
Neuro-Oncology
22(6), 797–805, 2020 | doi:10.1093/neuonc/noaa007 | Advance Access date 20 January 2020

797

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. 
For permissions, please e-mail: journals.permissions@oup.com

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

Brain metastases (BM) are common in patients with met-
astatic cancer and can be life-threatening. MRI is the gold 
standard modality for the diagnosis and follow-up of BM. 
Volumetric contrast-enhanced T1-weighted MRI (T1c) 

is used for radiotherapy treatment planning as BM ap-
pear hyperintense on T1c images due to disruptions in the 
tumor vasculature allowing for gadolinium uptake, while 
necrotic regions within the tumor appear hypointense. 
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Abstract
Background.  Local response prediction for brain metastases (BM) after stereotactic radiosurgery (SRS) is chal-
lenging, particularly for smaller BM, as existing criteria are based solely on unidimensional measurements. This 
investigation sought to determine whether radiomic features provide additional value to routinely available clinical 
and dosimetric variables to predict local recurrence following SRS.
Methods.  Analyzed were 408 BM in 87 patients treated with SRS. A total of 440 radiomic features were extracted 
from the tumor core and the peritumoral regions, using the baseline pretreatment volumetric post-contrast T1 (T1c) 
and volumetric T2 fluid-attenuated inversion recovery (FLAIR) MRI sequences. Local tumor progression was deter-
mined based on Response Assessment in Neuro-Oncology‒BM criteria, with a maximum axial diameter growth of 
>20% on the follow-up T1c indicating local failure. The top radiomic features were determined based on resampled 
random forest (RF) feature importance. An RF classifier was trained using each set of features and evaluated using 
the area under the receiver operating characteristic curve (AUC).
Results. The addition of any one of the top 10 radiomic features to the set of clinical features resulted in a sta-
tistically significant (P < 0.001) increase in the AUC. An optimized combination of radiomic and clinical features 
resulted in a 19% higher resampled AUC (mean = 0.793; 95% CI = 0.792–0.795) than clinical features alone (0.669, 
0.668–0.671).
Conclusions. The increase in AUC of the RF classifier, after incorporating radiomic features, suggests that quanti-
tative characterization of tumor appearance on pretreatment T1c and FLAIR adds value to known clinical and dosi-
metric variables for predicting local failure.

Key Points

1. � Radiomic features aid local control prediction of brain metastases treated with 
radiosurgery.

2.  Radiomic features are complementary to clinical features for this task.

3. Tumor core sphericity appears to be an important feature.
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Complementary information regarding the peritumoral 
region may be obtained by using a volumetric T2-weighted 
fluid-attenuated inversion recovery (FLAIR) sequence, which 
predominantly identifies edema.1 Several new MRI-based 
techniques, such as chemical exchange saturation transfer 
and magnetization transfer,2,3 show promise for tumor re-
sponse assessment and prediction; however, they have yet 
to be widely adopted as standard imaging protocols.

Common treatments for BM include whole brain radi-
otherapy (WBRT), stereotactic radiosurgery (SRS), sur-
gical resection, and a combination of these modalities. At 
present, SRS is the dominant treatment choice for patients 
presenting with a limited number of BM, or as salvage 
therapy after WBRT. The nature of SRS is to deliver an ab-
lative dose of focal radiation in 1 to 5 fractions to the T1c 
defined volume. SRS has been reported to be highly effec-
tive, with local control rates of 70–80%.4

One of the challenges with SRS, particularly for smaller 
targets, is response determination. Diagnosing local 
failure and distinguishing it from radiation necrosis is dif-
ficult with current conventional imaging. At present, the 
Response Assessment in Neuro-Oncology (RANO)–BM cri-
teria represent the clinical standard for response determi-
nation; however, these guidelines are suboptimal as they 
are based on a unidimensional assessment and designed 
to evaluate metastases larger than 10 mm.5 Given that the 
treatment of BM has changed such that SRS is routinely 
delivered for patients with more than 5 lesions (often 
subcentimeter in diameter), the limitations of RANO-BM 
(and similar guidelines) to account individual target re-
sponses is a significant issue. For example, the notion that 
the evaluation of a limited number of metastases (up to 
5)  is a surrogate of overall response in the brain for pa-
tients with more than 5 metastases is simply a reflection 
of limitations in human assessment capability and the cur-
rent software available in the clinic for diagnostic imaging. 
In the modern era, there is an urgent need to refine re-
sponse determination to be based on individual targets as 
more patients are treated for multiple small subcentimeter 
lesions. Additionally, it has been observed that the volume 
of disease is a better predictor of overall survival than the 
number of lesions.6,7 Lastly, the biological heterogeneity 
at the genomic level of individual metastases necessitates 
that each lesion be accounted for as an independent var-
iable to tailor salvage therapy options.8 Ultimately, the 
aim is to develop an accurate method of pretreatment re-
sponse prediction at the level of the individual metastasis, 
which holds the potential to improve patient management 

as identification of BM at risk for local failure may warrant 
surgery, a higher radiation dose, and/or a change in sys-
temic management.

In recent years, large-scale characterization of tumor 
phenotype from medical image data, often referred to 
as radiomics, has shown potential for outcome predic-
tion.9 Radiomics describes a wide range of computational 
methods aiming to extract intensity, shape, and texture-
based features from a predefined region of interest with 
the aim of aiding prognosis, diagnosis, and treatment 
response. Radiologists often derive useful information 
from tumor appearance on medical images using quali-
tative descriptors (eg, heterogeneity) or simple quantita-
tive features (eg, maximum diameter, volume).8 However, 
qualitative measures are time-consuming, capture few 
features, and are prone to inter/intraobserver variability.10 
Radiomics addresses several of these limitations by quan-
titatively characterizing tumor phenotype through com-
putational methods that automatically extract meaningful 
patterns from imaging data.

Presently, there is limited evidence to suggest that 
radiomics provides value in predicting local recurrence 
following SRS for BM based on pretreatment CT and 
T1c scans.11–13 There is, however, uncertainty whether 
radiomics provides additional value beyond clinical, do-
simetric, and structural radiographic variables (which we 
refer to as “clinical features”) with respect to outcome 
prediction. Accordingly, the aim of this study was to de-
termine if radiomic features extracted from standardized 
volumetric T1c and volumetric FLAIR scans can provide 
complementary information capable of improving the pre-
diction of local failure of BM after SRS.

Materials and Methods 

Patient Data

An institutional research ethics board–approved retrospec-
tive review of patients treated for BM with Gamma Knife 
and Gamma Knife Icon (both Elekta) between December 
2016 and November 2017 was performed. Inclusion cri-
teria consisted of histologically confirmed cancer with BM 
diagnosed on a gadolinium contrast-enhanced MRI scan. 
Exclusion criteria, for an individual BM: cystic metastases, 
non-parenchymal metastases, surgical cavities, and me-
tastases having received previous SRS. A total of 408 le-
sions within 87 SRS patients were included.

Importance of the Study

Predicting whether BM will respond to SRS is a major 
challenge in neuro-oncology, and development of novel 
methods such as the integration of radiomics has po-
tential to improve patient management as identification 
of BM at risk for local failure may warrant surgery, a 
higher radiation dose, and/or change in systemic ther-
apeutic management. This is of particular importance 

for BM <1.0 cm in maximal diameter as existing criteria 
for predicting response are not defined. Our machine 
learning model utilizes radiomic features, extracted 
from the baseline volumetric T1c and volumetric T2 
fluid-attenuated MR images and improves the pre-
diction of local control following SRS compared with 
relying on standard clinical variables.
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MR Imaging

For each case, pretreatment volumetric T1c and volumetric 
3D axial FLAIR scans were obtained on a Philips 1.5T Ingenia 
system. Image preprocessing consisted of artifact correction, 
followed by standardization of voxel size, spacing, and inten-
sity. N4 bias field correction was applied to correct for any 
image artifacts from magnetic field inhomogeneities using 
the Insight Toolkit (ITK) implementation.14,15 Hyperintensity 
artifacts were corrected by suppressing voxel intensities 
above the 99.9th percentile for each image. Image size and 
voxel spacing were normalized to the median values in the 
dataset: (432 × 432 × 180 voxels) and (0.56 × 0.56 × 1.0  mm), 
respectively, for T1c and (448 × 448 × 160 voxels) and 
(0.56 × 0.56 × 1.0 mm) for FLAIR, respectively. Image intensity 
was normalized to have zero mean and unit variance.

Radiomics Feature Extraction

Tumor regions of interest (ROIs) consisted of tumor core and 
peritumoral volume, as shown in Figure 1. Tumor core was 
defined by the gross tumor volume (GTV) as delineated by 
radiation oncologists and reviewed by a neuro-radiologist 
during treatment planning based on the enhancement on 
T1c (Figure  1B). Peritumoral volume was calculated by 
expanding the T1c tumor core mask by half its major axis 
length using the SimpleITK implementation of the binary di-
lation morphologic operation,16,17 then subtracting the orig-
inal tumor core mask from the expanded region (Figure 1E). 
These T1c ROIs were mapped onto the corresponding FLAIR 
image through a transformation matrix, which was obtained 
via a rigid registration of the T1c and FLAIR images using the 
Elastix software (Figure 1C, F).18

Study Endpoints

Patients were followed as per our institutional pro-
tocol with a volumetric MRI scan and clinical follow-up 

appointment every 2–3 months after SRS. Response status 
was determined on a lesion-wise basis on each follow-up 
MRI scan, based on changes in tumor size as indicated 
by the maximum axial (2D) lesion diameter according 
to RANO-BM recommendations.5 However, unlike the 
RANO-BM criteria, these labels were applied to each indi-
vidual BM. Lesions that demonstrated an increase in max-
imum 2D tumor diameter greater than 20%, at any point 
on the available clinical follow-up MRI scans, were labeled 
as local failure if they did not subsequently stabilize or 
regress without further active treatment, in which case 
they were labeled as adverse radiation effect (ARE). This 
method is consistent with the literature.19 All other lesions 
that demonstrated a RANO-BM stable response, partial re-
sponse, complete response, or ARE were pooled together 
as “treatment response.” This study did not impose restric-
tions on the minimum measurable lesion size. Additional 
information regarding the response assessment proce-
dure used for this study is summarized in Supplementary 
Tables 1 and 2.

Feature Selection and Prediction Modeling

Image features were extracted from the tumor core and 
peritumoral volume ROIs of the T1c and FLAIR scans 
(Figure  1). A  total of 440 image features were extracted 
using the Pyradiomics (v2.0.0) package from all ROIs,20 
characterizing first-order statistics, shape, and texture in-
formation of the tumor. A summary of each feature class 
can be found in Supplementary Table 3. Radiomic fea-
tures were compared in their predictive performance to 
6 clinical features: (i) radiation dose specific to the lesion 
(Prescription Dose); (ii) ratio of the prescription dose and 
maximum dose for the lesion (Isodose Line Percentage); 
(iii) maximum axial tumor diameter on T1c (Max 2D 
Diameter); (iv) number of metastases treated (Number of 
Metastases); (v) location of primary tumor site (Primary 
Tumor Site); and (vi) previous WBRT (Prev WBRT). These 6 
features were chosen based on availability and accessibility 
of information of the institutional electronic patient record 
system and on guidance of a radiation oncologist with the 
aim of characterizing information currently used for man-
aging the treatment of BM at this institution. Radiomic fea-
tures were automatically selected by their ability to predict 
local recurrence, using the random forest feature impor-
tance (RFI) metric.21–24 The dataset was jackknife resampled 
in a leave-one-patient-out (LOPO) manner—ie, the samples 
from all patients but one were used to train an RF classifier 
in order to rank each feature by the importance metric. Top-
performing features were selected based on their averaged 
feature importance rankings across all subsets of the data.

Statistical Analysis

The predictive power of clinical and radiomic information 
was compared by evaluating the performance of random 
forest (RF) classifiers trained on selected features. Model 
performance was evaluated in a similar LOPO manner 
with the number of cross-folds corresponding to the 
number of patients. The validation set within each cross-
fold consisted of samples from a single patient, while the 
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Fig. 1  Axial slice centered on a BM as it appears on T1c (A) and 
FLAIR (D) scans. Highlighted regions represent the tumor core and 
peritumoral volume on T1c (B and E, respectively) and FLAIR (C and 
F, respectively).
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa007#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa007#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa007#supplementary-data
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rest of the samples were used for training. Since each 
patient had 3 metastases on average treated with SRS, 
there were relatively fewer samples within the validation 
set of each cross-fold, which would result in high vari-
ance when evaluating the classifier. In order to address 
this, a single validation set was constructed by concat-
enating the predictions made on the validation samples 
within each cross-fold. Predictions generated on the sam-
ples of the concatenated validation set were bootstrap 
resampled 6000 times with replacement, and stratified 
by endpoints. The area under the receiver operating char-
acteristic curve (AUC) was calculated for each of the 6000 
subsamples, with the mean AUC and 95% confidence 
interval of this mean characterizing the model perfor-
mance and uncertainty, respectively. Statistical compari-
sons between 2 classifiers trained on different features 
were made using a paired t-test of AUC values from the 
resampled dataset.25,26

Results

A total of 440 radiomic features and 6 clinical features were 
compared in their ability to predict local lesion control on 
a dataset of 408 lesions from 87 patients. A summary of 
patient and lesion characteristics is provided in Table 1. The 
median follow-up imaging duration was 6.1 months (range, 
0.7–17.6). For those patients demonstrating progression/
ARE, the additional median follow-up time interval was 
1.9  months (range, 0.0–12.0) with a median of one addi-
tional MR scan performed. A  total of 3 lesions were sus-
pected of ARE. An 8% crude rate of tumor progression was 
observed. The Kaplan–Meier plot for progression-free sur-
vival probability with the horizontal/time axis representing 
the duration from the treatment date to a progressive dis-
ease diagnosis (event), or last available follow-up (non-
event), is shown in Figure  2A. The distribution of tumor 
progression labels based on the RANO-BM response cri-
teria at the last available follow-up, excluding lesions sus-
pected of ARE, is demonstrated in Figure 2B.

Radiomic features were ranked on their ability to pre-
dict local control using the RFI metric. A single top-ranked 
radiomic feature was combined with the set of clinical fea-
tures and compared with the set of clinical features alone 
(control). Out of the top 10 ranked radiomic features, the ad-
dition of any single one resulted in a significant (P < 0.001) 
increase in mean resampled AUC (Table  2). The highest 
increase in performance from the addition of a single 
radiomic feature was found with T1c_peritumoralVolume_
firstorder_90Percentile, which resulted in mean resampled 
AUC of 0.718 (95% CI of mean: 0.717–0.720) compared with 
clinical features alone, with an AUC of 0.669 (0.668–0.671) 
(Table 2).

To gauge the upper limits on the potential increase in 
predictive power from incorporating radiomic informa-
tion, all features (440 radiomic and 7 clinical) were com-
bined and ranked based on feature importance as before. 
An additional step was taken to filter highly correlated fea-
tures (R2 > 0.7) to further reduce redundancy (Figure 3A). 
The top-performing features were recursively added for 
use in training the classifier in order of their importance 

rank (Table 3). A combination of the top 12 highest ranked 
features resulted in the highest mean AUC of 0.793 (0.792–
0.795) (Figure 3B), which was 19% higher than the perfor-
mance of clinical features alone.

In order to gain more insight into each individual fea-
ture, univariate analysis was performed on each of the top-
ranked radiomic and clinical features by comparing local 
control and local failure groups. Each of the top-ranked 
clinical features shows a significant difference, while only 
2 radiomics features (T1c_tumorCore_shape_Sphericity, 
T1c_tumorCore_glrlm_ShortRunEmphasis) were signifi-
cant on univariate analysis. Further analysis showed that 
T1c_tumorCore_glrlm_ShortRunEmphasis is highly correl-
ated with the logarithm of T1c_tumorCore_shape_Volume 
(), while T1c_tumorCore_shape_Sphericity demonstrates a 
much weaker linear () and logarithmic () relationship with 
T1c_tumorCore_shape_Volume. A similar comparison be-
tween top-ranked clinical features and volumetric/unidi-
mensional measurements of tumor core size did not reveal 
a strong linear or log-linear relationship ().

  
Table 1  Patient and lesion characteristics

Variable Data

Number of Patients 87

Median age (years), range 63, 34–88

Median follow-up (months), range 6.1, 0.7–17.6

Female patients (% patients) 52 (60%)

Male patients (% patients) 35 (40%)

Median number of metastases per patient, 
range

3, 1–33

No prior WBRT (% patients) 72 (83%)

Prior WBRT (% patients) 14 (16%)

N/A prior WBRT (% patients) 1 (1%)

Primary tumor site: No. Failures, No. Lesions, 
Crude local failure rate (% of all lesions)

  

  Breast 0, 53, 0.0%

  Lung 14, 202, 6.9%

  Other 4, 42, 9.5%

  Melanoma 14, 111, 12.6%

Total number of metastases 408

Median tumor volume (cc), range 0.12, 0.01–8.9

Lesion crude local failure (No. lesions), % of all 
lesions

32, (7.8%)

Maximum 2D diameter – d: No. Lesions (Local 
failure rate)

  

  0 < d ≤ 5 mm 115 (5.2%)

  5 < d ≤ 10 mm 184 (4.9%)

  10 < d ≤ 20 mm 93 (14.0%)

  d ≥ 20 mm 16 (25%)

Median prescribed dose (Gy), range 20, 14–25

Median isodose line percentage (% of lesions), 
range

56, 41–95

Abbreviations: No. – Number of. N/A—Not Available. cc—cubic 
centimeters.
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Discussion

We report that incorporating radiomic features, alongside 
clinical features, improves local response prediction for 
BM treated with SRS. Each of the top 10 best performing 

radiomic features demonstrated significantly improved 
predictive performance when combined with clinical fea-
tures. An optimized combination of radiomic and clinical 
features further improved the mean AUC. These results 
suggest that quantitative characterization of tumor struc-
ture through the extraction of radiomic features from T1c 
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Fig. 2  (A) Kaplan–Meier curve for progression-free survival. (B) Bar plot of progression labels based on the RANO-BM response criteria for 
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Table 2  Comparison of AUC values between clinical features alone and clinical features with a single top-performing radiomic feature

Feature Set AUC† (95% CI of mean) P -value††  
(V. Baseline)

Clinical Features (Baseline) 0.669 (0.668, 0.671) NA

Clinical Features +  
T1c_tumorCore_shape_Sphericity

0.690 (0.688, 0.691) <0.001 *

Clinical Features +  
T1c_peritumoralVolume_firstorder_Maximum

0.693 (0.692, 0.695) <0.001 *

Clinical Features +  
T1c_peritumoralVolume_firstorder_90Percentile

0.718 (0.717, 0.720) <0.001 *

Clinical Features +  
T1c_tumorCore_shape_Flatness

0.694 (0.693, 0.696) <0.001 *

Clinical Features +  
T1c_peritumoralVolume_firstorder_Range

0.680 (0.678, 0.682) <0.001 *

Clinical Features +  
T1c_tumorCore_glrlm_ShortRunEmphasis

0.692 (0.690, 0.694) <0.001 *

Clinical Features +  
T1c_peritumoralVolume_firstorder_RootMeanSquared

0.681 (0.679, 0.683) <0.001 *

Clinical Features +  
T1c_tumorCore_shape_Elongation

0.685 (0.684, 0.687) <0.001 *

Clinical Features +  
FLAIR_tumorCore_firstorder_Range

0.704 (0.702, 0.706) <0.001 *

Clinical Features +  
T1c_tumorCore_firstorder_Maximum

0.682 (0.680, 0.683) <0.001 *

Note: AUC scores were generated from the predictions of the RF classifier on the concatenated validation set. Radiomics features are listed in order 
of decreasing feature importance rank.
Abbreviations: * Statistically significant. † mean resampled validation AUC (6000 times). †† One-sided P -value.
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and FLAIR scans adds complementary information to what 
is typically available in the clinical workflow.

Determining a biological mechanism driving the predic-
tive value of biomarkers is an active challenge in the field 
of radiomics. Due to the feature selection method used in 
this study, which measured the average drop in perfor-
mance if the feature is removed, the features determined 
to be important are not necessarily predictive of local 
failure on their own. Thus, it is difficult to assign any defin-
itive meaning to the radiomic signature on a feature-wise 
basis. Although other methods, such as logistic regression, 
provide a more intuitive sense of each feature’s individual 
value, they lack the ability to utilize interactions between 
features necessary to maximize the predictive power of the 
radiomic signature as a whole.

Two radiomic features that emerged as both impor-
tant (based on RFI) and significant on univariate analysis 
were T1c_tumorCore_glrlm_ShortRunEmphasis and T1c_
tumorCore_shape_Sphericity. Further analysis showed 
that T1c_tumorCore_glrlm_ShortRunEmphasis holds a 
log-linear relationship with tumor core volume on T1c () 
and is likely a surrogate for tumor size, which is already 
a known predictor of local failure.7 T1c_tumorCore_shape_
Sphericity appears to indicate a higher probability of local 
failure for low values of this feature and only holds a weak 
relationship to tumor volume, suggesting that it is an in-
dependent feature. Justification for why tumor sphericity 
was found important may perhaps be explained by an in-
vasive cancer phenotype giving rise to spatial variations 
at the border between healthy tissue and tumor, resulting 

in lower values of sphericity. This feature was also shown 
to be predictive of tumor recurrence and survival in pa-
tients with oral cavity squamous cell carcinoma and path-
ological response in patients with non-small-cell lung 
carcinoma, which further supports its prognostic value.26,27 
Visualization of the tumor sphericity feature may be seen 
in Supplementary Figure 1.

In this study, we used the RFI to determine top-performing 
radiomic and clinical features. Features that were found to 
be important using this metric were not necessarily signif-
icant on univariate analysis. This is because RFI is a mul-
tivariate technique which can gauge the effectiveness of 
each feature in the presence of other features (ie, accounts 
for feature interactions), unlike the Mann–Whitney U-test, 
which was used for univariate analysis. While we believe 
that RFI is a better metric to use in feature selection, it does 
not inform on the importance of any individual feature by 
itself. For this reason, we used univariate analysis to deter-
mine if any single feature has a direct independent relation-
ship with local control. This secondary analysis informs why 
certain features improve the classifier’s performance and 
what mechanisms may be driving local failure.

Out of the top-ranked clinical features, Number of 
Metastases Treated, Isodose Line Percentage, and Primary 
Tumor Site were significant on univariate analysis. A lower 
value for the Number of Metastases corresponded to a 
higher risk of local failure. This was based on the number 
of brain metastases per patient. It is likely explained by the 
fact that patients with multiple metastases had smaller le-
sions and the existence of an inherent patient selection bias 
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Fig. 3  (A) Heatmap of pairwise Pearson correlation coefficients for top-ranked clinical and radiomic features. (B) Average ROC curve obtained from 
resampling the predictions made on the concatenated validation set. The red (blue) curve corresponds to the RF model trained on clinical (imaging 
and clinical) features.
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associated with technical delivery and safety. For example, 
one patient had 33 brain metastases, of which 76% were 
<5 mm. Regarding Isodose Line Percentage, we observed 
that local control was greater when lesions were treated 
with a higher prescription isodose line. This is likely a re-
flection of an inherent margin of therapeutic dose around 
the metastasis, as the dose fall-off is less steep when pre-
scribing to a higher isodose line. The typical treatment with 
SRS includes no margin beyond the contrast-enhancing 
lesion, despite data supporting a 1 mm safety margin be-
yond the GTV resulting in higher local control without an 
increase in complication rates.28,29 Therefore, the practice 
of prescribing to a higher percentage isodose line allows 
for essentially more generous coverage of potential micro-
scopic disease. This result is also consistent with a report 
by Sheehan et al of a cohort of lung cancer patients with 
BM treated with SRS.30 Interestingly, this predictor and 
tumor sphericity may be related and assist in explaining 
this radiomic feature. Lastly, Primary Tumor Site was also 
observed to be predictive. This likely reflects the greater 
risk of relapse observed in this cohort within the mela-
noma and lung cancer primary tumor types compared with 
the number of failures in the breast cancer patients.31

Out of the top 10 radiomic features, our feature selection 
method only identified one important FLAIR-based fea-
ture (FLAIR_tumorCore_firstorder_Range) compared with 
9 T1c-based features. A  similar lack of important FLAIR-
based features is seen when feature importance is gauged 
with the presence of both clinical and radiomic features. 
We used a simple automated approach to define the FLAIR 
ROIs, which consisted of expanding the region around 
the enhancing tumor by a uniform amount. This approach 
may not capture all the FLAIR hyperintensity, and may 

also include healthy brain tissue, leading to noise being 
included in the FLAIR-related radiomic features. Further 
work is needed to determine whether a more accurate seg-
mentation of the FLAIR hyperintensity would result in an 
increase in importance of the FLAIR radiomic features.

The sample size is a limiting factor of this study, and a 
larger dataset would be required for independent feature 
selection, increased accuracy, greater generalizability, and 
a stratified analysis of individual features (eg, by tumor his-
tology, age, sex, etc). Another limitation of our study, and 
of many similar studies, was the determination of lesion 
endpoints. Due to low resection rates of BM in this cohort 
upon progression, local failure was determined radio-
graphically based on a unidimensional measure of tumor 
size according to RANO-BM criteria. It is acknowledged that 
an increase in tumor dimensions can represent ARE as op-
posed to true tumor progression, and vice versa, and it is 
why we are in need of non-invasive yet reliable means to 
image tumor viability post-SRS.32 Although lesions that 
showed progression and then stabilized without further 
treatment were subsequently labeled as ARE, it is acknowl-
edged that histopathologic analysis is the gold standard to 
determine ARE versus tumor progression. It is not feasible 
to resect or biopsy most questionable lesions posttreatment 
unless clinically indicated (such as those causing sympto-
matic edema).33,34 Future work should focus on collecting 
a larger multi-institutional dataset, with expert ROI an-
notations on both T1c and FLAIR scans, which includes 
histopathologic analyses of resected brain metastases.

Although our image data were limited to a single homoge-
neous scan sequence from a single institution, this resulted 
in reduced variability of the radiomic features and conse-
quently allowed for more powerful inferences. Another 

  
Table 3  AUC scores of RF classifier using top n ranked radiomic and clinical features

Feature Name Importance Rank AUC† (95% CI of mean) Univariate 
Analysis P 
-Value††

Number of Metastases 1 0.545 (0.543, 0.547) <0.01 *

T1c_tumorCore_shape_Sphericity 2 0.665 (0.663, 0.667) <0.001 *

T1c_peritumoralVolume_firstorder_90Percentile 3 0.762 (0.760, 0.763) 0.21

T1c_peritumoralVolume_firstorder_Maximum 4 0.770 (0.769, 0.772) 0.26

T1c_tumorCore_shape_Flatness 5 0.781 (0.780, 0.783) 0.11

Isodose line Percentage 6 0.780 (0.779, 0.782) <0.005 *

Primary Tumor Site 7 0.786 (0.784, 0.787) <0.01 *

T1c_tumorCore_firstorder_Maximum 8 0.776 (0.775, 0.778) 0.14

T1c_tumorCore_glrlm_ShortRunEmphasis 9 0.777 (0.776, 0.779) <0.001 *

T1c_tumorCore_shape_Elongation 10 0.778 (0.777, 0.780) 0.07

FLAIR_tumorCore_firstorder_Range 11 0.775 (0.774, 0.777) 0.20

T1c_peritumoralVolume_glrlm_  
ShortRunLowGrayLevelEmphasis

12 0.793 (0.792, 0.795) 0.43

FLAIR_tumorCore_firstorder_Variance 13 0.779 (0.778, 0.781) 0.26

T1c_peritumoralVolume_gldm_ LargeDependenceLowGrayLevelEm
phasis

14 0.778 (0.777, 0.780) 0.09

Note: Features ranked 1 through k were used for training of RF Classifier. Features are listed in order of decreasing feature importance rank.
Abbreviations: † mean resampled AUC (6000 times). †† Univariate Mann–Whitney U-test (one-sided). * Significant.
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strength of this study was in the lesion segmentation pro-
cedure. In order to ensure accurate ROIs for extraction of 
robust radiomics features, the T1c tumor core ROIs were 
obtained from GTV treatment planning contours delineated 
by a radiation oncologist. Lastly, the inclusion of volumetric 
FLAIR scans in our pipeline provided an additional source of 
radiomic data and consequently, a new set of image features 
that are not present in similar radiomics studies.11–13

Conclusion

We have shown that the addition of radiomic features pro-
vides complementary information to standard routinely 
available clinical variables for the prediction of local failure 
in BM after SRS. A predictive model based on information 
provided by radiomic and clinical features shows promise 
for pretreatment outcome prediction, and may also prove 
useful as a priori information when differentiating ARE 
from tumor progression for lesions that demonstrate an 
increase in size on T1c during follow-up. The measure of 
tumor sphericity on T1c warrants further investigation on 
new patient cohorts, as it may contain valuable informa-
tion for understanding why some BM fail after SRS.
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Supplementary data are available at Neuro-Oncology 
online.
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