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Abstract

Glaucoma, a multifactorial neurodegenerative disease characterized by progressive loss of retinal 

ganglion cells and their axons in the optic nerve, is a leading cause of irreversible vision loss. 

Intraocular pressure (IOP) is a risk factor for axonal damage, which initially occurs at the optic 

nerve head (ONH). Complex cellular and molecular mechanisms involved in the pathogenesis of 

glaucomatous optic neuropathy remain unclear. Here we define early molecular events in the ONH 

in an inherited large animal glaucoma model in which ONH structure resembles that of humans. 

Gene expression profiling of ONH tissues from rigorously phenotyped feline subjects with early-

stage glaucoma and precisely age-matched controls was performed by RNA-sequencing (RNA-

seq) analysis and complementary bioinformatic approaches applied to identify molecular 

processes and pathways of interest. Immunolabeling supported RNA-seq findings while providing 

cell-, region-, and disease stage–specific context in the ONH in situ. Transcriptomic evidence for 
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cell proliferation and immune/inflammatory responses is identifiable in early glaucoma, soon after 

IOP elevation and prior to morphologically detectable axon loss, in this large animal model. In 

particular, proliferation of microglia and oligodendrocyte precursor cells is a prominent feature of 

early-stage, but not chronic, glaucoma. ONH microgliosis is a consistent hallmark in both early 

and chronic stages of glaucoma. Molecular pathways and cell type–specific responses strongly 

implicate toll-like receptor and NF-κB signaling in early glaucoma pathophysiology. The current 

study provides critical insights into molecular pathways, highly dependent on cell type and sub-

region in the ONH even prior to irreversible axon degeneration in glaucoma.
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Introduction

Glaucoma represents a spectrum of complex and multifactorial ocular disorders that are 

unified by an optic neuropathy with characteristic loss of retinal ganglion cells (RGCs) and 

their axons. Glaucoma remains a leading cause of irreversible blindness and visual 

impairment worldwide [1]. Intraocular pressure (IOP) is the most consistent and currently 

the only modifiable risk factor for glaucoma progression [2, 3], although individual 

susceptibility to IOP varies considerably [4, 5]. Current treatment strategies targeting the 

reduction of IOP often fail to prevent disease progression [6–8]. There is a critical need for 

deeper understanding of the cellular and molecular pathology of glaucoma, in order to 

develop more effective therapeutic strategies for patients with this common 

neurodegenerative disease.

In humans, RGC axons pass through “pores” between robust, multilayered, collagenous 

plates that form the lamina cribrosa (LC) of the optic nerve head (ONH). Substantial 

evidence from human patients, and from animal models including non-human primates, cats, 

and rodents, indicate that the LC region is an important initial site for optic nerve damage in 

glaucoma [9, 10]. A number of distinct, but potentially interrelated, pathobiological 

mechanisms have been implicated in glaucoma, including oxidative stress, biomechanical, 

vascular, neuroinflammatory, cellular, extracellular matrix-associated, and excitotoxic 

processes. These may all contribute to death of RGC axons and somas and ultimately result 

in loss of integrity of visual pathways [11–14]. However, molecular events that initiate, or 

are protective against, damage to RGC axons at the ONH in glaucoma have not been fully 

elucidated, largely due to limitations of existing experimental models and inability to 

reliably identify and study early-stage disease effectively in human patients.

Gene expression profiling provides comprehensive insight into molecular changes associated 

with disease. Advances in RNA-sequencing (RNA-seq) technology allow us to investigate 

transcriptome-wide gene expression without a priori assumptions. The greater dynamic 

range of RNA-seq, relative to hybridization-based microarrays, enhances its power to 

identify small, but potentially biologically important, quantitative changes. This enhanced 

sensitivity is valuable when studying an early phase of a complex disease process such as 
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glaucomatous optic neuropathy, since changes in expression of individual genes may 

berelativelymodest. There havebeen very few reported RNA-seq studies conducted to 

examine ONH gene expression in spontaneous glaucoma models [15]. Importantly, these 

studies have been confined to rodents, in which the ONH lacks the collagenous plates of the 

human LC. To our knowledge, there have been no published studies which comprehensively 

interrogate early ONH gene expression changes in a spontaneous glaucoma model in which 

the ONH and LC closely resembles that of humans.

We previously reported a spontaneously occurring, recessively inherited form of feline 

congenital glaucoma (FCG), which represents an ortholog of human primary congenital 

glaucoma at the GLC3D locus (OMIM: 613086) due to a mutation in LTBP2 [16, 17]. In 

this feline model, onset of significant IOP elevation is recognized at 10 weeks of age, but 

glaucomatous optic neuropathy is chronic and gradually progressive over several years, as 

seen in many forms of human glaucoma [16, 18].

Here, we illuminate pro-inflammatory pathways and innate immune responses as early 

molecular events in the ONH at an early stage of glaucoma, while identifying cell 

proliferation and downregulation of neuronal and oligodendrocyte genes, prior to 

morphologically detectable RGC axon loss, in a cohort of meticulously phenotyped young 

cats with genetic glaucoma. Analyses of cell-specific gene enrichment provided evidence of 

significant enrichment of genesets that have been associated with pro-inflammatory such as 

LPS-activated microglia. In subsequent immunolabeling experiments, we confirmed 

microglial activation in the ONH in situ in this young cohort with early-stage disease. 

Furthermore, we identified proliferating cells of both microglia/macrophage and 

oligodendrocyte-lineage in early glaucomatous ONHs, but not in ONHs of adult subjects 

with established glaucoma. Together, these findings highlight molecular pathways associated 

with altered gene expression early in the course of glaucoma and provide strong evidence 

supporting roles for microglial activation and ONH cell proliferation in the early 

pathobiology of glaucoma.

Methods and Materials

Animals

Animals were maintained under a consistent 12 h light-dark cycle and all tissues collected 

between 8 A.M. and 11 A.M. In total, 33 domestic cats (Felis catus) were studied. Twelve, 

10–12-week-old, homozygous LTBP2 mutant cats with fully penetrant, recessively inherited 

FCG [16, 19], and 7 age-matched wild-type (WT) cats of both sexes (FCG 6 male and 6 

female, WT 1 male and 6 female) provided optic nerve head tissues for gene expression 

profiling. Subsequently, archived tissues from 7 adult homozygous LTBP2 mutant cats, with 

chronic glaucoma and 7 age-matched WTcats, were used for between-age/between-stage 

comparisons.

Phenotyping and Tonometry

Clinical ophthalmic phenotype was confirmed for all cats by ophthalmic examination by a 

board-certified veterinary ophthalmologist (GJM). Ophthalmic examination included 
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rebound tonometry and slit-lamp biomicroscopy and indirect ophthalmoscopy following 

mydriasis. IOP was measured three times per week from 8 weeks of age by TonoVet® 

rebound tonometry (Icare Oy, Finland), as previously validated, in awake, gently restrained 

cats [18]. To minimize circadian variation in IOP, all values were obtained between 8 A. M 

and 10 A. M [20, 21].

Electrophysiological Testing

Full-field electroretinography (ERG) and visual evoked potential (VEP) were performed 

following standard procedures in the lab. Peak amplitudes and implicit times of a- and b-

waves in ERG were scored, and intensity response function (Naka-Rushton) was plotted for 

b-wave amplitudes. Cortical VEP responses were recorded and root mean square of VEP 

amplitudes of the early wavelets (RMS), and peak amplitudes and latencies of the late 

positive component (designated P2) of VEPs were calculated. See Supplemental materials 

and methods for detailed methods.

OCT

Spectral domain optical coherence tomography (SD-OCT) was performed following 

electrophysiological tests, ensuring IOPs had been measured at ≤ 30 mmHg for ≥ 90 min to 

limit confounding effects of tissue compliance on parameters measured. Three to five ONH 

cube scans and HD horizontal raster scans centered on the ONH were obtained using Cirrus 

SD-OCT (Carl Zeiss Meditec Inc., Dublin, CA). To evaluate in vivo morphological ONH 

alterations, we manually quantified the following ONH parameters (Supplemental Fig. S1) 

using ImageJ (NIH, version 3.1): cup depth (CD), pre-laminar tissue thickness (PLT), neural 

canal opening (NCO), and posterior displacement of the lamina (PLD). Values for each 

parameter calculated from three high-quality images per subject (signal strength > 8/10) 

were averaged for analyses.

ONH Tissue Dissection

Eyes were enucleated immediately following euthanasia at the conclusion of clinical testing. 

Optic nerves were dissected 2 mm posterior to the globe for microscopy as outlined below 

and in Supplemental data (see Quantification of Optic Nerve Axons). The ONH was 

trephined by 4 mm biopsy punch, and adjacent retina, meninges, and connective tissue were 

carefully removed under magnification with a stereomicroscope under nuclease free 

conditions. The dissected ONHs were immersed in RNA stabilization solution (RNAlater®, 

Invitrogen, Carlsbad, CA) within 10 min of enucleation to prevent RNA degradation, 

incubated at 4 °C overnight and then stored at − 80 °C until RNA extraction.

Quantification of Optic Nerve Axons

A semi-automated targeted sampling method was used to quantify axons as validated and 

published for feline normal and glaucomatous optic nerves [22]. See Supplemental materials 

and methods for detailed methods.
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RNA Sequencing, Read Alignment, Expression Estimation, and Differential Expression 
Analysis

Each RNA library was generated from total RNA isolated from ONH tissues. Libraries were 

sequenced by the Illumina® HiSeq2000 (Illumina, Inc., San Diego, CA) to obtain 100 bp 

strand-specific paired-end reads. Generated raw reads were quality-controlled, aligned, and 

mapped to the Felis catus reference genome (ICGSC Felis_catus_8.0/felCat8) using STAR 

[23] followed by estimation of transcript abundances using RSEM [24]. Differential 

expression (DE) analyses between normal and glaucomatous biological conditions were 

performed using DEseq2 [25]. Two other DE analysis tools were used to confirm the results 

of DEseq2. Differentially expressed genes (DEGs) between groups were considered 

significant with FDR < 0.05. See Supplemental materials and methods for detailed methods.

GSEA

Gene Set Enrichment Analysis (GSEA) was performed by pre-ranked enrichment analysis 

with GSEA (ver 2.2.0), analysis parameters: 1000 gene permutations [26]. The ONH RNA-

seq dataset was processed following recommendations of the GSEA tutorial for RNA-seq 

data (http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html). To rank the 

genes, Log2 fold change (FC) values provided by DESeq2 were used. Normalized 

enrichment scores (NES) were used as a measure of magnitude of enrichment. Publicly 

available datasets for cell specific analysis as well as microglia molecular signature were 

downloaded and implemented in the GSEA analyses (Supplemental Table S1).

WGCNA

Weighted Gene Co-expression Network Analysis (WGCNA) is a co-expression network 

analysis that has been widely used in large transcriptome datasets [27]. A signed co-

expression network was constructed using R package WGCNA (ver. 1.47) with normalized 

gene expression values filtered and log-transformed. Gene modules were formed by 

unsupervised clustering of genes by hierarchical clustering. The hub genes in upper quartile 

in the modules were visualized using Cytoscape (ver 3.3) [28] and Enrichment map 

Cytoscape plug-in [29]. See Supplemental materials and methods for detailed methods.

IF Labeling

Contralateral globes to those used for RNA-seq were fixed in 4% paraformaldehyde 

overnight at 4 °C. ONHs were then trephined by 4 mm biopsy punch and dissected as 

described above. The dissected ONH tissues were washed in 0.1 M PBS and immersed in a 

graded series of sucrose up to 30%, prior to embedding in Tissue-Tek® O.C.T. Compound 

(Sakura Finetek, Torrance, CA), and cryo-sectioning at 10 μm. Sections on slides were 

stored at − 80 °C until use. For immunofluorescence (IF), sections were dried for 1 h at 

room temperature, washed in 0.01 M PBS, and incubated for 45 min at room temperature in 

blocking solution (0.01 M PBS with 4% normal donkey serum, 1% BSA, and 0.1% Triton 

X-100). The slides were incubated overnight with appropriate dilutions of primary 

antibodies (Supplemental Table S2) in 0.01 M PBS with 2% normal donkey serum and 

0.05% Tween 20, after washing three times with 0.01 M PBS. The sections were washed 3 

times in 0.01 M PBS and then incubated with appropriate Alexa fluor® 488, 568, and 647 
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conjugated secondary antibody for 1 h at room temperature; nuclei were counterstained with 

1:1000 DAPI (Life technologies) for 3 min then sections mounted using ProLong Gold 

Antifade Mountant (Life technologies). For each run, appropriate feline tissues that express 

the target protein as positive controls, and negative controls (omitting primary antibody) 

were included. All IF experiments were repeated at least three times for each condition to 

confirm reproducibility of the results. Images were captured using an SP8 confocal 

microscope (Leica, Buffalo Grove, IL). Relative intensities of IF labeling of GFAP, 

normalized to negative controls, were compared in sub-regions of the ONH, designated pre-

laminar (PL), LC, and retro-laminar (RL).

Statistics

For quantitative values, data from one eye per cat were compared between groups by two-

tailed unpaired t test or ANOVA with Tukey’s multiple comparison test, after confirming 

normal distribution of data by Kolmogorov-Smirnov test. Where appropriate, to account for 

multiple hypothesis testing, Benjamini-Hochberg false discovery rate (FDR) procedures 

were applied. Unless noted otherwise in the text, descriptive statistics are presented as mean 

and standard error of the mean (SEM), and values of P < 0.05 considered significant. 

GraphPad InStat software (ver 3.06) and GraphPad Prism (ver 8.1.2) were used to conduct 

the statistical analyses. For RNA-seq DE analyses and functional enrichment analyses, an 

FDR < 0.05 was used, as implemented in DESeq2 software.

See Supplemental materials and methods for detailed methods as well as information on 

functional enrichmentanalysis and RT-qPCR.

Results

Functional Deficits and ONH Remodeling Precede Histopathologically Detectable RGC 
Axon Damage

Modest but statistically significant IOP elevation, first identified inFCG at 10 weeks of age 

relative to age-matched normal cats (Fig. 1a), was associated with subtle functional deficits 

characterized by reduced amplitude of VEP (Fig. 1b, c). Although VEP can reflect 

functional abnormalities anywhere in the visual pathway between distal retina and visual 

cortex, concurrent full-field flash ERG identified no significant differences in retinal 

responses between groups (Supplemental Fig. S2). Analysis of OCT-derived ONH structural 

parameters in vivo identified evidence of early ONH remodeling in FCG at 10–12 weeks of 

age (Fig. 1d, e). However, axon quantification and light microscopic evaluation of optic 

nerve morphology, which are established indicators of glaucomatous damage and stage of 

disease, revealed no quantitative or qualitative evidence of axonal damage (Fig. 1f–l). 

Collectively, in vivo and histologic findings represented an early stage of glaucoma in this 

cohort of young FCG cats, prior to significant irreversible axon loss.

Cell Proliferation and Inflammatory Related Genes Are Upregulated in the ONH in Early 
Glaucoma

To interrogate early glaucomatous ONH transcriptomic changes in an unbiased 

comprehensive manner, we carried out RNA-seq of 10 ONHs from 10 to 12-week-old FCG 
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cats and 6 age-matched controls. We identified 384 genes that were differentially expressed 

in the ONH of FCG relative to normal cats using DEseq2. Of these DEGs, 77% (296/384) 

were upregulated in FCG, whereas 23% (88/384) were downregulated, and 79% (303/384) 

expression changes were twofold or less (Fig. 2a). DEG expression profiles were remarkably 

consistent between subjects within either disease or control groups (Fig. 2b). The most 

highly up- and downregulated DEGs are presented in Supplemental Tables S3 and 

Supplemental Table S4, respectively (a list of all DEGs identified is also provided in 

Supplemental data 1). To provide greater confidence in the DEGs identified, we used two 

other differential expression analysis tools: edgeR and EBSeq. Over 92% (140/151) and 

82% (153/185) of the DEGs identified by edgeR and EBSeq, respectively, overlapped with 

those identified by DEseq2. DEG expression profiles were remarkably consistent between 

subjects within groups, clustered by disease status (Fig. 2b). To provide a functional context 

for the DEGs identified, we utilized functional enrichment analyses by gene ontology (GO) 

terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Inflammatory 

response and mitotic cell process were highly over-represented GO terms identified as 

significantly enriched within the upregulated DEGs in FCG by homology-based GO term 

assignment and enrichment analysis (Fig. 2c). No significantly enriched GO term was 

identified in the downregulated DEGs. Cell cycle and infectious diseases, such as 

tuberculosis and leishmaniasis that activate immune/inflammatory responses, were highly 

enriched pathways identified on KEGG pathway analysis (FDR < 0.05). RT-qPCR for 

selected, representative DEGs (HP, LGALS3, UPK1B, NMNAT2, and RYR1) yielded 

directions and magnitude of gene expression differences between FCG and normal control 

ONH tissues consistent with and thereby validating RNA-seq results (Fig. 2d).

Microglia and Oligodendrocyte Precursor Cells Proliferate in Early Spontaneous Glaucoma 
but Proliferating Cell Populations Vary by ONH Sub-region

As we identified significant upregulation of genes associated with the cell cycle in the ONH 

of early FCG relative to agematched controls, we conducted a series of experiments to 

establish the degree and nature of cell proliferation in the ONH of cats with early FCG. 

Density of cells expressing Ki67, a mitotic cell marker specific to proliferating cells, was 

significantly increased in the ONH of 10–12 week-old cats with early FCG (Fig. 3a). The 

vast majority of cells in the ONH are glia, including astrocytes, microglia, and 

oligodendrocytes, in addition to axons of RGCs [30–33]. However, distribution of cell types, 

tissue structure, and biomechanical and physiological stresses are not uniform throughout 

the ONH [34]. We examined cell proliferation within three distinct sub-regions of the ONH: 

pre-laminar (PL), lamina cribrosa (LC), and retro-laminar (RL) regions (Fig. 3b, c) [30, 33, 

35, 36]. Densities of proliferating cells were significantly greater in each of the ONH sub-

regions in FCG compared to age-matched, normal ONHs (Fig. 3c), though cell proliferation 

was most pronounced in the RL region of the glaucomatous ONH. Next, we sought to 

determine the identity of these proliferating cells using markers for ONH astrocytes (SOX2 

and GFAP), microglia/macrophages (IBA1), and cells of oligodendrocyte lineage (OLIG2) 

(Fig. 3d). In PL and LC regions of the early FCG ONH, almost all Ki67-labeling colocalized 

with IBA1, indicating that most proliferating cells in these regions are of microglia/

macrophage lineage. In contrast, in the RL region, OLIG2+/SOX2+-immunopositive cells 

predominated and are presumed to be proliferating oligodendrocyte precursor cells (OPCs) 
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(Fig. 3d) [37–39]. We subsequently addressed the question of whether glial cell proliferation 

remains a consistent hallmark of more chronic stages of glaucoma in FCG by 

immunolabeling ONHs from adult, 1–2-year-old, FCG and normal cats as described for 

younger animals. The young adult animal cohort was selected in an unbiased manner based 

solely on age and thus presented various degrees of axonal damage, although significant, 

chronic IOP elevation was consistently identified in all of these adult FCG cats 

(Supplemental Fig. S3). In contrast to younger kittens, no significant cell proliferation was 

identified in the adult ONH in FCG (Fig. 3a). In the much smaller population of 

proliferating cells in the adult ONH, the limited immunolabeling for Ki67 was largely 

restricted to microglia/macrophages, both in FCG and normal cats. This finding suggests 

that significant ONH glial cell proliferation is a feature that may be restricted to early-stage 

glaucoma.

As proliferation of various ONH cell types in early-stage FCG suggested cell type–specific 

responses to IOP elevation and initial glaucomatous damage, we next asked whether the 

ONH transcriptome in early FCG is enriched with cell typespecific genes, by conducting 

GSEA on the ONH transcriptome with cell type-specific genesets. Normalized enrichment 

scores (NES), a standardized metric that accounts for both differences in geneset size, and 

correlations between genesets and the expression dataset were used to compare and 

prioritize analysis results across gene sets [26]. Consistent with our immunolabeling results, 

we identified pronounced upregulation of microglia- and OPC-specific genes in the ONH in 

early glaucoma. Conversely, neuron- and myelinated oligodendrocyte–specific genes were 

significantly downregulated (Fig. 4a, b). Notably, the upregulation of astrocyte-specific 

genes was relatively modest compared to the other cell types in the ONH, suggesting more 

subtle molecular changes in astrocytes at this early stage of disease. Consistent with this 

finding, there was nosignificantchangein glial fibrillary acidic protein (GFAP) 

immunolabeling intensity in early FCG (Fig. 4c, d). Furthermore, no differences in 

normalized gene expression levels of astrocyte markers (GFAP, VIM, and AQP4) were 

observed between FCG and controls in this young cohort with early-stage disease (Fig. 4e).

Microglial Activation Is a Prominent Feature of Optic Neuropathy in Both Early-Stage and 
Chronic FCG

Guided by the pronounced enrichment of microglia specific genes and significant 

upregulation of immune/inflammation-related genes we observed in the ONH in early FCG, 

we next focused our attention on determining microglial cellular and molecular states. In all 

ONH sub-regions in early glaucomatous cats, there was a significant increase in the density 

of IBA1+ cells, compared to controls (Fig. 5a, b), providing further evidence for microglial/

macrophage activation throughout the ONH early in glaucoma, prior to axon degeneration. 

We next sought to determine whether microglia in the ONH become activated early in the 

course of FCG, soon after onset of IOP elevation. To directly assess microglial activation 

state in the ONH, we examined cell morphology in addition to the number of microglia, in 

each of the three ONH subregions in situ (Fig. 5c). Although IBA1+ cells show diverse 

morphology in each of these regions, and there are clearly limitations imposed by the 

assessment of three-dimensional structure in two-dimensional tissue sections, IBA1+ cells 

appear to have more activated shapes (rod-like, bushy, or ameboid) in glaucomatous ONH, 
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compared to age-matched normal controls. To assess molecular microglial activation, we 

first examined whether the ONH transcriptome in early FCG demonstrates enrichment of 

microglia genesets representative of various microglial cell states. GSEA identified 

significant enrichment of LPS-activated microglia genesets, which was a predominant 

molecular signature over other enriched microglial genesets in the ONH in early glaucoma 

(Supplemental Fig. S4). IBA1 expression colocalized with P2RY12 immunoreactivity (a 

microglia specific marker) in the majority of the IBA1+cell population in the PL and RL of 

normal ONH, but not in the LC region of young FCG and age-matched normal subjects 

(Supplemental Fig. S5). Thus, with the possible exception of the LC region, ONH resident 

microglial activation contributes to microgliosis in early stage of glaucoma. Furthermore, 

IBA1+ cell types and/or their phenotype may vary between sub-regions. However, as in early 

FCG, density of IBA1+ cells was increased in all three regions of the adult glaucomatous 

ONHs, relative to age-matched controls, and microglial and potentially macrophage 

activation appears to be a consistent feature across stages of disease in this glaucoma model 

(Fig. 5d).

Early OPC Proliferation and Late Oligodendrocyte Loss Are Features of Spontaneous 
Glaucoma

Increased density of OPCs (OLIG2+/SOX2+) was identified in the RL region of the ONH in 

early FCG in comparison with age-matched controls (Fig. 6a). In contrast, densities of 

differentiated oligodendrocytes (OLIG2+/SOX2−), oligodendrocyte-lineage cells (OLIG2+), 

or astrocytes (OLIG2−/SOX2+) were not significantly different at this early disease stage 

relative to age-matched controls(Fig.6b–d). Next, we investigated whether this increase in 

density of OPCs persisted in chronic disease by examining archived ONH tissues from adult 

cats with chronic FCG together with additional, appropriate age-matched normal cats. No 

significant difference in density of OPCs or astrocytes (OLIG2−/SOX2+) was observed 

between adult FCG cats and normal controls (Fig. 6e, h), while the density of OLIG2+/

SOX2− differentiated oligodendrocytes was significantly lower in adult FCG ONHs (Fig. 

6f). Together, this resulted in an overall decrease in the number of OLIG2+ oligodendrocyte-

lineage cells in chronic glaucoma (Fig. 6g). Collectively, our experiments indicated that 

increase in density of OPCs with cell proliferation is a feature of the early glaucomatous 

ONH, whereas loss of mature oligodendrocytes occurs later, in chronic disease.

Consistent, Coordinated Gene Expression Changes Are Identifiable in Early Glaucoma by 
Complementary Computational Approaches

Expression levels of single genes may not change dramatically, early in the course of a 

slowly progressive neurodegenerative disease such as glaucoma. Our data showed that, 

relative to age-matched controls, changes in ONH gene expression in early FCG were less 

than twofold for nearly 80% of the DEGs identified. To account for limitations this imposes 

on the detection of differentially expressed genes and pathways by conventional pairwise 

comparison and pre-determined cut-off values, we utilized GSEA as a more powerful 

bioinformatics tool to identify disease-relevant molecular pathways and functions that may 

play a role in earlystage glaucoma [26]. Our results provided a number of biologically 

meaningful insights into the pathogenesis of glaucoma. Importantly, the molecular 

pathways/functions we identified were not detectable in conventional pairwise gene to gene 
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DE analyses. For GO functional analysis, we employed enrichment network analysis to 

highlight the most enriched molecular functions and reduce redundancy of enriched GO 

gene sets. This provided a summary of up- and downregulated GO biological processes in 

early glaucomatous ONH (Fig. 7a). In the upregulated GO biological processes in early 

FCG, immune/inflammatory responses, adhesion, and translation functions were 

significantly enriched, whereas downregulated GO terms were enriched in processes 

associated with neuron development/differentiation, transport, responses tolight stimulus, 

and memory/behavior. Utilizing KEGG pathway curated genesets, GSEA identified 38 

significantly enriched upregulated pathways and 3 downregulated molecular pathways in 

early glaucoma, including significantly upregulated ribosome, cytokine-cytokine receptor 

interaction, complementcoagulation cascades, and extracellular matrix (ECM)-receptor 

interaction pathways. Incontrast, neuroactive ligand receptor interaction, cardiac muscle 

contraction, and long potentiation pathways were downregulated in early FCG (Fig. 7b).

Expanding our characterization of the ONH transcriptome in early FCG, we applied 

weighted gene co-expression network analysis (WGCNA) to explore gene modules (gene 

clusters) that are associatedwith early FCG. The fourmodules that positively correlated with 

glaucoma genotype contained a total of 1281 genes, whereas the six modules that were 

negatively correlated with glaucoma genotype comprised 792 genes (Fig. 8a; and list of 

genes belonging to the modules provided in Supplemental data 2). Importantly, irrespective 

of LTBP2 genetic background, mean IOP was significantly positively correlated with two 

modules (P < 0.05), supporting an association between magnitude of IOP and ONH gene 

expression. Functional GO enrichment analysis of the modules identified distinctive 

biological processes associated with early FCG. One of the identified modules was 

significantly enriched for positive regulation of NF-κB signaling and MyD88-dependent 

toll-like receptor (TLR) signaling pathway (Fig. 8b). With the KEGG genesets, this 

demonstrated significantly over-represented pathways, again featuring TLR receptor 

signaling and NF-κB signaling pathways (Fig. 8c). Of note, genes encoding damage-

associated molecular patterns (DAMPs) such as LGALS3, PRG4, and TNC [40], which are 

endogenous ligands for the TLR receptor signaling pathway, were included in the module, 

and these genes were also significantly upregulated in early FCG by conventional DE 

analysis (Fig. 8d). These results further support TLR receptor signaling and NF-κB 

signaling as molecular features of the early pathobiology ofglaucoma. Theother module 

wasenrichedfor proteasomal ubiquitin-independent protein catabolic process, and KEGG 

pathways showed an enrichment in the proteasome (Supplemental Fig. S6A). Setting 

thresholds with upper quintile for membership and gene significance in glaucoma, we 

identified 40 hub genes in the modules, likely to play central roles in the network [27]. In 

one module that was significantly and positively correlated with IOP, we further filtered the 

genes within the upper-quintile for gene significance in IOP and identified 30 genes as hub 

genes in one of the implicated gene modules (Fig. 8e). These included genes involved in 

toll-like receptor signaling (TLR2 and IRAK4), tumor necrosis factor receptor 

(TNFRSF1A), and apoptosis and NF-κB induction (CASP8). Filtering of the darkred 

module revealed 14 genes as hub genes, 5 of which were also hub genes in IOP 

(Supplemental Fig. S6B). Overall, our analyses confirmed orchestrated gene expression 

changes, at the level of molecular pathways in early-stage glaucoma and, importantly, 
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underscored the relationship between magnitude of IOP and initial molecular responses in 

this common neurodegenerative disease.

Discussion

As for many other neurodegenerative diseases, the pathogenesis of glaucoma is complex, 

and changes in single molecules and molecular pathways alone do not fully explain disease 

pathogenesis. Moreover, glaucoma is typically a slowly progressive disease, and molecular 

changes associated with disease pathology may not be dramatic, especially early in the 

disease process. However, to develop effective therapeutic strategies that target reversible 

processes in glaucoma, an understanding of pathobiology of early glaucoma will be critical. 

In this study, we performed transcriptomic profiling to gain comprehensive and non-biased 

molecular insights into early pathobiology of glaucomatous optic neuropathy at a stage of 

the disease when phenotypic heterogeneity and complexity are limited in our model. RNA-

seq affords a large dynamic range, which enabled us to identify modest but important gene 

expression changes in contrast to previous gene expression studies that investigated early 

changes using microarrays [41–43]. While inherited rodent glaucoma models, which include 

the DBA/2J mouse that shares similarities to human pigmentary glaucoma [44], are 

established and widely used, structural differences between mice and humans, including the 

murine lack of a collagenous LC and small eye size, may limit the translational value of this 

model. Given that the feline ONH more closely resembles that of humans than the ONH of 

rodents, our identification of changes in the ONH transcriptome in our glaucoma model 

prior to histological evidence of irreversible axon degeneration provides valuable insight into 

the early molecular events likely involved in the pathogenesis of glaucoma in human 

patients.

We identified significant upregulation of genes involved in cell proliferation and immune/

inflammation responses inearly spontaneous glaucoma, relative to precisely age-matched 

control subjects. In this respect, our findings are consistent with ONH gene expression 

changes reported in adult DBA/2J mice [41] and rats with experimental ocular hypertension 

[42] that had no, or minimal, evidence of axonal damage. Thus, our results are supported by 

a body of evidence that points to cell proliferation and immune responses/inflammation as 

common molecular features of early glaucoma.

An upregulation of cell cycle–associated genes has been reported previously in rodent 

glaucoma models, both in ONHs from DBA/2J mice and from rats with experimentally 

induced IOP elevation [32, 33, 36]. However, the identities and the in situ localization of the 

majority of these proliferating cells within the ONH were not definitively established in 

most of these studies and have not been reported in spontaneous glaucoma models that have 

ONH structure and cellular organization comparable to humans, although a recent study has 

shown that astrocyte proliferation predominates in the ONH of experimental rat models of 

glaucoma [45]. Here, we demonstrated that proliferating cells are present throughout the 

ONH soon after onset of IOP elevation in cats with FCG. Importantly, the proliferating cell 

types varied by ONH sub-region. Microglia/macrophages dominate this response in the PL 

and LC sub-regions of the ONH, whereas cells of oligodendrocyte lineage, in particular 

OPCs, are the predominant glial cell type proliferating in the RL region. In contrast, ONHs 
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from adult FCG subjects with more chronic disease did not show evidence of cell 

proliferation to the extent seen in early disease, suggesting that this molecular profile may be 

restricted to early-stage glaucoma. Although proliferation of microglia and OPCs has been 

implicated in a wide variety of neurodegenerative diseases with axon degeneration[46, 47],it 

remains unclear whether the glial cell proliferation we observed in the glaucomatous ONH 

in early disease is beneficial or detrimental. It is likely that the role played by glial cell 

proliferation differs with stage of disease.

Collectively, our data provide unique insight into coordinated gene expression changes in 

glial and neural cell-specific genes in response to initial glaucomatous damage. In early FCG 

with no histologically detectable damage, we identified cell type–specific upregulation of 

microglia and OPC genes and, to a lesser extent, upregulation of astrocyte genes, whereas 

neuronal and mature oligodendrocyte specific genes were downregulated. These changes in 

tissue expression of cell-specific genes could indicate an absolute alteration in cell number, 

cell composition, and/or cell functional state, which could all contribute to the observed 

changes in gene expression [48, 49]. Through subsequent immunolabeling and microscopy, 

we confirmed that microglia and OPCs in the ONH both proliferate and become activated, 

with increase in number of these cells observed in early glaucoma, prior to histological 

evidence of axon damage and loss. Although astrocytes are one of the major cell types in the 

ONH, our experiments showed that enrichment and activation of ONH astrocytes were less 

prominent features of early disease. This may reflect reversible rapid and dynamic reactivity 

in astrocytes, which could occur without concomitant changes in gene expression after a 

short-term elevation of IOP, as previously reported in experimental rodent models of acute 

ocular hypertension [50, 51]. Our findings in early FCG are in sharp contrast to pronounced 

gliosis dominated by astrocytes, which we have observed much later in the course of disease 

in the ONH of adult cats with chronic, established glaucoma, and that others have reported 

in the ONH in rodent experimental glaucoma with advanced ONH injury [45] and of human 

donors with chronic stages of glaucoma [11, 52, 53].

Although we identified downregulation of mature oligodendrocyte and neuronal genes, no 

significant change in the number of mature oligodendrocytes or of RGC axons was observed 

at this early stage of glaucoma. We therefore propose that downregulation of these genes 

reflects changes in cell states rather than loss of cells. As there are no neuronal somas in the 

ONH, the downregulation of neuronal specific genes may indicate pathologic RGC axonal 

mRNA alterations. For instance, expression of NMNAT2 was significantly reduced in early 

FCG ONHs. This gene, which encodes nicotinamide/nicotinic acid mononucleotide 

adenylyltransferase 2, has been postulated to play a significant role in axonal health and 

degeneration processes [54], is significantly more abundant in adult mouse RGC axons than 

in RGC somas [55], and is also downregulated in RGCs of DBA/2Jmicewith minimal axonal 

damage [56]. Similarly, RGC axonal mRNAs and oligodendrocyte genes have been shown 

to be downregulated in a rodent optic nerve crush model [57], as well as in other 

neurodegenerative diseases, including multiple sclerosis [58].

Profound microglial/macrophage activation is a consistent hallmark of glaucomatous optic 

neuropathy, identified not just during the early stages of disease in our model, prior to axon 

loss, but also shown to persist in more advanced, chronic stages of disease. Microglial/
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macrophage activation has been implicated in a variety of neurodegenerative diseases, 

including glaucoma as identified in donor ONH tissue from human glaucoma patients and in 

retinal, ONH, and optic nerve tissues in rodent models of glaucoma [31, 59–62]. As in our 

cohort of young cats with FCG, in DBA/2J mice, ONH and retinal microglial activation 

precedes detectable axon loss [59, 63]. It is noteworthy that transcriptome data in early FCG 

provided evidence for robust enrichment in pro-inflammatory phenotypes, such as LPS 

activated microglia, in the ONH over other microglial molecular phenotypes. Emerging 

experimental evidence suggests LPS-activated microglia direct astrocytes to a neurotoxic 

state by production of pro-inflammatory cytokines [64]. Therefore, the microglial activation 

that we observed in early-stage glaucoma could initiate signaling detrimental to other, 

intimately associated, adjacent cells in the ONH including astrocytes, oligodendrocytes, and 

RGC axons. Microglia-specific markers such as P2RY12 have been used to distinguish 

microglia from macrophages [65]. Unfortunately, these markers are generally expressed by 

microglia in homeostatic states and their expression is downregulated upon activation in 

disease states [66]. Thus, in the absence of robust, consistently expressed microglia-specific 

markers for immunolabeling, and a practical means to specifically label microglia or 

macrophages in our model in vivo, it was not possible within the scope of the present studies 

for us to establish whether activated IBA1+ cells were resident ONH microglia or 

macrophages or whether they represented infiltrating monocytes that have been proposed to 

migrate into the glaucomatous mouse ONH [67, 68]. Regardless of their origins however, we 

propose that these activated immune cells are likely to contribute to prodegenerative 

molecular pathways in glaucoma that in turn promote disease progression and axon loss. 

Emerging evidence from experimental rat models showed positive correlation between 

IBA1+ cell density and optic nerve injury grade, further supporting critical roles played by 

myeloid cells in glaucoma progression [45].

OPCs represented a large subset of the proliferating cells in the RL region of the ONH, 

contributing to a significant increase in the number of ONH OPCs in early glaucoma, prior 

to axon degeneration and/or significant loss of oligodendrocytes. We cannot fully exclude 

the possibility that OPC proliferation was related to a specific stage of optic nerve 

development, particularly given that myelination of the retrolaminar optic nerve is a post-

natal process in cats. However, proliferating OPCs were identified in significantly greater 

numbers in the ONH of FCG subjects than in the normal, precisely age-matched cats. 

Additionally, proliferation of OPCs and chronic loss of mature oligodendrocytes have been 

reported in the myelinated orbital ON of aged, glaucomatous DBA/2J mice and of rats with 

experimentally induced ocular hypertension [69, 70]. As OPCs can be differentiated to new 

oligodendrocytes, their activation in early glaucoma may be protective [71] and may help 

maintain integrity of the myelin sheath of the optic nerve. In contrast to early-stage FCG, 

OPC activation and proliferation were not features of later, chronic stages of FCG, in which 

overall oligodendrocyte loss was evident, consistent with findings in established 

experimental glaucoma in rats. Together, our findings support a role for OPCs in glaucoma 

pathophysiology. Further studies are needed to determine whether other features of OPC 

biology, besides their capability of generating new oligodendrocytes, may also contribute to 

disease progression or neuroprotection.
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Previously published gene expression studies in early stages of rodent glaucoma models 

have mainly focused on pairwise comparison of expression of single genes between groups, 

with or without hierarchical clustering [15, 41, 42, 67, 72, 73]. However, in very early 

pathology of slowly progressive neurodegenerative disease such as glaucoma, expression 

levels of single genes may not change dramatically. In our study, changes in gene expression 

were less than twofold for nearly 80% of the DEGs identified in the ONH in early FCG. 

Similarly, in DBA/2J mice with no histologically detectable evidence of glaucoma, over 

94% of DEG expression changes were less than twofold [41]. By applying a series of 

complementary bioinformatics approaches, we were able to identify a number of molecular 

pathways which may play a role in glaucoma progression but were not detectable by 

conventional pairwise single gene comparison, due to small magnitude of individual gene 

expression changes. Coordinated gene upregulation in molecular pathways that include 

cytokine-cytokine interactions, complement pathways, TLR signaling, extracellular matrix 

(ECM) receptor pathways, focal adhesion, and cell cycle was identified by GSEA in our 

FCG model at an early stage in the disease process. These pathways have been implicated 

previously in glaucoma pathobiology [11, 15, 41, 45, 68]. In contrast, molecular pathways 

such as neuroactive ligand receptor interactions, cardiac muscle contraction, and long-term 

potentiation were significantly downregulated. These downregulated pathways have not 

previously been specifically reported in the glaucomatous ONH. Combined with our finding 

that neuron-specific gene expression was downregulated, it is likely that these particular 

function/pathwaywide alterations reflect molecular changes in RGCs, in particular within 

their axons.

Our results highlighted molecular hallmarks of the innate immune response particularly 

associated with the TLR and NF-κB signaling pathway. Glial cells and neurons in the 

mammalian CNS are known to express TLRs and TLR-signaling molecules that modulate 

innate immunity, through dynastic activation of the NF-kB pathway, and resulting 

production of cytokines, including proinflammatory cytokines such as TNF-α, IL-1β, and 

IL-6 [74, 75]. Consistent with our findings, upregulation of TLR signaling genes in the ONH 

and retina has been reported previously in DBA/2J mice [41], and proteomic and 

immunohistochemical analyses of human donor retinae have shown increased expression of 

TLR proteins in astrocytes and microglia in glaucomatous tissue [76]. Furthermore, an 

association between TLR polymorphisms and normal tension glaucoma has been identified 

in human patients [77]. Together, these data strongly suggest an important role for TLR in 

the complex pathophysiology of glaucomatous optic neuropathy. Our dataset also indicated 

significant upregulation of DAMP genes in early FCG, further implicating TLR signaling as 

an early and consistent feature of glaucoma pathophysiology. Upregulation of the tenascin-C 

gene (TNC), for example,could contribute to TLR activation in the ONH in our subjects with 

early FCG, as highlighted by prior studies involving ONH tissues from human glaucoma 

patients, DBA/2J mice, and rats with experimental ocular hypertension [41, 67, 72, 78], as 

well as many other neurodegenerative diseases including Huntington disease, Alzheimer’s 

disease, and multiple sclerosis [79]. Importantly, in our studies, magnitude of gene 

expression in these molecular pathways correlated not only with FCG genotype but also 

with IOP phenotype. Our results therefore provide the first direct evidence of upregulation of 

immune/inflammation genes in the ONH as an early cellular and molecular response to 
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elevation in IOP in spontaneous glaucoma, reinforcing the long-recognized role of IOP in 

susceptibility to glaucomatous damage of RGCs and their axons.

Conclusions

The current study provides powerful evidence that a number of molecular pathways are 

regulated in the ONH prior to axon degeneration in glaucoma and these pathways are highly 

dependent on cell type and sub-region within the ONH. Results of pathway analyses support 

microglial proliferation and activation to a pro-inflammatory phenotype as key features of 

early disease. As neuroinflammation and innate immune responses, modulated by TLR and 

NF-κB pathways, have emerged as consistent features of glaucomatous optic neuropathy 

across multiple studies, ongoing studies in our lab seek to leverage strengths of the FCG 

model to interrogate changes in the transcriptome of distinct populations of cells in different 

ONH sub-regions across different stages of disease. Pathways identified correlate with IOP 

exposure and enhance our understanding of early cellular and molecular pathology of 

glaucoma. These pathways and processes may offer promising therapeutic targets to limit 

subsequent neurodegeneration in glaucoma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Optic nerve head (ONH) remodeling and functional deficits are evident soon after onset of 

IOP elevation, prior to axon loss in feline congenital glaucoma (FCG). Mean and SEM are 

presented throughout; all comparisons between normal (n = 7) and FCG (n = 12) were by 

unpaired 2-tailed t test. * P < 0.05; ** P < 0.01. a Intraocular pressure (IOP)was 

significantly higher in FCG than in normal subjects at 10 weeks of age (rebound tonometry; 

P = 0.01). b, c Peak amplitude of the late positive component (P2) and root mean square 

(RMS) of the early wavelets of the visual evoked potential (VEP) were significantly lower (P 
= 0.0058 and 0.0064, respectively) in FCG than controls at 10–12 weeks of age. d 
Representative ONH spectral domain-optical coherence tomography (SD-OCT) in vivo 

Oikawa et al. Page 20

Mol Neurobiol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



images of 12-week-old FCG (IOP 15 mmHg, scan quality 10/10) and normal cat (IOP 16 

mmHg, scan quality 9/10). e Comparison of SD-OCT-derived quantitative ONH parameters 

between FCG and normal subjects revealed significantly increased optic cup depth (CD) and 

reduced pre-laminar tissue thickness (PLT) in FCG (P = 0.044 and 0.011, respectively), 

whereas width of the neural canal opening (NCO) and posterior displacement of the lamina 

(PDL) were not significantly different between groups. f–k Axon loss is not an early 

pathological feature in FCG. Representative optic nerve cross sections from 10- to 12-week-

old FCG (f) and normal cats (g). No morphological evidence of axonal damage was 

observed in FCG (f, h, j) compared to normal control nerves (g, i, k) in either p-

phenylenediamine (which stains myelin sheaths) (h, i) or Richardson’s stained sections (j, 

k). Scale bars = 200 μm (f, g); 20 μm (h–k). l Mean optic nerve axon count in FCG (n = 12) 

was not significantly different from normal (n = 7; P = 0.447, unpaired 2-tailed t test)
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Fig. 2. 
Cell proliferation and inflammatory-related genes are upregulated in the ONH in early 

glaucoma. a Volcano plot illustrating ONH gene expression differences between FCG (n = 

10) and age-matched normal cats (n = 6). Each dot represents an individual gene. Red dots 

represent significantly upregulated, and blue dots represent significantly downregulated 

differentially expressed genes (DEGs) with thresholds at FDR < 0.05. Of the DEGs, 79% 

(303/384) showed less than two-fold changes in expression. b Hierarchical clustered 

heatmap depicts individual sample and gene expression differences of 384 DEGs between 

the ONHs from FCG on left (n = 10) and normal cats on right (n = 6). Scale: z –value. c In 

the upregulated DEGs, GO:0006954 inflammatory response (FDR = 8.3×10−6 ) and 

GO:1903047 mitotic cell cycle process (FDR = 3.22 × 10−5) were highly over-represented. d 
RT-qPCR performed for selected DEGs identified differences in gene expression between 

groups (n = 5 biological replicates per group) with comparable magnitude and direction of 

gene regulation to RNA-seq. Error bars in RNA-seq and RT-qPCR data represent standard 

error
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Fig. 3. 
Glial cell proliferation in the ONH is a feature of early disease in FCG. a Early 

glaucomatous ONHs had significantly increased density of proliferating (Ki67-

immunopositive) cells compared to ONHs from agematched normal, adult FCG, and adult 

normal cats (**P < 0.01; ***P < 0.001; ANOVA followed by Tukey’s post-test for multiple 

comparisons; mean and SEM presented). In contrast, density of proliferating cells in the 

ONH was not significantly different between groups of adult cats (P = 0.78, n = 6 per 

group). b Photomicrographs of normal 10–12-week-old feline ONH showing three sub-

regions (prelaminar [PL]; lamina cribrosa [LC], and retro-laminar [RL; extending 200 μm 
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posterior to LC]) that are distinguishable based on their morphology and cell populations. 

OLIG2 oligodendrocyte-lineage marker (green); SOX2 astrocyte and glial progenitor marker 

(magenta); DAPI nuclear counter staining (blue). Scale bar = 200 μm. c In 10–12week-old 

cats with FCG, increased density of proliferating (Ki67-positive) cells was observed in each 

of the three ONH sub-regions, compared to age-matched normal controls (n = 5 per group; 

*P < 0.05, unpaired t test with Welch’s correction). d In the retrolaminar region of the ONH, 

Ki67 expression colocalized with SOX2 (magenta; top row) and OLIG2(green;toprow) 

(top;arrow). Dispersed throughout the ONH, other Ki67-positive cells expressed the 

microglia/macrophage marker IBA1 (bottom; arrow). Scale bar = 20 μm
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Fig. 4. 
Highly cell type–specific enrichments were identified in the ONH transcriptome in FCG. a 
Normalized enrichment scores (NES) prioritize enrichment of different cell-specific genesets 

in the early FCG transcriptome. Microglia and oligodendrocyte precursor cell (OPC) and, to 

a lesser extent, astrocyte genesets showed upregulation in FCG, while downregulation of 

neuron, synaptic protein, and oligodendrocyte genesets was demonstrated. b GSEA-

identified microglia- and OPC-specific gene sets exhibited statistically significant, 

coordinated gene upregulation in FCG (NES = 9.37 and 6.48, respectively; FDR < 0.001), 

whereas the neuron and myelinated oligodendrocyte gene sets were significantly 
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downregulated (NES = − 7.80 and − 3.77, respectively; FDR < 0.001). Note that 

upregulation of astrocyte-specific genes is modest compared to the other ONH cell types 

(NES = 2.58; FDR < 0.001). Enrichment plots demonstrate cell type–specific geneset 

expression across the whole transcriptome. Pattern (c) and intensity (d) of 

immunofluorescent-labeling for the astrocyte marker GFAP in the optic nerve head were 

broadly similar between 10- and 12-week-old FCG and age-matched normal feline subjects 

(FCG: n = 3, normal: n = 3). e Normalized mRNA expression (transcript per million: TPM) 

of general astrocyte markers (GFAP, vimentin, aquaporin-4) in FCG from our RNA-seq 

dataset was not significantly increased relative to normal subjects (FDR = 0.98, 0.45, and 

0.97, respectively). FCG: n = 10, normal: n = 6. Data presented as mean and SEM

Oikawa et al. Page 26

Mol Neurobiol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Glaucomatous ONH pathobiology is characterized by microglial/ macrophage activation in 

both early and chronic FCG. a Photomicrographs illustrate the distribution of IBA1+ 

microglia in immunolabeled longitudinal sections of early FCG and age-matched control 

ONHs. Microglia are distributed throughout the ONH in both groups (scale bar = 100 μm). b 
The density of IBA1+ microglia was significantly increased in all 3 regions of the ONH in 

early FCG, compared to control subjects (n = 5 per group) (unpaired t test: PL, **P < 0.01; 

LC, **P < 0.01; RL, ***P < 0.001, respectively). FDR < 0.01 in all three tests. Data 

presented as mean and SEM. c Representative photomicrographs illustrating IBA1+ cells in 

prelaminar (PL), lamina cribrosa (LC), and retro-laminar (RL) regions in early 

glaucomatous and normal age-matched ONH sections. Microgliosis was evident in all sub-

regions of the ONH in early FCG (scale bar = 25 μm). d The density of IBA1+ microglia 

was also increased in all 3 regions of in the ONH in 1–2-year-old adult cats with chronic 

FCG, relative to sections from age-matched control subjects (FCG; n = 7 and normal; n = 6) 

(*P < 0.05, unpaired t test. FDR < 0.05 in all three tests. Data presented as mean and SEM)
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Fig. 6. 
Early oligodendrocyte precursor cell (OPC) activation and late oligodendrocyte loss in FCG. 

a The density of OPCs (SOX2 and OLIG2 co-labeled cells) in the retrolaminar ONH of 10–

12 week-old cats with early-stage glaucoma was significantly greater than in agematched 

control ONHs (n = 5 per group). b–d Based on patterns of SOX2 and OLIG2 

immunolabeling, density of oligodendrocytes (b), cells of oligodendrocyte-lineage (c), and 

astrocytes (d) did not significantly differ between early FCG and age-matched normal 

ONHs. e–h Densities of OPCs (e) and astrocytes (h) were not significantly different in adult 

cats with chronic FCG compared to age-matched normal cats. In contrast, in the ONH of 

adult FCG cats, densities of both oligodendrocytes (f) and cells of oligodendrocyte 

lineage(g) weresignificantly decreased in comparison to normal adult cats (a–d n = 5 for 

each group, e–h n = 6 for FCG and n = 5 for normal; **P < 0.01; unpaired t test)
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Fig. 7. 
Coordinated changes in gene expression associated with functions/pathways are identifiable 

in early-stage FCG. a Enrichment map based on the GSEA results of GO biological 

processes was generated using Enrichmentmap plug-in for Cytoscape. Red nodes represent 

genesets that are positively enriched and over-represented in the ONH in early FCG, while 

blue nodes represent genesets that are negatively enriched and under-represented. Node size 

is proportional to the size of the functional GO term gene sets. Only gene sets that were 

enriched with FDR < 0.001 and the top 100 enriched GO biological processes (both 
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upregulated and downregulated) in FCG are depicted. Genesets with common biological 

function are grouped by cluster and are labeled with representative functions. b Significantly 

up- (FDR < 0.001) and downregulated KEGG pathways in FCG (FDR < 0.05) support many 

cellular and molecular mechanisms previously implicated in glaucoma pathogenesis. Red 

bars represent significantly upregulated KEGG pathways, whereas blue bars represent 

downregulated KEGG pathways
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Fig. 8. 
Weighted gene co-expression network analysis (WGCNA) identified disease-relevant gene 

clusters. a WGCNA identified 34 nonoverlapping gene clusters (modules) that are 

significantly correlated with glaucoma. Heat map (correlation matrix) exhibits the 

correlation of gene co-expression modules. Ten modules significantly correlated with 

glaucoma genotype are shown. Numbers on the heat map in each module denote Pearson 

correlation coefficients (top) and P values (below, in parentheses). Two modules (yellow and 

dark red) are positively correlated with both glaucoma and mean IOP. The yellow module 

consisted of 665 genes including 41% (122/294) of the upregulated DEGs identified (r = 

0.68, P = 0.006), and the darkred module comprised 151 genes (r = 0.62, P = 0.01). b The 

top five overrepresented GO terms in the “Yellow module” indicated that positive regulation 

of IκB kinase/NF-κB signaling (GO:0043123, FDR < 4.19×10−7 ) and MyD88-dependent 
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toll-like receptor pathway related genes (GO:0002775, FDR < 0.05) are over-expressed in 

early glaucoma in the FCG model. c The top 10 over-represented KEGG pathways in the 

“Yellow module” includes NF-κB signaling and toll-like receptor signaling as well as 

inflammatory diseases associated with innate immune responses (FDR < 0.05). d Bar graph 

illustrates three differentially expressed damage associated pattern recognition (DAMP) 

genes (TNC, LGALS3, PRG4) that were significantly upregulated in early FCG relative to 

age-matched normal controls, based on RNA-seq data. Error bars represent estimated 

standard errors for the estimated coefficients of log2 (fold change) values. *FDR < 0.05. e 
Scatter plot demonstrates module membership and gene significance in the yellow module 

for FCG. Each dot represents a single gene in the modules. Genes that have high module 

membership (vertical red line; upper quartile) and high gene significance for glaucoma 

(horizontal red line; upper quartile) are considered hub genes (yellow dots). The hub genes 

in both glaucoma genotype and IOP are highlighted in bold print

Oikawa et al. Page 32

Mol Neurobiol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods and Materials
	Animals
	Phenotyping and Tonometry
	Electrophysiological Testing
	OCT
	ONH Tissue Dissection
	Quantification of Optic Nerve Axons
	RNA Sequencing, Read Alignment, Expression Estimation, and Differential Expression Analysis
	GSEA
	WGCNA
	IF Labeling

	Statistics
	Results
	Functional Deficits and ONH Remodeling Precede Histopathologically Detectable RGC Axon Damage
	Cell Proliferation and Inflammatory Related Genes Are Upregulated in the ONH in Early Glaucoma
	Microglia and Oligodendrocyte Precursor Cells Proliferate in Early Spontaneous Glaucoma but Proliferating Cell Populations Vary by ONH Sub-region
	Microglial Activation Is a Prominent Feature of Optic Neuropathy in Both Early-Stage and Chronic FCG
	Early OPC Proliferation and Late Oligodendrocyte Loss Are Features of Spontaneous Glaucoma
	Consistent, Coordinated Gene Expression Changes Are Identifiable in Early Glaucoma by Complementary Computational Approaches

	Discussion
	Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8

