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The stress-induced susceptibility hypothesis, which predicts chronic stress
weakens immune defences, was proposed to explain increasing infectious
disease-related mass mortality and population declines. Previous work
characterized wetland salinization as a chronic stressor to larval amphibian
populations. Thus, we combined field observations with experimental
exposures quantifying epidemiological parameters to test the role of salinity
stress in the occurrence of ranavirus-associated mass mortality events. Despite
ubiquitous pathogen presence (94%), populations exposed to salt runoff had
slightly more frequent ranavirus related mass mortality events, more lethal
infections, and 117-times greater pathogen environmental DNA. Experimental
exposure to chronic elevated salinity (0.8-1.6 g1™' CI7) reduced tolerance
to infection, causing greater mortality at lower doses. We found a strong
negative relationship between splenocyte proliferation and corticosterone in
ranavirus-infected larvae at a moderate elevation of salinity, supporting gluco-
corticoid-medicated immunosuppression, but not at high salinity. Salinity
alone reduced proliferation further at similar corticosterone levels and infec-
tion intensities. Finally, larvae raised in elevated salinity had 10 times more
intense infections and shed five times as much virus with similar viral decay
rates, suggesting increased transmission. Our findings illustrate how a small
change in habitat quality leads to more lethal infections and potentially greater
transmission efficiency, increasing the severity of ranavirus epidemics.

1. Introduction

Mass mortality events due to infectious diseases in animals are increasing in
frequency across taxa [1], many of which involve multiple environmental
stressors [2-5]. The stress-induced susceptibility hypothesis posits that infectious
disease-associated population declines are caused by persistent stress that increases
host susceptibility to infection [5-7]. The presumed mechanism is that chronic acti-
vation of the neuroendocrine stress axis (hypothalamus—pituitary—adrenal/
interrenal axis) causes negative feedback, elevating glucocorticoid levels that
directly signal immune cell apoptosis [8,9]. Since the immunomodulatory effects
of glucocorticoids depend on magnitude and timing [8,10] and can be enhancing
atacute elevated levels [9,11], a key assumption of this hypothesis is that ecological
change causes chronic stress, which is immunosuppressive. Other, glucocorticoid-
independent mechanisms have been proposed, such as limited resources needed
to fight infection [12], direct cytotoxicity (reviewed in [10]), or altered neuro-
endocrine-immune interactions causing homeostatic imbalance (e.g. endocrine
disruptors [13]). A further challenge is translating individual-level effects to
the population scale, since stressors can affect multiple, countervailing epidemio-
logical factors [14]. Due to the complexity of host-pathogen—environment
interactions, there are few examples in which causal links between ecological
change, physiological stress and the likelihood of pathogen-induced mass
mortality in wildlife have been established [3,15].

To investigate the effects of environmental change on pathogen-induced
mass mortality events, we focused on amphibian populations affected by road
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salt runoff. In the USA, the yearly application of millions
of tons of deicing salts (typically NaCl) has led to persistent
salinization of freshwater systems (up to 25% of seawater)
[16]. Salinization is also caused by increasing drought,
mining activities, agriculture and sea-level rise [17], and has
been associated with increased disease susceptibility in other
systems (e.g. Streptococcus in freshwater tilapia [18]). Although
some lineages have adapted to brackish water [19], even slight
increases in salinity are energetically costly to evolutionarily
naive amphibians, causing physiological stress evidenced by
developmental retardation, gill inflammation and increased
cell turnover [20-22]. At concentrations below the US EPA’s
recommended level for aquatic life (230 mg1~' CI), saliniza-
tion of roadside habitats in northeastern US (average of
150 mg 1I™! CI” in our study system) [23] reduces amphibian
embryonic survival [24,25], larval growth and activity
[26,27], and elevates plasma corticosterone concentrations in
adults [26]. The evidence of salinization’s influence on amphi-
bian disease dynamics, however, is mixed. Experimental salt
exposure increased trematode (Ribeiroia ondatrae) infection
intensity, but reduced the number of infections, potentially
through negative effects of salinity on the trematode [28]. Yet
in a similar study, trematode infection was more prevalent
with salt exposure [29]. On the other hand, elevated salinity
reduces survival of the fungal pathogen Batrachochytridum
dendrobatidis (Bd) outside its host, thus appears to reduce
transmission [30]. Predicting the net effects of stressors on
host—pathogen interactions is not straight forward [14], but
there is an urgent need to clarify the potential outcomes as sec-
ondary salinization is rapidly changing freshwater ecosystems
globally [17,31].

Here, we tested whether salinization of wetlands from
salt runoff increases the frequency or severity of ranavirus
epidemics in larval wood frog (Lithobates sylvaticus) popu-
lations. Ranaviruses are widely distributed, multi-host,
often lethal viruses in the genus Ranavirus (Family Iridoviri-
dae) [32]. In a range-wide survey of wood frogs, ranavirus
was more prevalent in regions with greater host population
density and road density [33]. Wood frog larvae are highly
susceptible to ranavirus infection compared with other
ranids (e.g. bullfrogs), and epidemics can vary from insub-
stantial mortality to the complete loss of a year class [34],
with no clear explanation [35]. We predicted that if salinity
stress plays a role increasing the severity or frequency of rana-
virus epidemics, then more severe infections and greater
mortality from infection would occur in populations
affected by salt runoff. Following the stress-induced suscepti-
bility hypothesis, we predicted the chronic stress of road
salt exposure—which causes a reallocation of resources
from body growth to coping with greater osmoregulatory
demands [26]—will cause reduced immunocompetence
through one or more of the aforementioned mechanisms.
Since stress can reduce the probability of an epidemic
through the loss of susceptible hosts [14], we would expect
salinity stress to increase transmission, either by increasing
the viral shedding or environmental persistence, both of
which would lead to a greater chance of mass mortality in
populations in salinized wetlands. We carried out field sur-
veys to examine correlations with pathogen presence and
mass mortality events, and laboratory experiments to test
causal mechanisms through which salinity stress could
increase the likelihood of a die-off through effects on host sus-
ceptibility and viral transmission.

2. Methods

(a) Observations of ranavirus-related mass mortality
events

We surveyed 18 ephemeral ponds with similar wood frog larval
densities that spanned a range of proximities to roads that
receive salt application [24,36] in the mixed hardwood forests of
Yale Myers Forest (YMF) in northeastern Connecticut, USA
(figure 1a), where the primary disturbances are associated with
road maintenance and rural housing. Roadside wetlands reach
conductivity (a direct measure of salinity [37]) levels of
4000 pS cm™" (approx. 2g1™' CI7) due to deicing salt runoff
[24,36], causing high levels of embryonic mortality in wood
frogs [24,38], and thus decreased larval density, which would
reduce our ability to detect mortality events. Selected ponds less
than 250 m from paved roads had higher salinity (conductivity
range: 30-360 pScm™'; approx. 4-95mgl™' CI7) than those
further away (20-50 uScm™'; approx. 2-5mgl™' CI7; t-test:
t11.44=2.38, p=0.036); other abiotic factors measured in each
pond were not correlated with conductivity (electronic sup-
plementary material, table S1). We conducted weekly surveys to
observe carcasses from the mid-late larval period, from 3 June to
10 July 2013, when ranavirus-related mortality events are most
common [36,39]. Die-off events were defined as greater than 90%
of larval amphibians found dead and ranavirus infections con-
firmed via qPCR. We also collected euthanized larvae (n =5) and
pond water samples to determine ranavirus abundance in the com-
munity (250 ml filtered water, 11 = 3 per pond; hereafter ‘eDNA’) at
two points in larval development (see [35] for methods). We disin-
fected all equipment and waders with 10% bleach between ponds
to prevent cross-pond contamination. All statistical analyses were
performed in R v. 3.43 [40]. We applied an information-
theoretic approach [41] (see electronic supplementary material,
Methods) to estimate the importance of pond characteristics in
predicting the observation of die-offs (logistic regression) and
Ranavirus eDNA  concentrations early and late in larval
development (linear regressions).

(b) The progression of naturally acquired ranavirus

infections

We collected larvae (Gosner [42] stages 34-39, median = 37) from
11 of the 18 surveyed sites that had no observed mortality at the
time (numbered in figure 1a, 10-13 per pond; 2-2236 m from a
major road) within 3 days of the second eDNA sample, and mon-
itored the progression of naturally acquired infections in the
laboratory. Larvae were housed individually in containers of
525 ml of dechlorinated tap water (approx. 200 pS cm™). With
this design, we could examine lasting effects of road runoff
exposure, which has been shown to continue even after returning
larvae to freshwater [43], but we cannot rule out the confounding
effect of exposure to a change in water chemistry when brought to
the laboratory. We analysed survival to 17 d post-metamorphic
climax by salinity using a mixed effects Cox proportional hazard
(Cox PH) model with site as random variable (coxme function in
coxme package [44]). We compared log;, ranavirus liver titres at
death/euthanasia using a linear mixed model with site as a
random variable (Imer in the ImerTest package).

(c) Effect of elevated salinity on laboratory-raised larvae
For this and subsequent experiments, we reared animals through-
out their lives in freshwater or water with added road salt (NaCl
collected from a Department of Transportation salt-shed in
Union, CT, USA) to achieve desired conductivities. We collected
wood frog eggs from a pond in Poughkeepsie, NY, where rana-
virus die-offs had not been observed (150 uS cm™" conductivity)
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Figure 1. (a) Field survey of ranavirus occurrence and associated die-offs. (a) Map indicating locations of the 18 ephemeral ponds monitored weekly in June and
July for ranavirus-associated die-offs of wood frog larvae in the vicinity of Yale Myers Forest in Northeastern CT, USA (top-left subset), a 32 km® managed mixed-
hardwood forest. Numbered sites on map refer to the ponds from which larvae were collected to observe the progression of naturally acquired ranavirus infections
(11 ponds, d,e). Die-offs of greater than 90% were observed in seven ponds while die-offs were not observed in the remaining eleven ponds. (b) Proximity to major
roads was correlated with the probability of observed die-offs. (c) Logyo ranavirus eDNA concentration by conductivity (measure of salinity) during early larval
development. (mean = s.e.m.) (d) Average days to death of naturally infected animals in captivity after collection with a line of predicted survival from Cox pro-
portional hazards analysis. (e) Average larval ranavirus (RV) titre of infected animals collected in the field and monitored for mortality in the laboratory by pond
salinity (11 sites numbered in a; n = 96; 3—11 per site). Lines and shaded areas are the logistic (b) or linear (c,e) regression lines and the 95% confidence envelope.
In (a—e), black and grey points indicate ponds where die-offs were and were not observed, respectively. (Online version in colour.)

and transported them to Washington State University where they
were housed at 15°C with 15 L/9D light cycle. Eggs were rinsed
with clean water and divided into three treatments: freshwater
(dechlorinated water with a conductivity approx. 200 pS cm™

due to calcium ions), average salinity (1500 1S cm™'; approx.

076 g I CI), and near maximum salinity (3000 pS am”
approx. 1.6 g I"! CI") for wood frog ponds in this region [24,26]).
While the highest salinity treatment is more saline than those in
our field survey, previous surveys have detected larvae surviving
in ponds across the full range of treatment levels [24,45]. We eutha-
nized 10 larvae and screened for ranavirus before the exposure
experiment begun; none amplified.

First, we estimated the effects of road salt exposure on mor-
tality from infection by conducting a dose-response experiment
using the salinity treatments above crossed with four doses of an
FV3 ranavirus: mock exposure, low, medium and high ranavirus
doses (0, 3x10%, 3x10% 3x10° plaque-forming units per ml
[pfu ml™'], respectively; n = 20/dose x salinity level; see electronic
supplementary material, Methods). Larvae were distributed into
treatment groups to standardize developmental stage (same
median: Gosner 34, and range: 30-38). We monitored survival
until metamorphosis and compared case mortality (qPCR posi-
tives only) from infection in individually housed larvae using a
logistic regression (glm with family bionmial, link = logit; in the
package stats [40]) and a parametric survival analysis (survreg in
the package survival [46]), with development stage at exposure
as a covariate in both analyses.

We then exposed another sample of larvae from the same
cohort (1 =20/salinity level, Gosner stages 33-36) to a moderate
dose (3 x 10* pfu mI™") or mock exposure to determine the effect
of elevated salinity on infection intensity in gastrointestinal (GI)
tissue, corticosterone and immune response, and shedding rate.
At 6 days post-inoculation (dpi) we euthanized animals, dissected
spleens (see below) and froze carcasses in liquid nitrogen. We also

filtered 150 ml of water from each container to collect eDNA
(following methods of [35]) to estimate viral shedding rate.
Ranavirus eDNA is positively related to infectiousness in wood
frog tadpoles [47], but this method does not measure concen-
trations of viable virions. We extracted DNA from dissected GI
tissue and filters and assayed both using qPCR assays (1 =20).
We measured corticosterone concentrations of dissected interrenal
glands (1 =10/salinity x ranavirus level), where this hormone
is synthesized [48], using ether lipid extractions and enzyme
immunoassays. We measured splenocyte proliferation as an indi-
cator of immune system activity by marking mitotic cells with a
polycolonal antibody for phospho-histone H3 (PH3) using immu-
nofluorohistochemistry methods. Prior research showed that
elevated glucocorticoid signalling inhibits proliferation and
stimulates apoptosis of splenocytes in amphibians [48]. See elec-
tronic supplementary material, Methods for details of each of
these procedures.

We analysed log;o GI and eDNA ranavirus titres and log;o
interrenal corticosterone concentrations per mg of tissue by water
treatments using univariate linear regressions for each response
(Im analyzed using Anova in the package car [49]). We compared
prevalence of infection using a z? test of proportions. We analysed
the number of PH3 ir-cells (1 =6-10/salinity x ranavirus levels)
using a Poisson regression (glm in the package stats), with main
effects of ranavirus and salinity, their interaction, and the area of
the spleen section as a covariate. We also used Poisson regression
with a three-way interaction term between corticosterone or rana-
virus titre, salinity and ranavirus exposure to determine if the
relationships between these variables varied among treatments.

In a third sample of larvae from this cohort, we tested whether
salinity affects contact rates to increase direct transmission [50],
because elevated salinity reduces larval activity [26,28]. We
counted the number of contacts between group-housed larvae
(16 replicates of 101 aquaria, 6 larvae each) that were either



mock- or ranavirus-exposed (high dose, same as above) in either
freshwater or 3000 puS cm™! saltwater. After 7 days of acclimation,
we tallied the number of contacts during a 10 min period 1 d before
exposure, 2 dpi and 5 dpi (at same time of day). We analysed con-
tact rate between water and ranavirus treatments using a linear
mixed model with time and tank as random variables (Imer in
the package ImerTest [51]).

To estimate the effects of salinity on viral persistence in the
environment, we collected Gosner stages 33-38 wood frog larvae
from YMF (Site 4 in figure 1a) when a die-off was occurring (ensur-
ing they had high ranavirus titres). We set up eight replicate 101
aquaria containing 6 larvae in either freshwater or high salinity
(concentrations as above). Carcasses were removed daily with a
disinfected net until day 7 when we removed all larvae. Water
was sampled (150 ml; filtered and quantified as above) in each
aquarium at eight timepoints. We analysed ranavirus eDNA titre
using a linear regression before larvae were removed with the
number of larvae remaining at d7 and timepoint as covariates,
and after larvae were removed to compare decay rate between
water treatments.

3. Results

(a) Observations of ranavirus-related mass mortality

events

We observed ranavirus-related die-offs in seven (39%) of
18 ponds (figure 1a), five of which had elevated salinity
(measured as conductivity) and were within 250 m of a
paved road, and in three of which we observed ranavirus-
related die-offs in 2011 (E.M.H., personal observation) and
2014 [36]. Distance to road was in all of the best-supported
models, and salinity was in next best model that did not
include distance to roads (electronic supplementary material,
tables S2 and S3), which were the only two variables in the
best-fit models that predicted the probability of a die-off.
Specifically, the probability declined with distance (figure 1b;
Bsqrtcmetres) = —0.132 £ 0.058, z = —2.272, p = 0.023) and margin-
ally increased with salinity (Biog10(conductiviey) =4.300 = 2.333,
z=1.843, p=0.065). Our eDNA surveys revealed that rana-
virus was ubiquitous (17/18 ponds) and ranavirus eDNA
concentrations were positively related to salinity levels
during early development (n=18; Pogiowms Cm)_l =193+
0.690, t515=2.798, p = 0.014; figure 1c) and during late devel-
opment and once die-offs began. Specifically, ponds with
elevated salinity near major roads had approximately 117
times higher concentrations of ranavirus eDNA in pond
water when larvae were nearing metamorphosis, which
for some ponds coincided with or after observed die-offs
(n1=17; PBsgrtcmetres) = —0.045 £ 0.017, t;14=-2.591, p=0.021;
Brogios cmy = 1.93 £0.823, 514 =2.351, p=0.034).

(b) The progression of naturally acquired ranavirus
infections

All of the larvae collected had natural ranavirus infections at
death or euthanasia, but larvae collected from ponds with
higher salinity died at a faster rate from infection (Cox PH
with pond as a random effect: Biogioqis cm) 1-4239+1.943,
z=1.94, p=0.029; figure 1d) and had greater larval titres at
death or euthanasia (1=96; 3-11 per site; ﬁloglo(uscm;lz
4.596 +1.911, t; 9 750 = 2.405, p = 0.038; figure 1e). Because sal-
inity and eDNA concentrations were correlated, survival was
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Figure 2. Tolerance to ranavirus exposure of naive larvae reared in road salt-
treated water in the laboratory. Salinity exposures reflect the average
(1500 pS ™" and maximum (3000 pS ") conductivities of roadside
ponds surveyed in this region [24]. We standardized ranavirus exposures to
the range of susceptible developmental stages for this species (Gosner
30-38; [52]). Points represent the proportion dead with a positive ranavirus
titre (n =20 per dose/group were exposed), and lines and 95% confidence
envelope (shaded area) reflect the best-fit logistic model.

also predicted by viral eDNA (ﬁloglo(copies/ml) =1.535+0.540,
z=2.82, p=0.005).

(c) Effects of elevated salinity on laboratory-raised

larvae
Larvae had greater odds of dying from infection (positives
only) with increasing virus dose and developmental stage
at exposure (,310810 RV dose = 0.899 +0.160, z=5.637, p <0.001;
Bstage =0.271 £ 0.082, z=3.310, p<0.001), and with higher
salinity (Bsatinity =3.737 £1.439 x 107%, z=2.598, p=0.009;
figure 2). Exposure to high salinity increased the odds of
mortality by 2.85-fold relative to freshwater across ranavirus
doses, and reduced the estimated LDs; (dose lethal
to 50%) by nearly fourfold compared with freshwater (from
30200 pfuml™ in freshwater to 7762 pfu ml™"). Larvae in the
high-salt treatment also died faster from infections (parametric
survival analysis: Baliniey = —1.23 +0.45 x 1072, z=-2.84, p=
0.005; Bioglo RV dose=—0.851+0.124, z=-6.88, p<0.001;
Bstage=—0.179 £0.044, z=-4.08, p<0.001). In the absence
of ranavirus exposure, salinity had a marginal effect on
mortality (Barinity =8.636 +5.157 x 107*, z=1.675, p=0.094),
and salinity did not affect the proportion infected (p = 0.62).

Larvae exposed to ranavirus had elevated resting interrenal
corticosterone concentrations 6 dpi compared to unexposed
larvae (d.f.=1, F=23.7, p<0.001). Those reared in elevated
salinity —exhibited marginally elevated corticosterone
(ANOVA; d.f. =1, F =3.576, p = 0.064; figure 3a), but the inter-
action with ranavirus exposure was not significant (p =0.27).
However, we detected main and interactive effects of salinity
and ranavirus-exposure on proliferating splenocyte counts
(GLM, salinity: ;(2 =16.483, d.f.=1, p<0.001; ranavirus:
2°=5672, d.f.=1, p=0.017; interaction: y>=4.210, d.f.=1,
p =0.040; figure 3b). Salinity also increased GI viral titres of
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Figure 3. Stress and immune responses of naive larvae reared in road salt-
treated water in a laboratory experiment at 6 d post-exposure (n =20 per
salinity/exposure group; exposed to 10° pfu mI™": RV+; or mock exposed:
RV=). (@) LS mean interrenal corticosterone (CORT) levels (+s.e.m., n=
10) accounting for developmental stage effects (b) LS mean proliferating
splenocyte counts (+s.e.m., n=6-10) accounting for spleen size and
(c) positive logqq ranavirus titres in gastrointestinal (GI) tissue (n = 6-8).
In (a—c), dark and light bars represent ranavirus-exposed and unexposed,
respectively. (d) The relationship between proliferating splenocyte count
and corticosterone levels across salinity (divided plots corresponding to
x-axis of (a—¢) and ranavirus treatments (n = 4-9). Lines represent best-fit
Poisson regressions with white points and solid lines representing RV unex-
posed, and black points and dotted lines representing ranavirus exposed.

infected larvae (d.f. =1, F=7.97, p = 0.01; figure 3c). Splenocyte
proliferation was negatively related to corticosterone levels
(Bcorr =—0.724 +0.099, z=—7.31, p <0.001), but this relation-
ship depended on salinity and ranavirus exposure (three-way
interaction: ;(2 =8.343, d.f. =1, p=0.004, CORT-salinity inter-
action: ;(2 =8594, d.f.=1, p=0.003, ranavirus-salinity
interaction: ;(2=3.188, d.f.=1, p=0.074; figure 3d). Specifi-
cally, salt-exposed animals had steeper slopes in the
CORT-proliferation relationship compared to those raised in
freshwater, except in high-salt and ranavirus-exposed larvae,
which had a flatter slope with a lower intercept. Splenocyte
proliferation was also negatively related to infection intensity,
but this relationship depended on exposure to salinity (GI
titre-salinity interaction: ;(2 =6.248, d.f.=1, p=0.012; GI titre:

2°=7202, d.f=1, p=0007; electronic supplementary
material, figure S1). Furthermore, greater salinity exposure
slowed developmental rates (Kruskal-Wallis: ;(2 =7.532,
d.f.=2, p=0.023), and splenocyte proliferation and develop-
mental rate were negatively associated in elevated salinity
but not in freshwater (developmental rate-salinity interaction:
72=9.041,df. =1, p =0.003; development: p = 0.7374; salinity:
p=0.329, RV exposure=0.329; electronic supplementary
material, figure S1).

Our experiments designed to measure effects of salinity on
routes of transmission showed that salinity treatments tended
to have more extreme shedders (quantile regression ANOVA
of 90th from 50th percentile: F=4.879, p=0.029; whiskers
shown in figure 4). When we sum the ranavirus eDNA concen-
trations across individuals to estimate a population-level
response, larvae in the high-salinity treatment shed 5.5 times
more virus than the freshwater group (20417 compared with
3715 copies total). Shed viral eDNA concentrations were corre-
lated with GI titres (Biog10 cr titre = 0.954 +0.075, 1 58 =12.737,
p <0.001). However, elevated salinity did not affect contact
rates between larvae with or without ranavirus exposure
(t21_18 = —1]75, p= 0253)

We also observed an increase in viral shedding in high-sal-
inity conditions in naturally infected larvae collected from a
pond during a die-off. eEDNA concentrations were more than
an order of magnitude greater in the high-salinity treatment
compared to freshwater (Bsapinity =1.411+0.220, t;6=6.407,
p < 0.001), and remained higher for 12 d after we removed
larvae, though there were no differences in decay rates between
salinity treatments (t; 1 = 1.598, p = 0.125; figure 4).

4. Discussion

Since first proposed to explain infectious disease-linked amphi-
bian population declines [7], the stress-induced susceptibility
hypothesis has received support linking environmental
change to physiological stress and greater mortality from infec-
tion (e.g. agricultural runoff, but not natural stressors; see
review [53]). Yet few studies causally link immunosuppression
observed in the laboratory to prevalence of infection on the
landscape [54], and none we know of link to mass mortality
events. Since salinization is a persistent, energetically demand-
ing stressor [22,26] we hypothesized reduced immune function
via glucocorticoid-dependent and -independent pathways at
the individual level; and immunocompromised populations
with increased transmission and mortality from infection
would pass the tipping point of more frequent and severe rana-
virus epidemics (electronic supplementary material, figure S2).
Though our field observations were necessarily biased towards
robust populations in order to observe mass mortality (since
higher salinity roadside ponds had much lower larval densities
we selected roadside populations with lower than typical
salinity [26,36]), we discovered a correlation between the prob-
ability of observed ranavirus-associated die-offs and proximity
to roads and a weak correlation with salinity. This observation
was corroborated with more than 100 times greater concen-
tration of viral eDNA—which is tightly associated with larval
titres [35]—and greater mortality and viral loads in larvae
with naturally acquired infections from more saline wetlands.
Perhaps, at the maximum tolerable salinity levels, embryonic
mortality reduces the probability of an epidemic through the
loss of susceptible individuals [14]; thus, future work is
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Figure 4. Effects of road salt on the shedding rate and persistence of ranavirus from infected larvae from two laboratory experiments. (a) The concentration of
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examine decay rates.

needed to more strongly link salt stress and mass mortality
events through broader surveys. Altogether, these correlations
set the stage for experimentally testing whether salinity stress
plays a role in the severity and outcome of infections in
wood frog larvae.

Our experimental exposures at environmentally relevant
road salt concentrations supported several components of
the stress-induced susceptibility hypothesis and revealed
additional nuances. Larvae reared in elevated salinity were
more likely to die from virus exposure and exhibited sup-
pressed immune function. Previous work also found that
ranavirus infection induces a stress response [52] similar to
other infections [55]. However, contrary to our expectations
for the involvement of the HPI axis, salinity only marginally
increased resting glucocorticoid levels. Although salinity and
ranavirus exposure did not interact to predict resting interrenal
corticosterone concentrations, we observed a strong negative
relationship between splenocyte proliferation and corticoster-
one that depended on salinity and ranavirus exposure. Thus,
glucocorticoid-mediated immunosuppression explains in part
reduced tolerance (i.e. greater infection intensity) due to salt
exposure. Splenocyte proliferation is negatively affected by
glucocorticoid signalling in experimental studies in anurans
[48] and is an essential acute inflammatory response that rana-
virus is likely capable of inhibiting [56], offering a potential
explanation to the negative relationship we found between
infection loads and proliferation. Additional work is needed
to determine if this splenocyte response coincides with the
inhibition of other antiviral responses that occurs in other
vertebrates via increased GR signalling [57] to cause greater
viral loads observed here. While the increased ranavirus
titres and ranavirus-induced mortality of field-caught larvae
is consistent with these experimental responses, future
work is still needed to determine whether wild amphibian
populations exposed to deicing salt also experience a rise
in glucocorticoid levels and immunosuppression similar to
laboratory findings to cause more frequent mortality events.

Our findings also show that elevated salinity suppressed
splenocyte proliferation more than what could be explained
by corticosterone levels. Specifically, we observed a dose-
dependent reduction of splenocyte proliferation with elevated
salinity in ranavirus-unexposed larvae, and lower proliferation

across corticosterone levels at high salinity in ranavirus-
exposed larvae. These patterns suggest that elevated salinity
is suppressing immunity through glucocorticoid-independent
mechanisms. Since we observed reduced feeding activity in a
prior study [26], salinity may affect resource acquisition or
cause a delay in developmental processes that affect suscepti-
bility to ranavirus infection. Our findings support evidence
of a trade-off between the significant energetic demands of
osmoregulation [19] and mounting an immune response,
specifically, salt exposed larvae exhibited lower splenocyte
proliferation when maintaining a comparable developmen-
tal rate, whereas the freshwater individuals exhibited no
such trade-off. Similarly, migratory waterbirds experienced a
trade-off between mounting an immune response and main-
taining osmotic homeostasis in response to elevated salinity
[58]. Additional experiments are also needed to test whether
elevated internal osmolality is cytotoxic to the spleen,
or whether salt changes interrenal function in ranavirus-
infected larvae. This finding highlights that the stress-induced
susceptibility hypothesis operates via mechanisms beyond
glucocorticoid-mediated immunosuppression.

At the population level, these individual-level effects of
salinity on ranavirus infection appear to drive more severe
epidemics through increased disease-induced mortality rate
combined with potentially greater transmission efficiency.
The increase in cumulative viral shedding we observed in
high salinity would be expected to increase rates of trans-
mission through the water [47], which corroborates our
finding of greater pathogen eDNA levels in higher salinity
ponds. Contact rates were not affected by salinity, but we
would expect the greater than 10-fold more intense infections
are more transmissible given a contact. Elevated salinity could
also increase water-borne transmission through its negative
effect survival of zooplankton [59], which consume infectious
ranaviruses in the water [60]; or the accumulation of infected
carcasses resulting from greater mortality could increase rana-
virus transmission either by contact or via necrophagy [61].
Thus, small changes in habitat quality can affect multiple mech-
anisms that concertedly push host—pathogen systems beyond
the tipping point towards a rapid, mass mortality event [1].
Such interactions are increasingly recognized as critical to
understanding and perhaps mitigating the impact of infectious



disease on host populations [62]. Recent work with integral pro-
jection models of dose-dependent host-parasite interactions
show that small changes in host resistance or tolerance, akin
to those we observed with salinity, can lead to large changes
in the population-level outcomes [63].

Mass mortality events caused by infectious diseases are
often associated with environmental changes [1,2,5], yet we are
just beginning to clarify generalizable patterns and
mechanisms to explain the rise of emerging infectious diseases
in wildlife [64]. In addition to salinity, numerous environmental
changes are known to act on the neuroendocrine stress axis in
amphibians (e.g. low pH [65]; see review [53]). Although some
cause increased mortality from infection (e.g. atrazine [66]; see
review [67]), further research is needed to determine whether
these individual-level effects manifest as more common or
severe epidemics. Our research suggests that the mechanisms
relating stressors to disease outcomes at the individual and
population level will be complex, and experiments need to be
designed to test multiple hypotheses. Considering salinization
has been proposed as a management strategy to provide
refuge from another amphibian disease, Bd [30], our study
suggests a holistic approach is required to successfully mitigate
the impact of stress and disease on amphibian populations.

Raw data from the environmental survey and labora-
tory experiments are available from the Dryad Digital Repository:
https://dx.doi.org/10.5061/dryad.ffbg79cr5 [68].
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