approaches to the modelling, analysis, and programming of message-passing
applications abound. For instance, in [5,34] abstract models have been applied
to verify and debug BPMN specifications. Also, behavioural types have been
proposed as suitable formalisations of choreographies [29] and for the analysis of
properties such as liveness or deadlock freedom (e.g., [20,45] and the survey [30]
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to mention but few), while other approaches have considered syntax-free models
[48]. At a programming level, choreographic programming has been explored in
[35,39].

A distinguished trait of choreographies is the coexistence of two distinct but
related views of a distributed system: the global and the local views. The former
is an abstraction that yields a holistic description of the system. A global view
indeed describes the coordination necessary among the various components of
the system “altogether”. In contrast, the local views specify the behaviour of the
single components in “isolation”.

In this paper we revisit the use of finite state automata to formally specify
(and analyse) global views of message-passing systems, following an intuition
similar to conversation protocols (CP) [16,26,27], a formalism where choreogra-
phies for asynchronous systems are described by means of Büchi automata. Our
model, dubbed choreography automata (c-automata, for short), differs from CP
in spite of the similarities in the syntax adopted for the choreographies. In par-
ticular, conversation protocols and c-automata differ both in their semantics and
in the underlying communication models. Moreover, unlike for CPs, our condi-
tions for realisability do not require any communication properties, rather they
imply several communication properties. This is further discussed in Sect. 6. The
transitions of c-automata are labelled with interactions. As in most approaches,
an interaction states that participant sends message to participant
, which in turn receives it. For instance, consider the c-automaton

used to illustrate our model and as our working example through the paper.
The c-automaton Cref specifies the coordination among participants , , and

whereby a request from client is served by server which replies with a
message (of type) and logs some meta-information on a service (e.g.,
for billing purposes). Client may acknowledge a response of (i) with an
message to restart the protocol, or (ii) by requiring a refinement of the response
with a message, or else (iii) by ending the protocol with a message which

forwards to . In the second case, sends either a message if no
refinement is possible or another (with the corresponding to ).

Note that Cref has nested as well as entangled loops. The support for entan-
gled loops is a distinguishing and expressive feature of automata-based models,
not present in many existing models of choreographies or multiparty session
types (MST), and that we shall discuss in Sect. 6.

We argue that c-automata provide a number of benefits. An advantage of
c-automata is that finite state automata are well-known structures used both
in theoretical and applied computer science. For instance, the c-automaton
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Cref above can be easily understood by practitioners while retaining rigour.
Another advantage is that c-automata are syntax-independent ; they do not rely
on complex linguistic constructs (such as the process algebraic constructs usu-
ally adopted in behavioural types). More crucially, we can re-use well-known
results of the theory of automata and formal languages (e.g., we use determin-
isation and trace equivalence) as well as related algorithms. We discuss these
advantages more extensively in Sect. 6.

Choreographies enable a so called top-down approach whereby local views
can be projected from the global view. Projections are expected to reflect the
global specification without spoiling communication soundness (e.g., deadlock
freedom, liveness, etc.). These results do not hold in general. In fact, global
views abstract away from “low level” peculiarities and projections may exhibit
unintended behaviour.

The realisability of a global specification is a natural question to ask:

Can global views such as Cref be realised by distributed components , ,
and coordinating with each other without intermediaries?

The answer to such question (obviously) depends on the communication infras-
tructure the distributed components use for the coordination. In fact, global
views in general abstractly specify the coordination disregarding several details.
For instance, the c-automaton Cref in (1) is oblivious of the communication
infrastructure used by the participants to coordinate with each other. Are the
communications among , , and synchronous or asynchronous? In the lat-
ter case, are messages received in their sending order? How is the sequencing
reflected at the local level? For instance, should the messages that sends from
state 3 in (1) be sent after receives the message from ?

Tackling the realisability of global views is not a trivial endeavour. For
instance, the recent analysis done in [45] highlights glitches in several projection
operations of behavioural types. Also, some decidability results on the realisabil-
ity of CPs [9], the only other automata-based choreographic setting that we are
aware of, have been recently proved erroneous [24].

One would also like to understand whether the distributed components real-
ising a choreography enjoy nice communication properties, e.g., will a component
ready to engage in a communication eventually progress? Will a message sent by
a participant eventually be received? We will consider such problems, showing
that a set of conditions we define on c-automata do guarantee the choreography
both to be realisable and to enjoy a number of relevant communication properties
such as liveness and deadlock freedom.

Contributions and Structure. After a preliminary section (Sect. 2) recalling the
main notions we deal with in the paper, in Sect. 3 we formalise c-automata and
their projections. We adopt communicating systems [13] (reviewed in Sect. 2) for
the local views of choreographies.

We consider both the case of synchronous and asynchronous communications
for the local views. The projection from c-automata to communicating systems
is defined in Sect. 3 while in Sect. 4 we define the class of well-formed c-automata
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for the synchronous case. There we show that, on well-formed c-automata, our
notion of projection is correct (cf. Theorem 4.14) and guarantees liveness, lock-
and deadlock-freedom in the synchronous semantics (cf. Theorem4.15). In Sect. 5
we generalise the above results to the case of asynchronous communications
(cf. Theorems 5.6 and 5.7). Concluding remarks, related and future work are
discussed in Sect. 6. Additional material and complete proofs can be found in [7].

Some interesting technical points are worth noticing. Firstly, most of our con-
structions and results rely on basic notions of formal languages and automata
theory. This greatly simplifies the presentation and the proofs. The generali-
sation from synchronous to asynchronous communications requires only a mild
strengthening of our notion of well-formedness and no changes to c-automata or
their projection. These are further advantages of the use of finite-state automata.

2 Preliminaries

A Labelled Transition System (LTS) is a tuple A = 〈S, s0,L,→〉 where

– S is a set of states (ranged over by s, q, . . .) and s0 ∈ S is the initial state;
– L is a finite set of labels (ranged over by , λ, . . .);
– →⊆ S × (L ∪ { ε }) × S is a set of transitions where ε �∈ L is a distinguished

label.

We define a Finite-State Automaton (FSA) as an LTS where S is finite. We use
the usual notation s1

λ−→ s2 for the transition (s1, λ, s2) ∈−→, and s1 −→ s2 when
there exists λ such that s1

λ−→ s2, as well as −→∗ for the reflexive and transitive
closure of −→. The set of reachable states of A is R(A) = { s | s0 −→∗ s }.

Remark 2.1. Our definition of FSA omits the set of accepting states since we
consider only FSAs where each state is accepting (which is the normal case in
LTSs). We discuss this point further at the end of the paper. 	

We recall standard notions on LTSs.

Definition 2.2 (Traces and Trace equivalence). A run of an LTS A =
〈S, s0,L,→〉 is a (possibly empty) finite or infinite sequence of consecutive tran-

sitions starting at s0. The trace (or word) w of a run (si−1
λi−1−−−→ si)1≤i≤n of

A is the concatenation of the labels of the run (assume n = ∞ if the run is infi-
nite), namely w = λ0 · λ1 · · · λn; label ε, as usual, denotes the identity element
of concatenation; if the run is empty then w = ε.

The language L(A) of A is the set of the traces of the runs of A. Two LTSs
A and B are trace equivalent iff L(A) = L(B). Also, A accepts w if w ∈ L(A),
A accepts w from s if w ∈ L(〈S, s,L,→〉), and an s-run (resp. s-trace) of A is
a run (resp. trace) of 〈S, s,L,→〉.

The notion of language in the definition above includes infinite words; this
extends the standard notion of language accepted by an FSA. In particular, we
consider an infinite word to be accepted by an FSA if each of its prefixes is
accepted in the standard way. This is equivalent to look at an FSA both as a
standard FSA and as a Büchi automaton where all the states are final.
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Definition 2.3 (Deterministic LTSs). An LTS A = 〈S, s0,L,→〉 is deter-
ministic if
− it is ε-free, i.e. there is no transition of the form q

ε−→ q′, and
− whenever q

λ−→ q1 and q
λ−→ q2 then q1 = q2.

We denote the determinisation of A (i.e. the translation of a nondeterministic
LTS/FSA to a deterministic one) as det(A)1.

We adopt communicating finite-state machines (CFSMs) [13] to model the
local behaviour of systems of distributed components. The following definitions
are borrowed from [13] and adapted to our context.

Let P be a set of participants (or roles, ranged over by , , etc.) and a
set of messages (ranged over by , , etc.). We take P and disjoint.

Definition 2.4 (Communicating system). A communicating finite-state
machine (CFSM) is an FSA on the set

of actions. The subject of an output (resp. input) action (resp. )
is (resp. ). A CFSM is -local if all its transitions have subject .

A (communicating) system is a map assigning an -local CFSM
to each participant such that is finite and any participant

occurring in a transition of is in .

Note that CFSMs may contain ε-transitions. However, projection (see Defi-
nition 3.3 below) yields ε-free CFSMs.

Besides being a well-known and widely adopted model, CFSMs are equipped
with both synchronous and asynchronous semantics. This enables a uniform
treatment of both communication models. The use of CFMSs is also helpful to
compare c-automata with other models which are projected on CFSMs as well,
such as global graphs [37] and some versions of global types [23].

The synchronous semantics of communicating systems is an LTS where labels
are interactions:

Definition 2.5 (Synchronous semantics). Let be a communi-
cating system where for each participant . A syn-
chronous configuration of S is a map assigning a local state
to each . We denote by and may denote s by �q.

The synchronous semantics of S is the transition system
defined as follows

– S is the set of synchronous configurations of S, as defined above, and
is the initial configuration

– if
1 The result of det(A) may actually depend on the chosen algorithm, but that is

irrelevant for our results.
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1. and , and
2. for all .

In this case, we say that and are
component transitions of .

– �q1
ε−→ �q2 if , and for all , .

Note that ε-transitions in the semantics of a communicating system are
induced by those of the constituent CFSMs. Also, is finite; in fact, it is
in general a non-deterministic automaton on the alphabet Lint.

As one would expect, the notion of synchronous semantics is invariant under
language equivalence of CFSMs.

Proposition 2.6. Let and be two communicating
systems. If for all then .

The asynchronous semantics of systems is defined in terms of transition sys-
tems which keep track of both the state of each machine and the content of
unbounded FIFO queues which are associated to each channel ,
where . The queue is where puts the
messages to and from which consumes the messages from . To avoid
cumbersome parenthesis, we write for .

Definition 2.7 (Asynchronous semantics). Let be a commu-
nicating system where for each participant . An
asynchronous configuration of S is a pair s = 〈�q ; �b〉 where with

and with ; we write for and denote by
ε the empty queue. The asynchronous semantics of S is the transition system

defined as follows

– S is the set of asynchronous configurations of S and s0 = 〈�q0 ; �b〉 is the initial
configuration where and all the queues are empty.

– if s = 〈�q ; �b〉, s′ = 〈�q′ ; �b′〉 and either (1) or (2) below holds:

In the first (resp. second) case we say that (resp.

) is a component transition of .
– 〈�q ; �b〉 ε−→ 〈�q′ ; �b′〉 if for some and for all ,

, and �b = �b′.

State keeps track of the state of the machine and buffer keeps track
of the messages sent from to (and not yet received by ). In a transition

, participant adds message in the queue of the channel and
symmetrically, in a transition , participant consumes message from
the top of the queue of the channel . In both cases, any machine or queue
not involved in the transition is left unchanged.

The asynchronous semantics is also invariant under equivalence of CFSMs.
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Proposition 2.8. Let and be two communicating
systems. If for all then .

For both the synchronous and the asynchronous semantics we restrict the
attention to fair runs. An infinite run is fair if each transition which is con-
tinuously enabled is taken in a finite number of steps. A finite run is always
fair.

We are interested in standard properties of communicating systems which we
now recall. Definitions are alike in the synchronous and asynchronous semantics,
hence, to avoid repetitions, below stands for or .

Definition 2.9 (Communication properties). Let be a com-
municating system.

i) Liveness: S is live if for each configuration and each
with outgoing transitions from in there exists a run of from s
including a transition of as a component transition.

ii) Lock freedom: A configuration is a lock if
– there is with an outgoing transition t from in and
– there exists a run of starting from s, maximal w.r.t. prefix order, and

containing no transition t′ involving .
System S is lock-free if for each , s is not a lock.

iii) Deadlock freedom: A configuration is a deadlock if
– s has no outgoing transitions in and
– there exists such that has an outgoing transition in .
System S is deadlock-free if for each , s is not a deadlock.

Liveness, as in [41], establishes the progress of communicating systems we are
interested in. Lock freedom casts in our framework the idea that, similarly to
[32,33], certain communications happen, whereas deadlock freedom extends the
definition of deadlock in [19] to a setting which can be synchronous or asyn-
chronous (as done also in [37,48]).

3 Choreography Automata

We introduce choreography automata (c-automata) as an expressive and flexible
model of global specifications, following the styles of conversation protocols [27],
choreographies [14,31,40], global graphs [48] and multiparty session types [17,
28,30]. As customary in choreographic frameworks, we show how to project c-
automata on local specifications. As anticipated, our projection yields a system
of CFSMs formalising the local behaviour of the participants of a choreography.

C-automata (ranged over by CA, CB, etc.) are FSAs with labels in Lint.

Definition 3.1 (Choreography automata). A choreography automaton (c-
automaton) is an FSA on the alphabet Lint. Elements of L∗

int are choreography
words, subsets of L∗

int are choreography languages.
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Remark 3.2. Definition 3.1 admits non-deterministic c-automata. This does not
increase the expressiveness of our framework. In fact, (i) the notions that we use
for our results rely on traces and (ii) our projection operation (cf. Definition 3.3)
is insensitive to non-determinism (cf. Proposition 3.6). Non-deterministic specifi-
cations are however desirable since they are easier to attain for the designer. 	

Given a c-automaton, our projection operation builds the corresponding com-
municating system consisting of the set of projections of the c-automaton on
each participant, each projection yelding a CFSM. Hereafter, is the set
of participants of c-automata; note that is necessarily finite.

Definition 3.3 (Automata Projection). The projection on of a transition
t = q

λ−→ q′ of a c-automaton, written is defined by:

The projection of a c-automaton CA = 〈S, q0,Lint,→〉 on a participant ,
denoted , is obtained by determinising and minimising up-to-language
equivalence the intermediate automaton

The projection of CA, written , is the communicating system .
The projection function trivially extends to choreography words and languages.

The projection defined above, apart for determinisation and minimisation,
is essentially homomorphic, as most of the projections in the literature. Other
approaches such as [25,43] add hidden communications to be able to deal with
larger classes of choreographies. We prefer the former approach for its simplicity.
Hidden communications can however be added directly at the choreographic level
as proposed in [36].

It is a simple observation that the projection on of CA is -local, deter-
ministic and hence ε-free. Thanks to the properties of determinisation and min-
imisation (as, e.g., in the partition refinement algorithm [42]), the states of
are sets of states of CA.

Example 3.4 (Projections of Cref). The projections of our working example are
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For instance, is obtained by determinising (minimisation is the iden-
tity in this case) the following intermediate automaton obtained as described in
Definition 3.3.

	
The following proposition relates the language of the projection with the

language of the original automaton.

Proposition 3.5. For all c-automata CA and , .

The projection operation is well-behaved with respect to trace equivalence.

Proposition 3.6. If CA and CA′ are trace-equivalent c-automata then
and are isomorphic for each participant .

4 Well-Formed Choreography Automata

To ensure that the communicating system obtained by projection of a c-
automaton is well-behaved, some conditions are necessary. Since the conditions
depend on the used communication infrastructure, we consider first synchronous
communication, leaving to Sect. 5 the case of asynchronous communication.

Definition 4.1 (Concurrent transitions). Let CA = 〈S, q0,L,→〉. Two tran-

sitions and are concurrent iff there is a state q′ ∈ S and tran-

sitions and .

Well-branchedness (cf. Definition 4.6) is a key notion which intuitively states
that each participant is aware of the choices made in the choreography when
its behaviour depends on those choices. The awareness of choice is checked on
spans, namely pairs of runs that may constitute alternative branches of choices.
Spans are formalised building on the notion of candidate branch which, in turn,
is defined in terms of pre-candidate branch.

Definition 4.2 (Candidate q-branch). Let q be a state of a c-automaton CA.
A pre-candidate q-branch of CA is a q-run of CA such that each cycle has at
most one occurrence within the whole run (i.e. any subsequence of the form q −→
. . . −→ q, where q occurs only at the beginning and at the end of the subsequence,
is not present more than once in the run). A candidate q-branch is a maximal
pre-candidate q-branch with respect to prefix order.

We often refer to a (pre-)candidate q-branch simply as “(pre-)candidate of q”.
Due to the condition about cycles in Definition 4.2, the following holds trivially.
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Fig. 1. Runs of Cref.

Fact 1. Given a state q of a c-automaton CA, the set of its pre-candidates is
finite, and so is, a fortiori, that of its candidates.

Example 4.3 ((Pre-)candidate branches in Cref). The sequences in Fig. 1 are
runs of the c-automaton of our working example. They are all pre-candidates
of either 3 or 4, but run πe, which is not a pre-candidate of 4 since the cycle
4–3–4 occurs twice. Runs πb and πd are also candidates of 3, being maximal
pre-candidates with respect to prefix order. 	
Definition 4.4 (q-span). Given a state q of a c-automaton CA, a pair (σ, σ′)
of pre-candidate q-branches of CA is a q-span if σ and σ′ are

– either cofinal, with no common node but q and the last one;
– or candidate q-branches with no common node but q;
– or a candidate q-branch and a loop on q with no other common nodes.

A participant chooses at a q-span (σ, σ′) if the first transition of both σ
and σ′ has as sender.

Example 4.5 (Spans of Cref). The states with spans of our working example are
3 and 4. A span from 3 is (πa, πf ), where πa and πf are as in Fig. 1. Indeed, πa

and πf are cofinal (in 2) pre-candidates of 3 with no common states but 3 and 2.
Participant chooses at (πa, πf ). The pair (πb, πd), instead, is not a span from
3, since πb and πd are maximal, but share other nodes than 3. 	

Intuitively, a choice is well-branched when the participants other than the
one opting for alternative runs either behave uniformly in each branch, or can
ascertain which branch has been chosen from the messages they receive.

Definition 4.6 (Well-branchedness). A c-automaton CA is well-branched if
for each state q in and sender in a transition from q, all of the
following conditions must hold:

(1) all transitions from q involving , have sender ;
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(2) for each transition t from q whose sender is not and each transition t′

from q whose sender is , t and t′ are concurrent;
(3) for each q-span (σ, σ′) where chooses at and each participant ,

the first pair of different labels on the runs and (if any) is of the
form with or .

We dub a selector at q.

In the above definition loops are taken into account in item (3) since the
notion of span is defined in terms of candidate branch. The latter is a maximal
run where cycles can be considered at most once, as shown in Example 4.3.

In case of a nondeterministic c-automaton, the conditions of Definition 4.6
are checked after the c-automaton has been determinised. In fact, recalling
Remark 3.2, we consider properties of languages of c-automata, and determinisa-
tion, as well as minimisation, of FSA preserve languages. Also, both operations
preserve the system resulting from projection (cf. Proposition 3.6). (Observe that
here we exploit classical results of automata theory.) Also, by Fact 1 and the
obvious decidability of the conditions of Definitions 4.4 and 4.6 we get

Fact 2. Well-branchedness is a decidable property.

Example 4.7 (Well-branchedness of Cref). All the states of Cref satisfy the con-
ditions of Definition 4.6; the only non-trivial cases are states 3 and 4. Condition
(1) holds for , which is the selector of the choice at 3, and for , which is the
selector of the choice at 4; condition (2) holds vacuously, and condition (3) holds
for both and in all the spans from 3 and from 4. For instance, in the span
(πa, πf ) from 3, described in Example 4.5, the first actions of on πa and πf are
the inputs from which have different messages, whereas, for what concerns ,
the condition holds vacuously. As a matter of fact, since πa and πf are cofinal in
2, the well-branchedness conditions on state 2 do guarantee to behave properly
afterwards, independently on whether πa or πf have been followed before. 	

Condition (2), vacuously true in our working example, is needed when mul-
tiple participants act as sender in the same state: this ensures that the only
possibility is that actions of different participants are concurrent so that possi-
ble choices at a state are not affected by independent behaviour.

We add a further condition to rule out c-automata having consecutive tran-
sitions involving disjoint participants and not actually concurrent.

Definition 4.8 (Well-sequencedness). A c-automaton CA is well-sequenced
if for each two consecutive transitions either

– they share a participant, that is , or
– they are concurrent, i.e. there is q′′′ such that .

Notice that, by finiteness of the transition relation of c-automata, we get

Fact 3. Well-sequencedness is a decidable property.
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Fig. 2. Failure of well-sequencedness completion.

Notation. For the sake of readability, a well-sequenced c-automaton can be
represented by omitting, for each diamond, two of its consecutive transitions. We
call such representation compact. Notice that, given a compact representation,
it is always possible to recover the original c-automaton. So far and hereafter we
assume that all c-automata are compactly represented.

Example 4.9 (Well-sequencedness of Cref). It is not difficult to check that Cref
is well-sequenced because the first condition of Definition 4.8 holds for any pair
of consecutive transitions in Cref. 	

Well-sequencedness is necessary to establish a precise correspondence
between the language of a c-automaton and of its projection (cf. Theorem4.14
and the discussion following it).

Remark 4.10. We show that not all c-automata can be “completed” to well-
sequenced ones. Consider the c-automaton of Fig. 2(a), which is not well-
sequenced because of the transitions from state 0 to state 1 and from state 1 to 2.
By “completing the diamond” for such transitions (i.e., by adding the new state

3 and the transitions and we obtain the c-automaton of
Fig. 2(b). This is still not well sequenced, because of the transitions
and . So we try to make it well-sequenced by completing the diamond
once again and obtain the c-automaton of Fig. 2(c). The resulting c-automaton
is still not well-sequenced, because of the transitions and .
Again a vain attempt, because of the transitions and . It
is immediate to check that we could go on indefinitely.

It is impossible to complete the initial c-automaton since the intended com-
pleted automaton should generate a non-regular language (since it should gener-
ate strings with a number of interactions which is, roughly, double of the
number of interactions). It would hence be interesting to know whether,
in case the expected completed interaction language of a c-automaton is regular
and prefix-closed, it is possible to generate it also by means of a well-sequenced
c-automaton. It would be also interesting to establish a condition on cycles (if
any) that guarantees the effectiveness of the completion of a c-automaton. We
leave these questions for future work. 	

We show a closure property of the languages of well-sequenced c-automata.
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Definition 4.11 (Concurrency closure). The swap relation on choreography
words is the smallest equivalence relation ∼ satisfying

where . Given a choreography language L
close(L) = {w ∈ Lint

∣
∣ ∃w′ ∈ L. w ∼ w′ }

is the concurrency closure of L.

The above relation is reminiscent of the swapping relation introduced in [18],
with similar aims.

Proposition 4.12. Let CA be a well-sequenced c-automaton. Then L(CA) is
concurrency closed, i.e. L(CA) = close(L(CA)).

Notice that the converse of the above proposition does not hold in general.
In fact, consider the following c-automaton

we can check that L(CA) = close(L(CA)) but CA is not well-sequenced.
The notion of well-formedness below sums up the requirements needed in

order for a c-automaton to be projected to a well-behaved communicating
system.

Definition 4.13 (Well-formedness). A c-automaton is well-formed if it is
both well-branched and well-sequenced.

The next result in Theorem 4.14 establishes that the language of a well-
formed c-automaton coincides with the language of the communicating system
obtained by projection. This provides a correctness criterion for our projection
operation.

Theorem 4.14. for any well-formed c-automaton CA.

Notice that well-formedness is a necessary condition for the theorem above.
It is in fact easy to check that

when CA is one of the c-automata (a), (b) or (c) of Fig. 3. In particular, (a) is
not well-sequenced whereas (b) and (c) are not well-branched: for (b), item (2)
of well-branchedness (Definition 4.6) does not hold; (c) instead violates item (3).

We can now show that the projections of well-formed choreography automata
enjoy the communication properties of Definition 2.9.

Theorem 4.15. Given a well-formed c-automatonCA, its projection
is live, lock-free, and deadlock-free with respect to the synchronous semantics.
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Fig. 3. Well-formedness is necessary for Theorem 4.14.

5 Asynchronous Communications

We now transfer the results of the previous sections to the asynchronous seman-
tics of communicating systems (Definition 2.7). Remarkably, the semantics does
not affect the definition of c-automata (and of projections) since it is independent
of the communication model. Hence, any result depending only on the definition
of c-automata still holds. Well-sequencedness instead needs updating.

Definition 5.1 (Asynchronous well-sequencedness). A c-automaton is
asynchronously well-sequenced if for each two consecutive transitions

either

– the sender of the second transition occurs in the first one, that is ,

– or they are concurrent, i.e. there is q′′′ such that .

Asynchronous well-sequencedness (Definition 4.8) implies the synchronous
one. Indeed, asynchronous well-sequencedness requires either two transitions to
be concurrent or that the sender of the second transition occurs in the first one.
The latter condition is weaker than having disjoint participants as required in
the synchronous case.

Note that our working example is well-sequenced but not asynchronously

well-sequenced (because e.g., of transitions . Thus, we
now consider it as the compact representation of the actual c-automaton accord-
ing to Notation on page 12.

Unlike well-sequencedness, the notion of well-branchedness has not to be
changed in case asynchronous communications are considered. So, in the asyn-
chronous setting, we define asynchronous well-formedness as the conjunction of
asynchronous well-sequencedness (Definition 5.1) and well-branchedness (Defini-
tion 4.6).

The correspondence result between the semantics of a c-automaton and of its
projection requires to decide which actions to observe on the projection. Indeed,
in a c-automaton, each interaction is seen as an atomic event, while in the
asynchronous semantics of communicating systems each interaction corresponds
to two events: a sending event and a receiving event. We opt to observe sending
events only because (internal) choices are determined by sending events. This
decision also plays well with the notion of well-branchedness, where most of the
conditions concern sender participants. Other possible options are discussed in
[35], in a process algebraic setting. This idea is formalised by sender traces.
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Definition 5.2 (Sender traces). The sender traces of a communicating
system S are obtained from its asynchronous traces by replacing each output label

with and each input label with ε.

The modification of well-sequencedness for the asynchronous case does imply
that we need to “update” the definition of concurrency closure as well.

Definition 5.3 (Asynchronous concurrency closure). The asynchronous
swap relation on choreography words is the smallest pre-order ≤ satisfying

The downward closure of a choreography language L with respect to ≤

closea(L) = {w ∈ Lint

∣
∣ ∃w′ ∈ L. w ≤ w′ }

is the asynchronous concurrency closure of L.

The condition for asynchronous concurrency closure is weaker than the one
in the synchronous case. This is due to the fact that sender-traces must be
closed under asynchronous concurrency (cf. Lemma 5.4 below), so to guarantee
that the traces of an automaton do coincide with the sender-traces of its pro-
jection (Theorem 5.6 below). We discuss such a necessity with an example after
Theorem 5.6.

Lemma 5.4. LetCA be a c-automaton. Then .

We now proceed to prove the correctness of projection for asynchronous
systems. We will reduce it to the corresponding result for synchronous systems
(Theorem 4.14). This is done by showing that all asynchronous runs are pairable
(see below), that is they can be put in a suitable normal form which directly
corresponds to a synchronous run. Notably, such a result is false for c-automata
which are not asynchronously well-formed.

Definition 5.5 (Pairable runs). Let CA be a c-automaton. A run σ in
is paired into a run σ′ in iff they are coinitial, produce the same sender
trace, and each output in σ′ is immediately followed by the corresponding
input . A run σ is pairable if it is paired into a run σ′.

Theorem 5.6. Let CA be an asynchronously well-formed c-automaton.

Similarly to Theorem4.14, asynchronous well-formedness is a necessary con-
dition for Theorem5.6. Examples (b) and (c) of Fig. 3 work the same also for the
asynchronous case, since we do not changed the definition of well-branchedness.
We changed instead the definition of well-sequencedness to a stricter version and
the c-automaton (a) of Fig. 3 is hence not enough to show the necessity of asyn-
chronous well-sequencedness; this can however be easily done using the following
c-automaton which is well-sequenced but not asynchronouly well-sequenced.
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Since outputs of asynchronous CFSMs can always be fired, there is a run of
the projected system beginning with and producing the sender trace

which trivially does not belong to L(CA)
because the interactions cannot be swapped (cf. Definition 5.3).

The communication properties for projected systems can also be obtained.

Theorem 5.7. Given an asynchronous well-formed c-automaton CA, its pro-
jection is live, lock-free, and deadlock-free with respect to the asyn-
chronous semantics.

6 Conclusion, Related Work and Future Work

We introduced a model of choreographies based on FSAs whose transitions are
labelled by interactions. We showed relevant results both for a synchronous and
an asynchronous underlying communication infrastructure. We established a cor-
respondence between the language of an automaton and the one of its projection,
as well as proofs of liveness, lock, and deadlock freedom for the latter.

The adoption of an automata-based model brings in two main benefits.
Firstly, the constructions that we provided are based on set-theoretic notions
and are syntax-independent. This contrasts with syntax-driven models (such as
behavioural type systems [30]) where expressiveness may be limited and def-
initions may be more complex due to syntactic reasons. E.g., the example in
Sect. 1 cannot be modelled in many behavioural type systems since entangled
loops cannot be represented using a recursion operator. Secondly, we can re-use
well-known results of the theory of automata (e.g., we used notions of trace
equivalence and determinisation) and related tools.

Related Work. Automata-based models for specifying the local behaviour of dis-
tributed components are commonplace in the literature (see e.g., [13,21]). Less
so is for the global specifications of choreographies: to the best of our knowl-
edge, the conversation protocols (CP) in [9,26,27] (and references therein) are
the only such model in the literature. The realisability of CP has been first
studied in [27]; this is indeed the work closest to ours. Conversation protocols
are non-deterministic Büchi automata whose labels resemble our interactions
(barred the fact that, contrarily to our formalism, in [27] the sender and the
receiver of each message are determined by its content). Our c-automata are
basically finite-state automata where infinite words can be taken into account
by looking at them as Büchi automata where all states are actually final. It is
not immediate to provide a detailed comparison between conversation protocols
and c-automata because their semantics and underlying communication models
differ. As for the communication model, conversation protocols are realised in a
subclass of CFSMs (cf. Section 5 of [27]), whereas we consider the unrestricted
model of CFSMs, as well as a synchronous version of it. Concerning the seman-
tics, Definition 4 (item 3(b)) of [27] restricts the runs to those where all messages
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in queues are eventually consumed, that is they require by definition a form of
liveness. Instead, one of our goals is to identify conditions that guarantee rele-
vant liveness properties. We prove them in Theorem 5.7, and in Proposition D.1
in [7] we prove the exact property assumed in [27]. The realisability conditions
of conversation protocols are lossless join, synchronous compatibility, and auton-
omy. Those conditions cannot easily be compared with well-formedness, due to
the differences in the models and in the semantics. Furthermore, the style of the
conditions is very different, and it also induces very different proof strategies in
many cases. In particular,

– our well-sequencedness is checked on pairs of consecutive transitions and well-
branchedness on pairs of coinitial paths;

– lossless join is a global property, that is a condition on the automaton con-
sisting of the product of the languages of the local projections;

– synchronous compatibility is defined in terms of pairs of traces in the pro-
jection but verified with an algorithm that checks a global property of an
automata construction, and the same holds for autonomy.

Thus, while the conditions capture similar intuitions, a detailed comparison
is very hard. When restricting to the common part of the two models, well-
branchedness implies autonomy while the opposite does not hold. Indeed, by
well-branchedness the selector is output-ready (according to the terminology
in [27]), while any other participant either behaves uniformly in each branch
(and is thus either input-ready or output-ready or termination-ready) or it is
made aware of the choice by distinct inputs (that is it is input-ready). In all
the cases autonomy is satisfied. In the other direction, a choice between traces

and satisfies auton-
omy but not well-branchedness.

As for lossless join, we do not assume it. Actually, it is equivalent to one of our
results, namely the correctness of the projection in the synchronous case (The-
orem 4.14). Such a result is also used in the asynchronous case (Theorem 5.6),
which is proved by reduction to the synchronous one via paired runs. We leave
a detailed comparison of the two sets of constraints, in a common setting, for
future work. Later works on CP (see, e.g., [9]) changed the approach and relied
on model checking to show realisability instead of well-formedness conditions.
Unfortunately, some of their main decidability results were flawed [24].

Conditions similar to well-branchedness and well-sequencedness do naturally
arise in investigations related to choreographies and their realisability. A unique
sender driving a choice is a condition present in several multiparty session types
formalisms ([28] and [20] to cite just a couple of them), global graphs formalisms
[48], choreography languages in general (for instance see the notion of domi-
nant role in [44]). Conditions related to item (3) of Definition 4.6 can also be
found in multiparty session types formalisms [46] or in conversation protocols,
as discussed above. Also, notions close to well-sequencedness turn out to arise
quite naturally in “well-behaved” choreographies (see for instance the notion of
well-informedness of [15] in the context of collaboration diagrams).
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Similarly to what discussed in Remark 4.10, some approaches propose tech-
niques to fix choreographies which are not well-behaved. This issue is consid-
ered in some multiparty session types [10,11], in algebraic and automata-based
frameworks for choreographies [8,36] as well as in the choreographic middleware
ChoreOS [3,4]. While they consider different conditions than ours, trying to
adapt their approaches to our setting is an interesting item for future work.

As said, most approaches are not based on automata. For instance, [22,35,44]
use algebraic operators to build larger choreographies from smaller ones, and give
conditions on such operations ensuring that the resulting choreography is “well-
behaved”. This technique is not applicable in our case, since, like most works on
automata, we do not consider an algebra to build automata.

While the main aim of c-automata is to provide a choreography model based
on FSAs, we remark here that it is rather expressive and complements exist-
ing models of choreographies or multiparty session types (MST). In particular,
the expressive power of c-automata is not comparable with the one of the MST
in [45], which subsumes most systems in the literature. More precisely, the c-
automaton Cref in Sect. 1 cannot be syntactically written in [45] due to the two
entangled loops. That example cannot be expressed in global graphs [48] either,
again due to the intersecting loops. We note that the infinite unfolding of the c-
automaton is regular and therefore it would fit in the session type system consid-
ered in [47]. However, this type system has not been conceived for choreographies
(it is a binary session type system) and does not allow non-determinism.

On the other side, examples such as [45, Example 2, Fig. 4] cannot be written
in our model (since we expect the same roles to occur in branches which are
coinitial, branches inside loops require that all participants in a loop are notified
when the loop ends). We conjecture that a refinement of well-branchedness is
possible to address this limitation. Global graphs are another model of global
specifications. Their advantage is that they feature parallel composition, which
c-automata lack. We note however that one could use the classical product of
automata on c-automata to model parallel composition in the case where the two
branches have disjoint sets of participants (as typically assumed in MST with
parallel composition). Mapping global graphs without parallel composition into
c-automata is trivial. The same considerations apply to choreography languages
where possible behaviours are defined by a suitable process algebra with parallel
composition such as [14,35].

Future Work. One of the main motivations to develop a choreography model
based on automata was to lift the compositional mechanism discovered in [6]
on CFSMs to global specifications, in such a way that composition of global
specifications preserves well-formedness. This is the problem we are currently
addressing.

An interesting future development is also to adopt Büchi automata as c-
automata. This extension is technically straightforward (just add accepting
states to Definition 3.1 and define ω-languages accordingly), but it probably
impacts greatly the underlying theory. An interesting yet not trivial effort is
the identification of well-formedness conditions on this generalised class of c-
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automata that guarantee a precise correspondence with the ω-languages of the
projections.

The interplay between FSAs and formal languages could lead to a theory
of projection of choreographies based on languages instead of automata. For
instance, one could try to characterise the languages accepted by well-formed
c-automata, similarly to what done in [1,38,48]. In those approaches global
specifications are rendered as partial orders and the distributed realisability is
characterised in terms of closure properties of languages.

A final direction for future work concerns the implementation of tool support
for the approach. We are currently working in this direction. A very preliminary
and partial implementation by Simone Orlando and Ivan Lanese is available at
https://github.com/simoneorlando/Corinne.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

2. Ariola, W., Dunlop, C.: Testing in the API Economy. Top 5 Myths. https://
api2cart.com/api-technology/api-testing-myths-infographic/

3. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

4. Autili, M., Di Ruscio, D., Di Salle, A., Perucci, A.: CHOReOSynt: enforcing chore-
ography realizability in the future internet. In: Cheung, S.-C., Orso, A., Storey,
M.-A.D. (eds.) Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE-22), Hong Kong, China, 16–22
November 2014, pp. 723–726. ACM (2014)

5. Autili, M., Di Salle, A., Gallo, F., Pompilio, C., Tivoli, M.: CHOReVOLUTION:
automating the realization of highly–collaborative distributed applications. In: Riis
Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 92–
108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 6

6. Barbanera, F., De’Liguoro, U., Hennicker, R.: Connecting open systems of commu-
nicating finite state machines. J. Log. Algebraic Methods Program. 109, 100476
(2019)

7. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata, April 2020. http://
www.cs.unibo.it/∼lanese/choreography automata.pdf. Full version

8. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 2

9. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 Jan-
uary 2012, pp. 191–202 (2012)

10. Bocchi, L., Lange, J., Tuosto, E.: Amending contracts for choreographies. In: ICE,
volume 59 of EPTCS, pp. 111–129 (2011)

11. Bocchi, L., Lange, J., Tuosto, E.: Three algorithms and a methodology for amend-
ing contracts for choreographies. Sci. Ann. Comput. Sci. 22(1), 61–104 (2012)

https://github.com/simoneorlando/Corinne
https://api2cart.com/api-technology/api-testing-myths-infographic/
https://api2cart.com/api-technology/api-testing-myths-infographic/
https://doi.org/10.1007/978-3-030-22397-7_6
http://www.cs.unibo.it/~lanese/choreography_automata.pdf
http://www.cs.unibo.it/~lanese/choreography_automata.pdf
https://doi.org/10.1007/978-3-662-49665-7_2


Choreography Automata 105

12. Bonér, J.: Reactive Microsystems - The Evolution of Microservices at Scale.
O’Reilly, Sebastopol (2018)

13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

14. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77351-1 4

15. Bultan, T., Xiang, F.: Specification of realizable service conversations using col-
laboration diagrams. Serv. Oriented Comput. Appl. 2(1), 27–39 (2008). https://
doi.org/10.1007/s11761-008-0022-7

16. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach
to design and analysis of e-service composition. In: Hencsey, G., White, B., Chen,
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