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Research on mechanisms underlying the phenomenon of developmental pro-
gramming of health and disease has focused primarily on processes that are
specific to cell types, organs and phenotypes of interest. However, the obser-
vation that exposure to suboptimal or adverse developmental conditions
concomitantly influences a broad range of phenotypes suggests that these
exposures may additionally exert effects through cellular mechanisms that
are common, or shared, across these different cell and tissue types. It is in
this context thatwe focus on cellular bioenergetics andpropose thatmitochon-
dria, bioenergetic and signalling organelles, may represent a key cellular
target underlying developmental programming. In this review, we discuss
empirical findings in animals and humans that suggest that key structural
and functional features of mitochondrial biology exhibit developmental plas-
ticity, and are influenced by the same physiological pathways that are
implicated in susceptibility for complex, common age-related disorders, and
that these targets of mitochondrial developmental programming exhibit
long-term temporal stability. We conclude by articulating current knowledge
gaps and propose future research directions to bridge these gaps.
1. Introduction
This review advances a novel hypothesis and conceptual framework regarding
developmental programming of mitochondrial biology. Essentially, this
hypothesis proposes that mitochondrial biology may represent a key
common cellular pathway in the intergenerational transmission of the effects
of maternal conditions, states and exposures prior to conception and/or
during early and sensitive periods of embryonic/fetal development on struc-
tural and functional properties of cells, tissues and organ systems, with
important implications for offspring health and disease risk. Our conceptual
model, depicted in electronic supplementary material, figure S1, proposes
that (i) intrauterine life represents a particularly sensitive time period when
the effects of maternal conditions, states and exposures around conception
and across pregnancy may be transmitted to the developing embryo/fetus;
(ii) transmission occurs primarily via the effects of various maternal states
and conditions on stress-related maternal–placental–fetal (MPF) oxidative,
immune/inflammatory, endocrine and metabolic pathways that participate in
the process of developmental programming of health and disease risk;
(iii) the initial setting and function of the offspring mitochondrial biology
system exhibits developmental plasticity and represents a key cellular target
of such programming; (iv) this initial setting of offspring mitochondrial biology
has important implications for health, aging and susceptibility for common age-
related disorders; and (v) in addition to the prenatal period, exposures during
the maternal pre-conception and during grandmaternal gestation (for female
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fetuses) periods may influence the germ pool of inherited
mitochondria in oocytes and primordial germ cells (PGCs).

We begin this paper with a brief overview of the concept
of developmental programming. We then summarize key fea-
tures of mitochondrial biology, including an overview of
mitochondrial structure and function, and the role of mito-
chondrial biology in health and disease. Next, we present
the rationale for the proposition that mitochondrial biology
may represent an important candidate pathway underlying
the process of developmental programming. Specifically, we
discuss and review empirical findings in animals and
humans that suggest key structural and functional features
of mitochondrial biology exhibit developmental plasticity
and are impacted by the same physiological pathways that
are implicated in the process of developmental programming,
that these targets of mitochondrial programming during
development exhibit long-term temporal stability, and that
these features of mitochondrial biology likely influence
health and susceptibility for age-related disorders. Finally,
we conclude by articulating current knowledge gaps and
future research directions.
2713
2. The concept of developmental programming
A considerable and converging body of epidemiological,
clinical and experimental evidence now suggests that the
developing embryo/fetus responds to environmental con-
ditions during sensitive periods of cellular proliferation,
differentiation and maturation to shape various structural
and functional characteristics of cells, tissues and organ
systems [1,2]. This process, commonly referred to as develop-
mental programming, is adaptive from an evolutionary
perspective, but at the individual level may confer a trade-
off favouring short-term survival/reproductive fitness at
the long-term cost of disease susceptibility, particularly for
complex, common disorders [3].

The health outcomes commonly implicated in developmen-
tal programming comprise awide range of physical andmental
disorders, including cardiovascular andmetabolic disease, aller-
gies and asthma, osteoporosis, neurodevelopmental disorders
and psychopathology (reviewed in [1–3]). Research on mechan-
isms underlying developmental programming has focused
primarily on processes that are specific to cell types, organs
and phenotypes of interest, such as pancreatic β-cell mass and
diabetes risk [4] or hippocampal methylation patterns and
anxiety risk [5]. However, the observation that exposure to
adverse intrauterine conditions such as excess stress or under-
or over-nutrition concomitantly influences a broad range of
phenotypes raises the possibility that these exposures may
additionally (not instead) exert effects through cellular mechan-
isms that are shared across different cell and tissue types. It is in
this context that we propose the mitochondrial biology system
may represent a crucial cellular mechanism underlying the
process of developmental programming.
3. The mitochondrial biology system
Mitochondria, maternally inherited bacterial endosymbionts,
are cellular organelles central to the process of transforming
energy into a form that can perform biological work [6].
Through the oxidation of food with oxygen from air, mito-
chondria generate cellular energy into the universal form
used by cells and tissues––primarily adenosine triphosphate
(ATP)––via the flow of protons in oxidative phosphorylation
(OXPHOS). In OXPHOS, electrons derived from carbo-
hydrates and fats are transferred through the tricarboxylic
acid (TCA) cycle and β-oxidation pathways and feed into
the electron transport chain (ETC). Energy is released as the
electrons pass through a series of complexes in the ETC to
the final recipient, oxygen, and this energy is harnessed in
the form of a proton gradient, which generates an electro-
chemical trans-membrane potential (ΔΨ) across the inner
mitochondrial membrane. The generation of this charge is
coupled with the production of ATP, and the degree of coup-
ling of these two sets of chemical reactions reflects the
efficiency of mitochondrial function.

Mitochondria also serve as a signalling system [7] and
regulate cell fate, differentiation and apoptosis––importantly
through the control of Ca2+, cellular redox, and reactive
oxygen species (ROS) production [8]. This signalling role
may be particularly relevant in the context of development
as recent findings suggest that mitochondria control the can-
onical developmental signalling pathways Notch, NF-κB and
Wnt, which regulate the balance of core cellular processes
that form tissues and organs at the correct time and place in
embryonic/fetal life [8]. Additionally, mitochondria serve as
a site of essential metabolism, including amino acid, steroid,
cholesterol and phospholipid biosynthesis [9,10]. The approxi-
mately 102–103 mitochondria per cell are not static [11], but
dynamically interact with one another and form comprehen-
sive branched networks that work together to rapidly adapt
to the cell’s changing bioenergetic and biosynthetic needs
through fission and fusion dynamics, mitochondrial biogenesis,
mitophagy and cross-talk with nuclear DNA (nDNA) [12].

A unique and important feature of the mitochondrion is
the possession of its own genome, known as mtDNA,
which encodes 22 tRNAs, 2 rRNAs, 13 key protein subunits
of the ETC and a novel class of endogenous peptides (with
the remaining ETC subunits and mitochondrial proteins
encoded by nDNA) [13,14]. Mitochondrial integrity is
achieved and maintained by tight coordination between the
nDNA and mtDNA expression (known as mito-nuclear
cross-talk) [15]. This cross-talk is critical, as even subtle mis-
matches can result in an inefficient or backlogged ETC,
causing increased electron leakage and ROS, decreased ATP
production and blockage of the TCA cycle, thereby impairing
the production of important biological intermediates and cel-
lular biosynthesis [16]. The mitochondrial genome contains
no histones, and despite some controversy, is not believed
to be epigenetically regulated [17]. However, nDNA epi-
genetic modifications affect mitochondrial function, and,
conversely, mitochondrial function and activity is a signifi-
cant driver of nDNA gene expression via epigenetic
modifications [18]. Over the course of evolution, it appears that
the majority of mitochondrial genes have relocated to the
nucleus. However, the continued persistence of mtDNA serves
a functional significance to allow for very rapid and local ener-
getic adaptations within the different regions of a cell (as
opposed to the slower and more uniform energetic adaptation
mediated via a singular nDNA molecule) [19]. Consequently,
mitochondriaarebelieved to represent thecentral environmental
sensor in mediating the link between environmental pertur-
bations and genomic responses [19], and mitochondrial
production of ROS, metabolic intermediates or energetic com-
pounds, such as α-ketoglutarate, ATP or acetyl-CoA, drives
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Figure 1. Adverse/suboptimal maternal or grandmaternal gestational exposures can alter the essential aspects of offspring mitochondrial function in the following
ways: (i) impaired oxidative phosphorylation; (ii) decreased mitochondrial content; (iii) increased ROS and impaired REDOX balance; and (iv) impaired mtDNA quality.
There are multiple measures representing specific aspects of mitochondrial function, as depicted in this figure. Collectively, mitochondria can send out stress-related
signals, such as increased ROS or Ca2+, decreased ATP, altered mitochondrial metabolic intermediates (e.g. NAD+, acetyl-CoA) and mito-peptides, that can alter nDNA
gene expression or modify the epigenome via chromatin (methylation or acetylation of the DNA and/or histones), which can further alter mitochondrial function and
bioenergetic capacity. In particular, mitochondrially generated ROS can have a major impact on this process. Nuclear and mitochondrial function are linked, such that
one system regulates the other, and vice versa. The collective effect of these processes enables and regulates the flow of matter/energy in metabolic networks, and
these regulate cellular information through signalling and transcriptional regulatory networks, which regulate the flow of energy. (Online version in colour.)
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short- and long-term change in mtDNA and nDNA transcrip-
tional activity through both signal transduction and epigenetic
regulatory processes [7,20]. ROS production and the redox
state of the cell are directly tied to epigenetic processes, particu-
larly during development [21].

Given its critical importance, it has been argued that mito-
chondrial function determines the limits of an organism’s
adaptive capacity, and that deficits in mitochondrial
content and bioenergetic function decrease biological adapta-
bility and resilience to respond to a diverse range of
physiological and psychological challenges [22]. Accordingly,
the process of cellular aging is characterized, in part, by
decreased mitochondrial bioenergetics, increased mitochon-
drial ROS production and mtDNA damage [23].
Mitochondrial dysfunction has been identified as a key com-
ponent across a wide range of common age-related disorders
such as diabetes, cancer, cardiovascular disease and several
neurodegenerative conditions including Alzheimer’s and Par-
kinson’s disease [24]. Moreover, a causal role for the integrity
of mitochondrial function in aging and disease susceptibility
is supported in humans by prospective studies of oxidative
damage, mtDNA mutations/deletions and mtDNA copy
number that predict the onset of cardiovascular disease, dia-
betes and cancer [25–27], and in animals particularly by
recent findings using the mtDNA mutator mouse model [28].

Lastly, it is important to note that because mitochondrial
biology is a dynamic process, there is no single measure to
quantify its structural and functional integrity [29]. Concur-
rent consideration of multiple measures is warranted,
particularly those that use dynamic versus static measures,
such as substrate oxidation or ETC enzymatic activities, and
those that take into account the heterogeneity of mitochon-
dria subpopulations across and within cells (see reviews
[30–33]). Figure 1 depicts and describes commonly used
measures of mitochondrial function and the concordant
features of mitochondrial biology that they represent.
4. Developmental plasticity in the mitochondrial
biology system

Mitochondrial structure and function is highly sensitive
and responsive to environment conditions. Indeed, a wide
range of socio-demographic, biophysical, clinical, beha-
vioural, psychological and biological states––particularly
those related to stress and stress-related conditions and
processes––have been associated with variation in mito-
chondrial content, bioenergetics capacity and mtDNA
quality (for reviews, see [22,34,35]). Of particular interest are
the effects on mitochondrial biology of stress-related meta-
bolic, oxidative, immune/inflammation and endocrine
processes that [22,36], on one hand, are known to mediate
the downstream effects on health and disease risk of a
wide range of states and conditions, and on the other hand,
are also known to impact the emergence of programmed
phenotypic specificity (stress-metabolic MPF signals) [37].
Our model proposes that the mitochondrial biology system
exhibits developmental plasticity. Based on empirical findings
in animals and humans, we suggest that (i) the initial setting of
the early-life mitochondrion is impacted by the same stress-
related biological processes that mediate the effects of a
range of suboptimal conditions on mitochondrial biology
during adult life, and (ii) this initial setting exhibits temporal
stability, thereby modulating subsequent susceptibility to
cellular aging and health/disease risk over the life span.
(a) Gestational conditions induce variability in offspring
mitochondrial structure and function

(i) Animal studies
Findings from in vivo and in vitro animal models converge to
suggest that starting as early as during the first stages of life
mitochondria in the fertilized oocyte are susceptible to



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192713

4
damage from suboptimal gestational conditions (environ-
mental stressors), that these acquired mitochondrial deficits
persist into embryonic/fetal life [38–41] and beyond (i.e.
they exhibit temporal stability), and that they are causally
associated with the likelihood of developing disorders in
later life, including obesity and metabolic disease [40–64].
Our review of the literature identified 23 published animal
studies that represent the impact of various in vivo gestational
exposures on offspring mitochondrial biology (electronic sup-
plementary material, table S1) [41–64]. Common models of
gestational exposures include maternal obesity and oxidative
stress, and a smaller number relate to dietary quantity/qual-
ity and pollutant exposure. Changes to mitochondrial
function have been demonstrated in the earliest stages of
offspring development, from the fertilized oocyte to fetal
tissue. Furthermore, these changes have been demonstrated
in a variety of offspring tissues (pancreas, liver, adipose,
brain, muscle, heart, placental and ovarian tissue) and are
present in fetal tissue and through adulthood.

Across the various gestational exposures and tissues that
were examined, changes in mitochondrial biology consist-
ently demonstrated a decreased capacity to meet cellular
energetic demands through either decreased mitochondrial
content (e.g. mtDNA copy number (mtDNAcn)) or
OXPHOS capacity and/or efficiency (e.g. ETC complex
activity, substrate oxidation), and additionally, increased
oxidative damage via increased mitochondrial ROS pro-
duction, and/or imbalanced redox state. We note that some
of the measures of mitochondrial content/function that
were assessed appeared to exhibit improvement in response
to adverse gestational exposures, which we suggest may
reflect secondary compensation. For example, in the fetal
tissue of non-human primates exposed to maternal obesity,
mitochondrial content (i.e. mtDNAcn) and OXPHOS
capacity and efficiency were reduced, and individual
enzymes in the ETC demonstrated significantly higher
activity, suggesting a compensatory increase in OXPHOS
activity related to the lower mitochondrial content and func-
tion [50]. This compensation may, however, not be sufficient
or entirely benign. For example, if damaged or inefficient
mitochondrial systems increase OXPHOS activity, this may
result in further ROS production [65]. Although the gener-
ation of a certain amount of ROS is a normal part of the
ETC (ROS are even considered to be signalling molecules)
[66], impaired mitochondrial function can produce elevations
of ROS levels and result in excess generation of superoxide at
the expense of ATP production [67], which, in turn, can damage
mtDNA, nDNAand other cellular components [36,68] (e.g. two
studies found an increase in mtDNA deletions in fetal and
newborn tissue [42,59]). As seen in electronic supplementary
material, table S1, all studies that assessed oxidative damage
showed an increase in mitochondrially derived ROS, oxidized
particles and/or the oxidized redox state of the cell
[42,43,45,46,49,50,56–58,62], with one exception [64]. The
measurement of ROS/oxidative stress is of particular interest;
however, many commonly used methods for the direct
measurement of ROS are not specific and can produce artefacts
(e.g. dichlorodihydrofluorescein diacetate (DCFH-DA) in the
above-reviewed animal studies, and MitoSox at greater than
2 µM in the humans studies reviewedbelow) [69].Despite limit-
ations in methods of direct ROS measurement, the majority of
the reviewed studies also quantified end products related to
ROS damage, and those were consistently elevated, supporting
the presence and importance of gestationally induced
elevations in ROS.
(ii) Human studies
We identified 31 published human studies to date on the
association of various gestational exposures with offspring
mitochondrial biology (electronic supplementary material,
table S2) [70–100]. Common models of human gestational
exposures include environmental pollutants and maternal
obesity, and a smaller number relate to growth restriction
and psychosocial stress exposure. The majority of studies
assessed mitochondrial function in cord blood leucocytes or
placental tissue at birth, and used mtDNAcn or mitochon-
drial-encoded gene expression as the primary mitochondrial
biology outcome. A more recent and growing body of work
focuses on methylation patterns of nDNA-encoded mito-
chondrial genes, particularly in association with gestational
air pollution.

Similar to the animal findings, our review suggests that a
broad range of suboptimal maternal conditions during preg-
nancy and resultant gestational exposures lead to parallel
changes in mitochondrial biology, specifically a decreased
capacity to meet the energetic demands of the offspring cell
through either decreased mitochondrial content (e.g.
mtDNAcn) or decreased OXPHOS capacity and/or efficiency,
and additionally, increased oxidative damage. In humans, the
earliest evidence for these changes to mitochondrial biology
comes from in vitro work. Fertilized oocytes (through the
blastocytes stage) from obese women exhibit decreased mito-
chondrial metabolism and impaired substrate oxidation [86].
The majority of in vivo human studies have used placental
mtDNAcn (a marker of mitochondrial content) as the pri-
mary outcome measure, and they report an association
between a range of gestational exposures and variation (pri-
marily a decrease) in placental mtDNAcn in offspring of
women exposed to pollutants [74,79,80,93], cigarette smoke
[71], intrauterine growth restriction [85,87], pre-eclampsia
[94], obesity [78,88] and psychosocial stress. [72,73] There
are limitations in the interpretation of altered mtDNAcn
[101]; however, one study of maternal obesity exposure
included multiple measures of placental mitochondrial func-
tion and reported that in conjunction with decreased
mtDNAcn, there were matched decreases in other measures
of mitochondrial content (citrate synthase) and OXPHOS/
ETC function and capacity (ATP levels, complex I–V protein
levels and direct respiratory maximum, basal capacity) [88].

The next set of human studies examined mitochondrial
outcomes at the time of delivery in cells and tissues from
the umbilical cord or cord blood. These studies also report
changes (primarily a decrease) in mtDNAcn. Specifically,
infants of mothers exposed to higher levels of pollution
during pregnancy, lead exposure and placental insufficiency
exhibited alterations in cord blood mtDNAcn [73,89,91,
92,95]. With respect to mitochondrial outcomes over and
beyond mtDNAcn, five studies examined newborn umbilical
cord mesenchymal stem cells (uMSCs) and/or endothelial
cells collected soon after birth [70,75,81,99,100]. Specifically,
gestational exposure to maternal obesity was associated
with mitochondrial inefficiency and increased oxidative
stress in skin epithelial cells [70] and down-regulation of sev-
eral genes related to mitochondrial function and lipid
metabolism in umbilical vein epithelial cells [75]. Newborns



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192713

5
of mothers with gestational diabetes exhibited reduced
expression of mitochondrial-encoded ETC genes (complexes
I and V) and nuclear-encoded mitochondrial regulatory
genes (TFAM, PGC-1α), decreases in all OXPHOS respiratory
measures (basal respiration, maximum respiration, ATP syn-
thesis, spare respiratory capacity, with a 30% reduction in
basal oxygen consumption) and elevated ROS production
in uMSCs [81]. Furthermore, uMSCs of newborns exposed
to maternal obesity exhibited lower rates of complete fatty
acid oxidation (FAO) that corresponded with hypermethyla-
tion and lower gene expression on a related FAO gene
(CPTA1) and ETC complex II (SDHC) [99]. These multi-
potent cells––uMSCs––eventually differentiate into a broad
range of tissues, including muscle, bone and adipose cells,
thereby increasing the generalizability of these findings.
One study applied this principle and differentiated newborn
uMSCs exposed to maternal obesity into cells of relevant
tissue, adipocytes and myocytes, and demonstrated impaired
FAO in uMSC myocytes and altered mitochondrial gene
expression in uMSC adipocytes, which indicate higher ETC
activity (complexes I–V), but lower mitochondrial biogenesis,
mitophagy and elevated fission/fusion ratio [100]. Impor-
tantly, these findings parallel changes seen in these tissues
(adipose/muscle) with age or disease and demonstrate pri-
mary alterations in mitochondrial function in otherwise
healthy newborns that precede and likely increase sub-
sequent susceptibility for common complex disorders.

Lastly, a large, unbiased meta-analysis of the effects of
prenatal pollution exposure on the cord blood epigenome
in a population of 1503 infants found genome-wide signifi-
cant DNA methylation differences in nuclear genes related
to mitochondrial function. [77] Moreover, one association
appeared to persist (cg08973675 (SLC25A28)) in a subsequent
look-up population of 4- and 8-year-old children. Two recent
studies demonstrated 34 significant differentially methylated
nDNA regions in relation to cord blood mtDNAcn [90] and
an association between mtDNA methylation load and
newly discovered mitochondrial peptides [97]. Although no
human study appears to have prospectively followed mito-
chondrial function in individuals from birth to adulthood,
mtDNA density is lower at birth in infants exposed to meta-
bolic stress [78,88], positively associates with cord blood
insulin [90,96], and is prospectively associated with insulin
resistance [102], diabetes onset [26] and cardiovascular
disease [25] in adulthood.
(b) Evidence for temporal stability of gestational
condition-related variability in offspring
mitochondrial biology

An important criterion in supporting the veracity of the
developmental programming of mitochondrial biology
hypothesis is the persistence (or temporal stability) of gesta-
tional exposure-related effects in mitochondrial biology that
are evident during the embryonic, fetal, newborn or early
infancy periods of life. The multiple studies that demonstrate
that mitochondrial changes induced by gestational exposure
persist into adulthood [40,42,44–49,51–53,56,62], or across
generations [41,62,103,104], are informative in this regard.
Trans-generational transmission of mitochondrial dysfunc-
tion consequent to adverse F0 gestational exposure has
been demonstrated in the somatic as well as germline tissue
across three generations of mice (F1–F3) [62]. It is important
to note that this third generation transmission (F3) provides
strong evidence of developmental programming, because
none of the cells of the F3 generation could have been
directly exposed to the gestational insult (F1 embryo and
F2 PGCs can be directly exposed to any F0 gestational
exposure). InFewer the above-referenced studies, mitochon-
drial function is commonly assessed in adult animals, with
a gap between exposure and assessment of function; how-
ever, a small but important set of animal studies have
performed serial assessment of mitochondrial function from
embryonic/fetal to adult life [44,45,56], and support the
persistence (stability) of features of the initial setting of
mitochondria function.

It is important to note that the process of developmental
programming primarily produces a shift in future disease
susceptibility, as opposed to overt disease. This concept of
susceptibility rather than determinism is consistent with the
fundamentally dynamic nature of mitochondrial biology.
Such dynamics could amplify mitochondrial dysfunction in
a susceptible system (as discussed above), particularly with
further adverse exposures across the lifetime (e.g. metabolic
stress), or these dynamic systems could potentially serve to
correct and/or diminish dysfunction over time. This empha-
sizes the need for serial measurement of mitochondrial
function across multiple tissues, and for the careful consider-
ation of gestationally induced changes in the context of
further post-natal adverse and/or protective exposures.

(c) Germline tissue mitochondrial biology and
developmental programming: special consideration

Mitochondria are maternally inherited and physically passed
from the mother’s oocyte to the fertilized zygote and devel-
oping embryo. At the point of fertilization, human oocytes
have approximately 106 mitochondria, which is substantially
more than the range seen in somatic cells (103–104) [105]. This
large population of mitochondria is necessary since mito-
chondrial biogenesis is suppressed through the hatched
blastocyte stage, and the pool of oocyte mitochondria is
divided among the early embryonic cells [105,106]. Further-
more, PGCs of females are formed during this early stage
of embryonic development, and as a result, there are only
approximately 10 mitochondria per PGC. Fewer than 0.1%
of maternal mitochondria are passed on to any given
gamete in a female fetus, thus forming a unique inheritance
bottleneck [105]. This process is important to consider in
developmental programming research, as the entire future
embryonic/fetal mitochondrial population and its function
are determined by the inheritance of a relatively small
number of mitochondria in the womb of the maternal
grandmother.

Several studies have shown that various environmental
stressors can produce deleterious effects on germ cell
mitochondrial number and function. Specifically in
mice [41,43,58,59,104,107–109] and humans [86], vari-
ations in maternal diet and metabolic health during the
pre-conceptional and early gestational windows can
affect mitochondrial function, with decreased oocyte qual-
ity and fertility across at least two subsequent generations.
These findings suggest mitochondrial function in germ
cells is sensitive and responsive to the gestational environ-
ment, and that these effects may persist in somatic tissues
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and alter long-term health and disease risk across multiple
generations. Therefore, in addition to considering the
intergenerational (mother to child) effects of gestational
exposures (described in §§4.1 and 4.2), research on devel-
opmental programming of mitochondrial biology should
consider the grandmaternal and pre-conceptional periods
as well. Furthermore, mitochondria are heterogeneous
within cells, and there is evidence in PGC/oocyte develop-
ment and early embryogenesis that these subpopulations
asymmetrically segregate during cellular division and
across cellular subtypes [33]. A more rigorous evaluation
of these subpopulations could provide critical information on
the molecular mechanisms of developmental programming
of mitochondrial biology [33].

(d) Magnitude and consequences of effects of
gestational exposures on mitochondrial biology

We posit that the magnitude and/or consequences of effects
of exposures during development (e.g. the gestational period)
on mitochondrial biology are more pronounced than of those
occurring later in life for the following overlapping reasons:
(i) Since the long-term consequence on health and disease
risk is a cumulative function over time, it stands to reason
that any alterations (relative deficits) in cellular biology that
occur earlier in the life span likely have greater consequences
than those (of the same magnitude) that occur later in life
[110]. Adverse gestational exposure could lead to a self-rein-
forcing cycle of progressive dysfunction in mitochondrial
function, starting with disrupted ETC function, limited ATP
supply and increased ROS, leading to mtDNA damage,
which then causes further ROS leak and mitochondrial dys-
function [56]. (ii) It also is likely that the magnitude of
effects of equivalent levels of potentially detrimental
exposures that occur during development is greater than
that of those that occur after the developmental period,
because the systems under consideration are more vulnerable
during development, when they are relatively immature and
are undergoing rapid change [111]. For example, in a pre-
clinical model of gestational hypoxia, the resultant
disruption of mitochondrial energy flow and ROS production
during a critical window of development lead to permanent
organ or tissue structural changes, specifically in the pancreatic
islet cells, and adult development of diabetes [56].
5. Mitochondrial biology mechanisms underlying
developmental programming

It appears that mitochondria serve a dual role as sensors as
well as transducers in the process of transmission of the effects
of environmental states and exposures. Mitochondria rep-
resent a key site of sensing multiple stress-related biological
signals (e.g. glucose/lipids, ROS, inflammation, glucocorti-
coids) and also transducing the effects of these signals
through short- and long-term changes to mitochondrial struc-
ture, function and mtDNA integrity, and in interaction with
nDNA signalling. We postulate that the mechanisms under-
lying programming of the mitochondrial biology system
and its subsequent long-term effects may be mediated, in
part, by early alterations in PGC and oocyte biology (as pre-
viously reviewed in §4c), by direct changes to mtDNA
integrity, by the the production of stable epigenetic
alterations in embryonic and fetal nDNA, and/or secondary
to the programming on the telomere biology system.
(a) mtDNA quality
mtDNA is more susceptible than nDNA to damage and
demonstrates a higher intrinsic mutation rate [112]. The
accumulation of mtDNA defects impairs mitochondrial
bioenergetics, and such changes are generally stable and
amplified over time [113]. While the tissue burden of
mtDNA deletion/mutation is relatively low, even modest
levels of heteroplasmy can have broad and pervasive effects
on mitochondrial function, and the quality of mtDNA may
be a marker for an organism’s fitness, resilience and adapta-
bility [23]. Thus, the developmental programming of mtDNA
quality (deletion and mutation) provides a plausible mechan-
ism by which phenotypes of mitochondrial dysfunction in
embryonic/fetal life may persist over time and confer long-
term effects on health and disease risk. Two empirical studies
in animals provide evidence that adverse gestational
exposure can induce variation in mtDNA quality, with impli-
cations for organismal fitness. Specifically, gestational
exposure to smoking and maternal obesity -induced
mtDNA deletions in fetal tissue [59] with persistent effects
of gestational exposure present in adult tissue [42].
(b) Mitochondria and the epigenome
Generally, one of the key mechanisms/pathways that confer
temporal stability (i.e. long-term consequences) of the effects
of developmental programming is mediated via the induction
of a suite of stable epigenetic alterations to the nuclear
genome [1]. Although mtDNA epigenetic modification is
controversial [17], approximately 97% of genes that regulate
mitochondrial biology are located in the nucleus. Thus, the
programming of epigenetic characteristics of nuclear-encoded
mitochondrial genes provides one likely underlying mechan-
ism by which phenotypes of mitochondrial dysfunction in
embryonic/fetal life may persist over time and confer
long-term effects on health and disease risk. For example,
methylation differences have been observed in mitochon-
drial fatty acid oxidation genes in offspring exposed to
gestational obesity [99], and genome-wide methylation
studies of human placentae exposed to maternal smoking
have reported that the top canonical pathways show differ-
ential methylation in genes underlying OXPHOS and
mitochondrial function [114].

Mitochondria engage in close cross-talk with the nucleus,
and it is increasingly evident that mitochondria exert a
substantial influence on nuclear gene expression and epige-
netic regulatory processes [7,18,21]. While it is widely
acknowledged that suboptimal gestational exposures
can programme the fetal epigenome, the underlying path-
ways/mechanisms remain largely unclear [1]. Mitochondria
serve as the heart of cellular bioenergetics, and the cell and
its plastic nuclear epigenome have evolved tight molecular
sensitivity to mitochondria’s biochemical signals [34].
Among these, ROS and antioxidant balance are believed to
represent key signals initiating and perpetuating epigenetic
control of gene expression during development [21]. We
suggest it is plausible that mitochondria could serve as one
of the key sensors and transducers of fetal epigenome
programming.
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(c) Mitochondrial–telomere axis
Based on study findings that have established extensive
regulation and counter-regulation between key aspects of
mitochondrial and telomere biology, a model integrating
these cellular systems has been formulated and has been
referred to as the mitochondrial–telomere signalling axis
[115]. Work in animal models has uncovered shared path-
ways that regulate the mitochondrial–telomere signalling
axis, particularly through the activity of the reverse transcrip-
tase enzyme telomerase, and expression of p53 [115]. The
connection between these two systems is further supported
by human studies showing a tight correlation between
mtDNAcn and telomere length [116,117]. We have previously
proposed that the initial setting of the telomere biology
system exhibits developmental plasticity and likely exerts a
long-term influence on cellular processes underlying health,
aging, disease susceptibility and longevity [118]. It is plaus-
ible that the effects of developmental programming of the
telomere biology system could, in part, serve as another
underlying mechanism for the development of the initial
setting and stability of mitochondrial function.
713
6. Conclusion and future research directions
Mitochondria ‘sense’ information about the cellular energetic
environment and signal the nuclear genome through meta-
bolic intermediates and ROS to drive acute and chronic
changes in gene expression that, in turn, regulate fundamen-
tal cellular activities such as cell division, growth, size and
cell death [7]. Based on the considerations that the initial
settings of the mitochondrial biology system exhibit develop-
mental plasticity in response to pre-conceptional and
gestational conditions, demonstrate subsequent long-term
temporal stability and implicate the same mitochondrial
phenotypes that are known to underlie health, aging and dis-
ease susceptibility, we submit that mitochondria biology
represents a promising candidate cellular mechanism under-
lying the process of developmental programming of health
and disease risk. The consequences of alterations in mito-
chondrial phenotypes in response to developmental
conditions may include transient changes that limit cellular
energy flow during critical periods of growth and differen-
tiation to produce structural changes in the architecture of
tissues and organ systems, or stable changes that impact
cell function (particularly energy flow and ROS production),
or both.

Important knowledge gaps remain, including: the magni-
tude and duration of the long-term effects of developmental
conditions on the initial settings of mitochondrial function;
the clinical significance of these observed effects on sub-
sequent health and disease susceptibility-related outcomes
over the life span; the molecular mechanism(s) underlying
long-term effects; the elucidation of informative biomarkers
of mitochondrial function across tissues; and the influence
of sex differences on mitochondrial function and its conse-
quences. These questions and issues provide a framework
for future research. Prospective, longitudinal studies are war-
ranted in humans that serially track the effects of early-life
conditions on mitochondrial biology across different cell
and tissues types and across sexes, from prenatal life and
birth through infancy and childhood until adult life. To
address the issue of confounding that is inherent in observa-
tional studies, such studies could be complemented by ones
that use quasi-experimental family-based studies [119] or
Mendelian randomization. Furthermore, studies using new-
born cells (e.g. uMSCs) offer great promise in the context of
developmental programming, as ex vivo experimental chal-
lenge paradigms using ecologically relevant stimuli will be
particularly informative in interrogating aspects of mitochon-
drial function. The selection of individuals from whom such
cells are obtained (e.g. gestational diabetes mellitus new-
borns) may provide further insights regarding the direction
and magnitude of the effects of specific gestational exposures.

In conclusion, the process of developmental program-
ming of mitochondrial biology may represent an important
avenue by which population health disparities are propa-
gated to influence the health and well-being of individuals
and their offspring across the life span and over generations.
A better understanding of these processes is important for the
formulation and testing of interventions for primary and sec-
ondary prevention of disorders that confer the major societal
burden of disease.
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