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Abstract

Head and neck cancers are a heterogeneous group of tumors that are highly aggressive and 

collectively represent the sixth most common cancer worldwide. 90% of head and neck cancers 

are squamous cell carcinomas (HNSCCs). The tumor microenvironment (TME) of HNSCCs 

consists of many different subsets of cells that infiltrate the tumors and interact with the tumor 

cells or with each other through various networks. Both innate and adaptive immune cells play a 

crucial role in mediating immune surveillance and controlling tumor growth. Here, we discuss the 

different subsets of immune cells and how they contribute to an immunosuppressive TME of 

HNSCCs. We also briefly summarize recent advances in immunotherapeutic approaches for 

HNSCC treatment. A better understanding of the multiple factors that play pivotal roles in 

HNSCC tumorigenesis and tumor progression may help define novel targets in order to develop 

more effective immunotherapies for HNSCC patients.
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Overview of head and neck squamous cell carcinoma (HNSCCs)

Head and neck cancers (HNC) are a heterogeneous group of tumors arising from the 

mucosal surfaces of the upper aerodigestive tract which includes the sinonasal and oral 

cavities, nasopharynx, oropharynx, hypopharynx, and larynx. Collectively, HNC is the sixth 

most prevalent cancer worldwide with over 880,000 new cases diagnosed and more than 

450,000 patients die each year1. 90% of all HNCs are head and neck squamous cell 

carcinomas (HNSCCs) and roughly 75% of these cases are associated with alcohol and 

tobacco use. However, emergences of new studies have shown that oncogenic human 

papillomavirus (HPV) infection may be a risk factor associated with 22% of oropharyngeal 

squamous cell carcinoma (OSCC) and 47% of tonsillar squamous cell carcinomas 

(TSCC)2–5. HNSCCs can severely impact the quality of life of patients while have poor 

prognosis, low responsiveness to treatment and drug resistance. HNSCC malignancy has a 

high morbidity and mortality rate since only 50%–60% of patients have a survival rate of 5 
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years after diagnosis of HNSCC, and up to 30% of patients develop cancer relapse and 

treatment failure6. It has been found that one of the most imperative prognostic determinants 

of the survival rate from HNSCC is the presence of lymph node metastases7.

Immune cells in HNSCCs

A major deterrent of HNSCC treatment is the high rate of recurrence and/or metastases in 

patients, which not only stresses the difficulty in treating HNSCCs but also conveys the 

complex molecular conditions. The rationale behind the high rate of metastatic HNSCC and 

recurrence is likely due to the interactions of the surrounding tissue matrix and immune cells 

that make up the tumor microenvironment (TME). The host immune system is capable of 

recognizing and eliminating neoplastic cells; however, evasion of immunosurveillance 

generates an environment that accommodates the progression and survival of tumor 

cells6,8–10. Interestingly, HNSCCs have the ability to not only avoid recognition by immune 

cells, but they are also immune-suppressive6,10. This immune evasion is achieved by 

downregulating human leucocyte antigen (HLA) expression, which in turn impairs cancer 

cell recognition by T cells11. In addition, the HNSCC TME has also been shown to impair 

tumor-infiltrating lymphocyte (TIL) function10,12,13. TME is composed of different subsets 

of cells, such as cancer-associated stromal fibroblasts, T cells, B cells, neutrophils, 

macrophages, myeloid-derived suppressor cells (MDSC), natural killer (NK) cells and mast 

cells9,10,14–18. These different subsets of cells infiltrate the tumors and interact with the 

tumor cells as well as with each other through various networks (Figure 1). Both innate (e.g., 

NK cells) and adaptive (e.g., CD8+ T cells) immune cells play a crucial role in immune 

surveillance and controlling tumor growth; on the other hand, some subsets of immune cells 

(e.g., MDSCs and macrophages) can also promote tumor growth19. Thus, tumors progress if 

they can escape and/or suppress anti-tumor immune responses. In this regard, tumors often 

evade host’s immune surveillance by suppressing cytotoxic T cell function or by activating 

and expanding immunosuppressive cell populations. The mechanisms by which HNSCC 

TME may regulate and impair host’s immunity are discussed in the following sections.

T cells

T cells are lymphocytes that are a crucial component of the adaptive immune system and are 

categorized into CD4+ and CD8+ T cells. While CD8 TILs can directly kill tumor cells via 

producing perforin/granzymes, activated CD4 and CD8 TILs can also secrete cytokines 

(e.g., IFN-γ, TNFα) which have tumor cell killing activity or can recruit other immune cells 

that mediate cytotoxic anti-tumor immune responses12 (Figure 1).

In one study using OSCC patient samples, it was observed that the majority of intratumoral 

TILs were CD8+ T cells, while 67% of those patients had intratumoral CD4+ TILs20. They 

found that a higher frequency of surrounding peritumoral CD8+ TILs correlated with better 

clinical parameters in HNSCC patients (e.g. smaller tumor size and lower probability of 

lymph node metastasis); however, it did not correlate with patient survival20. The ratio of 

CD4:CD8 TILs was 0.745, and this ratio was found to be higher in large tumors and 

advanced stage tumors20. While the density of peritumoral CD8+ TILs in OSCCs was 

associated with some clinical parameters, neither the frequency of intratumoral CD8+ TILs 

Chen et al. Page 2

Mol Carcinog. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nor the ratio of CD4:CD8 TILs was shown to have any relationship with clinical 

parameters20. In contrast, another study reported that higher CD4 and CD8 TIL levels were 

correlated with improved overall survival (OS), and relapse-free survival (RFS)21. 

Furthermore, after controlling for other prognostic factors, higher CD4 levels predicted 

improved OS and disease-specific survival21. Consistently, another systematic review and 

meta-analysis confirmed that CD3+ and CD8+ TILs have a favorable and prognostic role in 

HNSCC clinical outcomes and found that FoxP3+ TILs also correlate with improved OS22.

By comparing the peripheral blood mononuclear cells (PBMC) of HNSCC patients and 

healthy controls, one study showed that there was no quantitative difference in the 

proportion of T cell subsets, but patient T cells had a qualitative difference from controls23. 

When these PBMC T cells were stimulated by peptide pools of viral antigens, T cells from 

the HNSCC patients produced a significantly weaker IFN-γ recall response compared to the 

controls23, suggesting a systemic immunosuppressive condition in HNSCC patients. While 

peritumoral CD8+ TILs may indicate an adaptive immune response, studies have shown that 

dysfunctional TILs are commonly present, which exhibit decreased cytokine production and 

proliferation ability and lack of cytotoxic functions24,25. Exhausted and dysfunctional TILs 

in HNSCC cases have been characterized by the upregulation of several checkpoint markers, 

such as programmed cell death 1 (PD-1), lymphocyte-activation gene 3 (LAG-3), T cell 

immunoglobulin mucin protein-3 (TIM-3), cytotoxic T lymphocyte–associated protein 4 

(CTLA-4), and 2B426–29 (Figure 1). The cause and mechanisms by which the T cells 

become exhausted and dysfunctional in HNSCCs are discussed in detail below.

PD-1 is a co-inhibitory receptor expressed on activated CD4+ or CD8+ T cells, and PD-1 has 

two ligands, PD ligand 1 (PD-L1) and 2 (PD-L2)30,31. PD-1 is also considered a marker for 

exhausted T cells and is often upregulated in CD4+ and CD8+ TILs in various types of 

cancers30,31. CD8+ TILs of human HNSCCs were found to express increased levels of PD-1 

on their surface32, and 66% to 79% of SCC patients had PD-L1-positive tumor cells33–36. In 

addition, we previously showed that CD8+ TILs in a mouse SCC model highly expressed 

PD-1 and LAG-337. Engaging PD-1 by binding to PD-L1 inhibits the functions of T cells or 

promotes their apoptosis30,31. Studies have shown that increased PD-L1 expression on tumor 

cells significantly decreased the level of CD8+ T cells at the regional level in HNSCC TME 

through apoptotic mechanisms38. In addition, PD-L1 expression was detected in exosomes 

isolated from plasma samples of HNSCC patients, and circulating PD-L1high exosomes 

associated with disease progression in HNSCCs39. Of note, HNSCCs may also induce CD8+ 

T cell apoptosis by producing Fas-L+ microvesicles detected in serum samples of OSCC 

patients40. Altogether, these mechanisms may provide an explanation for a systemic 

immunosuppressive condition in HNSCC patients.

Another mechanism that causes the dysfunction of CD8+ T cells in HNSCCs is the elevated 

levels of both circulating and tumor-infiltrating T regulatory (Treg) and Th17 cells41,42. 

Furthermore, Th17 cell proliferation is likely caused by the increased levels of IL-23 and 

IL-6 released by HNSCC cancer cells42. Tregs account for less than 5% of a subset of CD4+ 

T cells in peripheral blood, which are characterized as CD4+CD25+FOXP3+. Tregs regulate 

excessive immune reactivity toward other immune cells to prevent autoimmunity; however, 

this function also limits the immune system to target neoplastic cells43,44. Moreover, 
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peripheral Tregs can be recruited into the TME, where TGF-β causes them to differentiate 

and become more immunosuppressive45 (Figure 1). Elevated level of TGF-β has been found 

during the latter phase of HNSCC progression, which seems to disrupt the ratio of Th17 vs. 

Tregs46. This disruption induced tumor-promoting Treg differentiation, and increased anti-

inflammatory cytokine IL-10 production in HNSCCs47,48. On the other hand, a high level of 

FoxP3+ Treg infiltration in HNSCCs was associated with longer RFS and OS22,49. This is 

probably because the presence of a high level of FoxP3+ Treg in tumors indicates an on-

going robust anti-tumor immune response, which contributes to inhibition of tumor growth.

In addition to dysfunctional T cells, decreased expression of major histocompatibility 

complexes (MHC), called HLA in humans, may also help the tumor cells evade adaptive 

immunity. MHC class I is essential for presenting peptides to CD8+ T cells and for CD8+ 

cytotoxic T lymphocytes (CTL) to recognize tumor cells expressing tumor-associated or 

tumor-specific antigens50. About 50% of HNSCC tumors might evade immune surveillance 

through the downregulation of MHC class I molecules38. While 12.7% of HNSCC cases 

showed no detectable expression of MHC class I, others had reduced MHC class I 

expression38. However, the mechanisms of MHC class I reduction in HNSCCs remain less 

well-understood. It has been found that during the early stages of HNSCC tumor 

development, the interaction of CD8+ T cells and MHC class I in primary HNSCCs led to 

either tumor rejection or immune escape13,51. Decreased expression of MHC class I would 

allow tumor cells to escape the detection by CD8+ T cells and avoid the activation of CD8+ 

CTL-mediated anti-tumor immune responses52.

Myeloid Cells

Tumor-associated macrophages (TAMs) are common in HNSCCs, and are classified into 

two subpopulations: M1, which mediates pro-inflammatory and anti-tumor responses, and 

M2, which is immunosuppressive and has pro-tumor properties53 (Figure 1). M1 produces 

pro-inflammatory cytokines such as IL-12, IL-23, and IFN-γ, and has been shown to have 

anti-tumor immune properties16,54,55. In contrast, M2 exhibits immunosuppressive 

characteristics by not only producing IL-10 and TGF-β, shown to be suppressive cytokines, 

but also inhibits M1’s anti-tumor cytotoxic effects56,57. A higher level of TAMs in the TME 

has been shown to correlate with lymph node metastasis and advanced stage of 

HNSCCs53,58–61. A recent study has shown that HNSCC TME largely encompasses M2 

TAMs and exhibits an increased level of TGF-β62. A likely mechanism that TAMs 

contribute to inflammation and tumorigenesis is by producing reactive oxygen species 

(ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Furthermore, TAMs have 

been found to produce high levels of inflammatory cytokines (e.g., TNF-α and IL-1β) and 

macrophage migration inhibitory factor (MIF)54,63–65. MIFs are ligands of chemokine 

receptor CXCR2, and have been shown to promote migration of SCCs, cell-matrix 

adhesion54,66, as well as neutrophil recruitment to HNSCCs67. The recruited neutrophils can 

release hepatocyte growth factor (HGF), which in turn increases invasiveness of the tumor 

cells by feedback mechanisms of the HGF pathway68 that regulates cell growth, 

morphogenesis and motility.
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The effects of TAM reduction were investigated using mouse SCC models69. Macrophages 

were depleted by treating recipient mice bearing K15.KrasG12D/Smad4−/− SCC tumors with 

clodronate, and it was observed that TAM reduction resulted in reduced SCC tumor 

volume69. Tumors with clodronate treatment increased SCC apoptosis but did not attenuate 

SCC proliferation and metastasis69. Given the immunosuppressive properties of these 

myeloid cells in the TME, quantifying TAMs may thus be useful for prognostic stratification 

in HNSCCs. Furthermore, strategies for targeting TAMs (through inhibition or 

reprogramming) in combination with checkpoint inhibitors in ongoing clinical trials have 

shown promising results in melanoma, lung cancer, colon cancer, and breast 

cancer59,63,70–72. While some studies have suggested that increased density of TAMs are 

correlated with poor clinicopathologic markers in HNSCCs, strategies for targeting TAMs in 

HNSCC patients have yet to be explored.

MDSC

Previous studies suggest that myeloid derived suppressor cells (MDSC) may play a pivotal 

role in predicting tumor response to various tumor immunotherapies14,65,73–76. MDSCs 

circulate in peripheral blood, draining lymphoid tissue, as well as in HNSCC tumor 

tissue77–79. Many studies have demonstrated that MDSCs downregulate immune responses 

during infection, inflammation and tumor development14,67,79–85. MDSCs are CD11b+ cells 

that are phenotypically subdivided into two groups, polymorphonuclear MDSC (PMN-

MDSC) and monocytic MDSC (M-MDSC)86–88. PMN-MDSCs are similar to immature 

polymorphonuclear cells and phenotypically express Ly6Clo and Ly6G+. M-MDSCs are 

immature mononuclear cells characterized by cell surface markers, Ly6Chi and Ly6G−, and 

can differentiate into TAMs as a result of signal transducer and activator of transcription 3 

(STAT3) downregulation64,89–91. One study on murine lymphoma and colon carcinoma 

showed that intratumoral MDSCs had significantly lower density of activated STAT3 than 

peripheral blood or spleen MDSCs90. The downregulation of STAT3 activities was 

suggested to facilitate higher frequencies of MDSC differentiation into TAMs, but further 

studies are needed to verify whether lowered STAT3 activation is observed in the MDSCs of 

HNSCCs.

Studies have found that the frequency of M-MDSC is negatively correlated to the response 

of chemotherapy in SCCs, and M-MDSCs are highly immunosuppressive via an antigen-

nonspecific mechanism59,80,81. While PMN-MDSCs are also immunosuppressive, they have 

been found to promote T cell tolerance in an antigen-specific manner80. It has been shown 

that peripheral MDSCs from lymphoid organs suppress antigen-specific CD8+ T cells, while 

TME MDSCs can suppress both antigen-specific and antigen-non-specific T cell 

function80,82,92. Peripheral MDSCs can suppress antigen-specific immune responses of T 

cells, which requires close cell-to-cell contact, via the production of nitric oxide (NO) and 

ROS80. In addition, peripheral MDSCs can reduce T cell proliferation by depleting essential 

amino acid levels, such as L-arginine and tryptophan, attributed to the activity of Arginase-1 

and indole amine 2,3 dioxygenase (IDO), respectively79,80,83,91. However, TME MDSCs in 

HNSCC patients not only exhibit more potent antigen-specific immunosuppressive 

properties through NO production and Arg1 activities, but also suppress antigen-specific and 

-non-specific T cell response via inhibiting CD3/CD28 expression on T cells92,93. Another 
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way for MDSCs to suppress cytotoxic CD8+ T cell responses is to induce 

immunosuppressive cytokines (e.g. IL-10 and TGF-β) and Tregs46,47, which downregulate 

effector T cell proliferation and activation, thereby leading to tumor growth and metastasis.

A recent study has discovered that tumor-associated hypoxia caused an increase of PD-L1 

expression on tumor-infiltrating MDSCs94. This upregulation of PD-L1 on MDSCs was due 

to the transcription factor, hypoxia-inducible factor 1-α (HIF-1α), which resulted in more 

potent immunosuppressive effects of MDSCs94. Another mechanism that can increase the 

immunosuppressive activities of MDSCs is the upregulation of CD38 on MDSCs. MDSCs 

that express a higher level of CD38 evidently have a greater capacity to promote tumor 

growth and exhibit more potent immunosuppressive effects95. CD38 also promotes the 

expansion of M-MDSC populations95,96. Furthermore, it has been found that IFN-γ, TNF-

α, and other cytokines can induce CD38 expression in MDSCs97,98, suggesting a negative 

feedback loop that prevents anti-tumor immunity. Studies have detected a delay in tumor 

progression in murine models of myeloma and hematological tumors after administering 

anti-CD38 mAb that could target CD38+ MDSCs97,99–101. Thus, we suggest that targeted 

therapies that selectively inhibit certain subtypes and aspects of MDSCs may provide a 

functional remedy to combat HNSCCs with a high density of MDSCs.

Current and future immunotherapies in HNSCC

When HNSCC is diagnosed at an early stage, it is typically treated with surgery or 

radiotherapy; however, treatment for HNSCC can be quite morbid due to significant 

functional impairments and aesthetic deformities to the patients. HNSCCs are genetically 

heterogeneous that can hinder the classification and development of specific targeted 

therapies102. Current treatment strategies for HNSCCs are not adequate and may lead to 

resistance. Thus, to rectify this issue, new treatment strategies and specific molecular or 

cellular markers need to be developed and identified to improve and better predict treatment 

outcome and survival of HNSCC patients.

The breakthrough findings that blocking certain immune checkpoints can help rescue T cell 

responses have prompted investigators to develop treatments to restore anti-tumor immune 

responses30,31,103. In recent years, immune checkpoint blockade therapies in HNSCCs, such 

as pembrolizumab, nivolumab, and durvalumab, that target PD-1/PD-L1, have been shown 

to have limited advantageous safety profile and response rate104–107. Although anti-

PD-1/PD-L1 has been approved by FDA for treating HNSCCs, the overall response rate 

remains low104–107. The mechanisms underlying the unresponsiveness to anti-PD-1/anti-PD-

L1 remains poorly understood and the markers to predict responses are not well-

characterized. There are many ongoing HNSCC clinical trials evaluating the various 

indications of anti-PD-1/anti-PD-L1 alone or in combination with radiation, targeted therapy 

and chemotherapy3,105,106,108, but their curative effect and safety profile need further 

experimental investigation and verification.

A likely key factor that can predict responsiveness to PD-1 blockade in HNSCCs is the 

production of IFN-γ. In a 2017 study, it was identified that IFN-γ signature score can 

predict clinical response to PD-1 blockade in HNSCCs109. Furthermore, it was shown that 
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the T cell-inflamed gene expression profiles, which contain IFN-γ-responsive genes, also 

predicted clinical responses to PD-1 blockade109. However, these features associated with T 

cell-inflamed phenotypes were necessary, but not always sufficient, for clinical benefit, 

because one category of non-responders to PD-1 blockade clearly exhibited a high level of 

IFN-γ signature score and T cell inflammatory gene expression, yet, these patients had no 

clinical benefit109. Hence, we need to better understand the resistance mechanisms in tumors 

that exhibit evidence of T cell-inflamed phenotypes yet still lack clinical response. In this 

regard, activated T cells and NK cells in the TME can produce IFN-γ, which can directly 

upregulate PD-L1 and PD-L2 on tumor cells or other cells in the TME to induce a feedback 

inhibition loop by activating PD-1 on TILs (Figure 1). Therefore, blocking PD-1 or PD-L1 

can disrupt this feedback inhibition loop and control tumor growth. However, IFN-γ 
production may also trigger inhibitory feedback loops that involve additional pathways other 

than PD-1/PD-L1, for instance, other immunosuppressive molecules such as LAG-3 and 

IDO1 could be overexpressed in an IFN-γ rich TME.

HNSCCs in heavy smokers often harbor extensive DNA damage, and respond poorly to 

conventional therapies110. To solve the challenge and enhance the sensitivity of HNSCCs to 

immune checkpoint inhibitors, new therapeutic strategies are needed such as developing 

vaccine-based immunotherapy for HNSCCs using neoantigens. Neoantigens are newly 

formed antigens by somatic mutations in cancers; thus, they are absent in the normal host 

tissues111–114. Neoantigens hold great promise to induce cancer-specific immune responses 

that can potentially eradicate cancers, while sparing normal tissues, thereby minimizing 

side-effects. Recent advances in next-generation sequencing (NGS) and epitope prediction 

algorithms have made the identification of tumor-specific neoantigens feasible111,115. By 

combining genomic, bioinformatics, and immunological approaches, neoantigens were 

identified in both mouse models and human patient samples111,116–123. Preclinical studies of 

mouse models have indicated the potential benefits of tumor-specific neoantigens in 

immunotherapy116,121,122. Results of the therapeutic use of neoantigens in human cancers 

are also encouraging124–127. It would be of great interest to test whether HNSCCs harbor 

neoantigens and whether neoantigen-based immunotherapy can be effective in HNSCCs.

Another novel advance in adoptive immunotherapy is the administration of genetically 

modified antigen-specific T cells that target antigens expressed on the surface of tumor cells. 

In recent years, synthetic chimeric antigen receptor (CAR)-T cell therapy has encouraging 

therapeutic potential in HNSCCs and hematological cancers128–130. A previous study 

identified nine overexpressed genes on the surface of HNSCCs as potential targets for CAR-

T cell therapy128, but only a few targeted antigens have shown favorable results. Pre-clinical 

and clinical data on HER2-specific, CD70-specific, and T4-immunotherapy (T1E28ζ/4αβ) 

CAR-T cell therapy on HNSCCs demonstrate potent anti-tumor activity, but the risk of on-

target off-tumor toxicity remains a challenge to overcome128,129,131. T4+ CAR T-cells are 

retrovirally transduced to co-express (a) T1E28ζ, a CAR coupling ErbB ligand derived from 

EGF and TGFα to a fused CD28/CD3ζ endodomain; and (b) 4αβ, a chimeric cytokine 

receptor containing the IL-4Rα ectodomain coupled to the IL-2Rβ endodomain131.

In addition to T cell-specific immunotherapy, recent studies have seen the potential 

importance of targeting MDSC populations in cancers. Studies have determined the 
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immunosuppressive properties of tumor infiltrating MDSCs, and by inhibiting them directly 

or targeting CD38+ MDSCs by administering anti-CD38 mAb have emerged as potential 

immunotherapies for MDSC-high cancers in mouse models of myeloma or other 

hematological cancers99,101,132. Furthermore, other immunotherapies are being studied that 

can potentially extend survival and suppress tumor growth. For example, recent 

investigations on targeting vascular endothelial growth factor, HIF-1α and nuclear factor-κB 

as therapeutic targets in the TME have been promising92,94,133. However, all these 

immunotherapies face multiple factors that can be challenging, such as the need to identify 

tumor-associated antigens that are specifically overexpressed on the tumor cells and not in 

normal tissues.
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Figure 1. 
A schematic illustration of the tumor-associated immune cells and factors responsible for the 

immune-suppressive mechanisms in the tumor microenvironment (TME) of HNSCC.
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