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Consensus recommendations for a standardized brain 
tumor imaging protocol for clinical trials in brain 
metastases 
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Abstract
A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech com-
panies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solu-
tions for increasing development of therapeutics for central nervous system metastases. A key issue identified at 
this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including 
the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter 
studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for 
a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain me-
tastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The “min-
imum standard” recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion 
recovery (IR)–prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo 
acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; 
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(iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-
weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. 
Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An “ideal” protocol 
is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is 
best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfu-
sion parameters are given.
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Need for Development of Therapeutics 
for Treating Brain Metastases

Brain metastases are the most common central nervous 
system (CNS) tumor,1,2 with more than 150 000–200 000 
new patients diagnosed with brain metastases each year 
in the US.3,4 This incidence is substantially greater than that 
of primary malignant brain tumors.5 The lifetime incidence 
of brain metastases among all cancer patients is approxi-
mately 10–30%.2,6,7 The most common primary tumors are 
lung cancer, breast cancer, and melanoma, occurring in 
approximately 40–50%, 15–20%, and 5–20%, respectively, 
of newly diagnosed brain metastasis patients,8 with mela-
noma having the highest predilection to metastasize to the 
brain (~50%).9,10 The incidence of brain metastases appears 
to be increasing, in part due to an overall increase in pri-
mary cancers, as well as better systemic therapies, which 
increase the probability of metastatic disease as patients 
live longer, especially within the brain as a potential sanc-
tuary protected by the blood–brain barrier.2

The discovery of brain metastases has always been very 
sobering, indicating disseminated malignancy and histori-
cally a dismal prognosis. However, hope is increasing at the 
dawn of the molecular and immunotherapeutic era, with 
improved local therapies such as stereotactic radiosurgery 
(SRS) and earlier detection of brain metastases while pa-
tients have good performance status.11,12 Improvements 
in outcome for patients with brain metastases from lung 
cancer, breast cancer, and melanoma have all been reported, 
and for certain patient subsets, survival is substantially 
longer than historical estimates. For instance, the success of 
monoclonal antibodies against immune checkpoints in some 
cases of advanced melanoma and non-small-cell lung carci-
noma (NSCLC)13–15 gives hope for further advances with im-
munotherapy. Durable responses have been reported with 
targeted agents, including BRAF inhibitors in melanoma and 
other cancers, anaplastic lymphoma kinase (ALK) inhibitors 
in ALK+ NSCLC, and human epidermal growth factor re-
ceptor 2 (HER2) inhibitors in HER2+ breast cancer.16–18 Other 
clinical trials for CNS metastases with newer targeted ther-
apies (eg, NCT03994796) and multiple immunotherapies are 
currently in progress (eg, NCT02886585, NCT02939300). Use 
of SRS for multiple brain metastases is also rising, particu-
larly following the results of the Alliance N057419 and N107C20 
trials with greater community health care penetrance of SRS. 
That being said, it is clear that much work still needs to be 

done, as prognosis following the diagnosis of brain metas-
tasis is still often enumerated in months,3,21,22 underscoring 
the need for continued development of therapeutic options 
for patients with brain metastases.

Need for Imaging Standardization 
for Improved Therapeutic Response 
Assessment in Brain Metastases

With new efforts at treating brain metastases in an era 
when the vast majority of patients are diagnosed and 
monitored using MR imaging, reliable methods for dis-
ease monitoring and response assessment using MR 
imaging data are needed. Particularly in the conduct of 
clinical trials, implementation of standardized brain MRI 
protocols is an essential first step toward achieving con-
sistent measurement and reliable assessment of response 
to novel therapies, whether response is assessed using 
clinical response criteria or automated approaches. Such 
a standardized brain tumor imaging protocol (BTIP) has 
already been developed23 for gliomas and is being widely 
adopted in glioma trials. Based on the experiences of 
implementing the BTIP protocol, it has become apparent 
that MRI protocols for clinical trials must generally also 
serve the function of a routine clinical MRI for standard-of-
care management of patients in order to minimize dupli-
cative imaging sessions for patients and avoid challenges 
with reimbursement.

A recent meeting was held on March 22, 2019, among the 
FDA, clinical scientists, pharmaceutical and biotech com-
panies, clinical trials cooperative groups, and patient advo-
cacy groups to discuss challenges and potential solutions 
for increasing the development of therapeutics for CNS 
metastases. At this meeting, the need for more consistent 
response assessment methodology for brain metastases 
was identified as a key issue, and the first step toward con-
sistent, reliable response assessment is the standardiza-
tion of image acquisition with an MRI protocol that could 
be implemented in the multicenter setting.

The multidisciplinary and multinational Response 
Assessment in Neuro-Oncology–Brain Metastases 
(RANO-BM) working group has developed standardized 
guidelines for determining response to therapy for brain me-
tastases.24–26 This group has provided a consensus approach 
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to measuring brain metastases and incorporating cortico-
steroid dosing and clinical status into the response assess-
ment criteria.24 The difficult issues of response assessment 
following SRS and immunotherapy were also broached by 
this group; they stated that advanced imaging may assist 
in discriminating tumor progression from treatment effect 
in these posttreatment circumstances while acknowledging 
that to date, these advanced imaging techniques have not 
shown robust validation to justify the recommendation of 
any particular advanced imaging technique(s) for this pur-
pose.24 Finally, a supplementary appendix to the RANO-BM 
manuscript24 gives a recommended minimum MRI protocol 
for imaging brain metastases.

However, particularly as clinical trials for brain metas-
tases increase, and MRI technology evolves, an updated 
minimum recommended protocol for imaging brain me-
tastases in clinical trials is needed. In this current effort, we 
use the RANO-BM appendix24 and the similar BTIP23 as a 
core of such a revised protocol, which we hope will provide 
meaningful and generalizable imaging data from clinical 
trials and which may also facilitate standard-of-care clinical 
evaluation and decision making.

Magnetic Resonance Imaging of Brain 
Metastases

The early detection of brain metastases leads to earlier 
interventions and has been shown to result in better quality 
of life.27,28 Treatment strategies (eg, SRS vs whole brain ra-
diation) are often based on the number and size of metas-
tases,29 and thus accurate imaging of brain metastases is 
crucial. Multiple brain metastases are common with many 
primary tumor histologies, though solitary metastases 
may be seen with some cancers.30,31 Brain metastases are 
distributed proportional to blood flow, with 80% in the 
cerebral hemispheres, 15% in cerebellum, and 5% in the 
brainstem.32,33 Brain metastases commonly occur at the in-
terface between gray and white matter, possibly due to the 
change in size of arterioles from cortex to white matter.34 
However, they also occur purely within white matter as 
well as within cortex and deep gray matter structures.

The diagnosis of brain metastases is typically made 
with gadolinium-based contrast-enhanced MRI, which is 
superior to contrast-enhanced CT.35–38 Prior to 2006, treat-
ment guidelines for brain metastases were based upon 
studies in which metastases were diagnosed and moni-
tored with CT.39–41 However, the value of gadolinium-
based contrast-enhanced T1-weighted imaging for the 
detection of brain metastases has been well documented 
for more than 30  years.42–46 Almost all brain metastases 
enhance in their entirety, due to the lack of blood–brain 
and blood–tumor barriers,34 unless the tumors have non-
enhancing cystic or frankly hemorrhagic components. 
Brain metastases of moderate to large size are typically 
surrounded by substantial vasogenic edema, related to 
increased tumor capillary permeability and/or temporary 
vascular occlusion from neoplastic cell growth after he-
matological spread.34 Small metastases can also present 
with disproportionate peritumoral edema. T2-weighted im-
aging and T2-weighted fluid attenuated inversion recovery 

(FLAIR) best detect the T2 prolongation associated with 
this edema in the brain. Metastases themselves vary in 
signal intensity on T2-weighted imaging and, while usu-
ally relatively hyperintense,34 may be hypointense, classi-
cally associated with highly cellular neoplasms with high 
nuclear-to-cytoplasm ratios and with some, though not all, 
adenocarcinoma metastases.34,47–49 Calcified metastases 
are rare but possible. Metastases vary in apparent diffusion 
coefficient (ADC) and appearance on diffusion-weighted 
imaging (DWI), and attempts have been made to correlate 
ADC with tumor histology and response to therapy such as 
SRS with limited success.50–52

Baseline MR Evaluation

For response assessment using the current standardized 
response criteria, brain metastases must be accurately 
measurable in at least one dimension.24 Thin-section, pref-
erably volumetric, T1-weighted imaging would be most 
desirable. Identical pre- and post-contrast T1-weighted im-
aging allows the subtraction of inherent T1 shortening or 
bright signal, which may be seen in hemorrhage (methe-
moglobin) from true contrast enhancement and can aid in 
clinical evaluation and advanced image post-processing 
for trials. Hemorrhage within brain metastases correlates 
with certain histologies (being particularly common in mel-
anoma, renal cell carcinoma, choriocarcinoma, and thyroid 
carcinoma but also common in breast and lung carcinoma) 
and with increasing size. Overall, approximately 20% of me-
tastases may be overtly hemorrhagic,34,53 with two-thirds 
of large metastases showing evidence of hemorrhage 
on susceptibility weighted imaging (SWI).54 Additionally, 
melanoma metastases can have T1 shortening from mel-
anin. Therefore, a means to account for pre-contrast T1 
hyperintensity in evaluating contrast enhancement is im-
portant. Pre- and post-contrast image subtraction also 
markedly improves contrast ratios of enhancing lesions.55

Improved Detection of Brain Metastases

The question of which post-contrast T1-weighted pulse 
sequence is “best” is complicated. The first limitations in 
answering this question relate to what MR scanner hard-
ware and software a particular site possesses, including 
field strength (usually 1.5T vs 3T)—3T brain MRI offers sig-
nal-to-noise ratio (SNR) advantages over 1.5T, which can 
be traded off for better spatial resolution or decreased im-
aging time.56–58 Any disadvantages of 3T are probably offset 
by its advantages when imaging brain metastases.59,60 For 
instance, 3D fast spin echo T1-weighted techniques such 
as CUBE (GE Healthcare), SPACE (Sampling Perfection 
with Application optimized Contrasts by using different 
flip angle Evolutions; Siemens Healthcare), and VISTA 
(Volumetric Isotropic TSE Acquisition; Philips Healthcare)61 
are all improved in SNR at 3T compared with 1.5T.

Magnetization prepared (“IR-prepped”) 3D gradient 
recalled echo (GRE) pulse sequences such as MPRAGE 
(magnetization-prepared rapid acquisition with gradient 
echo), IR-SPGR (inversion recovery–spoiled gradient), 
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BRAVO (Brain Volume Imaging), TFE (turbo field echo), and 
3D Fast FE (field echo) are robust, high signal-to-noise, 
T1-weighted pulse sequences with exquisite anatomical 
depiction, which are very widely available in community 
and academic imaging centers at both 1.5T and 3T field 
strengths. They form the backbone of the BTIP protocol23 
and are featured in the minimum standard protocol for 
brain metastases recommended in this publication. As 
these are 3D series, orthogonal reformats can and should 

be created from them, and image review should be per-
formed in axial, sagittal, and coronal planes. However, 
there are disadvantages of post-contrast IR-GRE pulse 
sequences. The contrast enhancement of brain lesions 
is slightly less conspicuous with spoiled GRE-based 
pulse sequences than with spin echo (SE)–based pulse 
sequences.62,63 The relatively bright white matter of IR-GRE 
yields good gray-white differentiation and depiction of 
anatomy, but a brightly enhancing metastasis on bright 

  

Fig. 1 Comparison of 3D IR-GRE (A, C) and 3D TSE (B, D) T1-weighted imaging in a patient with metastatic lung carcinoma to the brain. Larger 
lesions (eg, right posterior frontal, white arrows, A and B) are well visualized with both techniques. Smaller lesions (eg, right posterior temporal, 
black arrows, C and D) may be better visualized with 3D TSE T1-weighted imaging due to more native vascular signal suppression and higher 
contrast:noise ratio relative to underlying brain.
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white matter then becomes less conspicuous, having a 
lower contrast ratio (Fig. 1). In comparison, SE-based pulse 
sequences including the 3D turbo SE (TSE) T1-weighted 
SPACE/CUBE/VISTA have relatively lower signal intensity 
in white matter, in part due to magnetization transfer ef-
fects,64 increasing the contrast ratio of enhancing metas-
tases within white matter (Fig.  1). Indeed, Knauth et  al 
reported equivalent enhancing lesion conspicuity relative 
to white matter using magnetization transfer (by applying 
an off-resonance radiofrequency pulse to suppress back-
ground tissue signal) SE T1-weighted imaging and a single 
dose of gadolinium, when compared with no magnetiza-
tion transfer and triple-dose gadolinium.65 IR-GRE pulse 
sequences with “bright blood” contrast also make normal 
cortical vessels much more prominent than with SE-based 
pulse sequences, which have greater inherent flow sup-
pression. (Three-dimensional TSE sequences like SPACE 
and CUBE have inherent flow suppression based on two 
mechanisms: [i] uncompensated gradient moments in 
the echo train which introduce intravoxel dephasing and 
[ii] stimulated echoes from non-180° variable flip angles 
which induce dephasing.) In cross section, these normal 
cortical vessels appear as innumerable bright dots, which 
can hinder the distinction of peripheral subcentimeter 
enhancing metastases, despite relatively high lesion SNR. 
Lastly, unlike with SE-based pulse sequences, it is not 
feasible to fat saturate IR-GRE pulse sequences, and so 
enhancing osseous metastases may be indistinguishable 
within the normally fat containing, T1-bright skull, skull 
base, and upper cervical vertebral marrow.

Previous studies found superior detection of brain me-
tastasis with 3D fast spoiled gradient echo (FSPGR) or 
MPRAGE (with 1–1.4  mm slice thickness) compared with 
thick section (6–7  mm) 2D SE imaging.63,66,67 However, a 
2016 meta-analysis68 which included 5 studies64,69–72 com-
paring 3D TSE T1 (eg, SPACE) and 3D MPRAGE with equal 
slice thickness (1  mm) found superior detection of small 
metastases with 3D TSE, although these 5 studies were 
performed at 3T field strength only. These results are sup-
ported by other published data. Chappell et  al demon-
strated greater post-contrast lesion conspicuity with SE 
compared with GRE imaging.73 Majigsuren et  al found 
higher contrast-to-noise ratio (CNR) within a sampling 
of various brain tumors with T1-weighted CUBE (3D TSE) 
compared with 3D FSPGR at 3T, despite performing the 
post-contrast CUBE prior to the FSPGR in all instances.74 
Kammer et  al reported significantly higher detectability 
of contrast-enhancing brain tumors with 3D TSE com-
pared with MPRAGE at 3T with regard to number of 
lesions identified (particularly if small) as well as superi-
ority of 3D TSE with regard to CNR and diagnostic confi-
dence.75 Danieli et al reported higher contrast rate, CNR, 
and visual conspicuity among metastases and gliomas 
with SPACE and VIBE relative to MPRAGE, and more ac-
curate size and morphology estimates with SPACE in a 3T 
study.76 Kim et al reported approximately double the de-
tection rates of ≤5 mm brain metastases with a black blood 
vascular suppression (delay alternating with nutation 
for  tailored excitation  [DANTE]) version of SPACE com-
pared with MPRAGE as well as higher CNR of metastases 
and shorter reading time with DANTE SPACE.77 Similar to 
2D TSE, 3D TSE T1-weighted images can be fat saturated, 

an advantage in detecting osseous metastases, unlike 
IR-GRE techniques like MPRAGE and BRAVO. However, 
3D TSE is more challenging to acquire at 1.5T due to lower 
SNR. Although more recent iterations of 1.5T T1-weighted 
TSE seem to have acceptable SNR and lesion conspicuity, 
published literature for detection of brain metastases is 
currently still lacking. Three-dimensional TSE also may 
not have been a stock MRI pulse sequence with relatively 
older scanner purchases, and therefore, imaging centers 
may require an additional cost to install the sequence. It 
is also not standardized among MR vendors. There is not 
a motion-compensated version of 3D TSE, which is there-
fore susceptible to motion artifacts. Additionally, 3D TSE 
cannot be used with metallic SRS immobilization frames 
because eddy currents arise in the frame due to the long 
echo trains; GRE pulse sequences are therefore used for 
SRS targeting.78

It is also important to recognize in this discussion of 
ideal post-contrast T1-weighted imaging that much of the 
published data are concerned with the issue of metastasis 
detection rather than measurement. Published data on var-
iability of measurements of brain metastases are limited.79

In summary, for post-contrast T1-weighted imaging, 
the universal availability of IR-GRE pulse sequences and 
their many strengths support their use in a standardized 
brain metastasis imaging protocol, but their limitations 
in identifying small metastases and osseous metastases 
promote the recommendation that sites also include an 
SE or TSE post-gadolinium T1-weighted pulse sequence, 
with fat suppression where possible to aid in identifying 
osseous metastases. The ideal choice for this pulse se-
quence at 3T would be 3D TSE such as CUBE, SPACE, or 
VISTA, which should also be fat saturated for better eval-
uation of osseous metastases, if available. (This sequence 
would effectively replace the 3D T1-weighted IR-GRE se-
quence.) If not available, an axial and/or coronal or 3D 
T1-weighted FLAIR could be considered at 3T,55,80–82 where 
the inversion pulse helps null cerebrospinal fluid at 3T. 
At 1.5T, adding an axial and/or coronal T1-weighted SE 
series may increase accuracy and diagnostic confidence 
for small brain metastases. Disadvantages of T1-weighted 
SE imaging to keep in mind include ghosting artifacts due 
to strong signal enhancement in flowing blood, especially 
in the posterior fossa from the dural venous sinuses, and 
thicker image slices.

Other considerations for the detection of small metas-
tases include the choice of gadolinium-based contrast 
agent (GBCA), its dose, and the timing of imaging fol-
lowing i.v. administration. High relaxivity (r1) GBCA,83–87 
double- or triple-dose GBCA,88–97 or increased delay time, 
particularly with IR-GRE pulse sequences,89,98,99 may lead 
to greater sensitivity for small metastases. However, some 
concern over gadolinium deposition in the body100 and 
nephrogenic systemic fibrosis101 has led to constraints in 
GBCA dosing at some local institutions, and so we provide 
a protocol using single-dose GBCA administration. Since 
delayed imaging after GBCA administration is not practical 
for many institutions, we do not give a uniform recom-
mendation for an additional delay after i.v. administration 
of GBCA other than that introduced by performance of 
T2-weighted and (optional) dynamic susceptibility contrast 
(DSC) perfusion-weighted MRI after GBCA administration 
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and before post-contrast T1-weighted imaging. The time 
interval between GBCA administration and post-contrast 
T1-weighted imaging can impact lesion conspicuity and 
apparent lesion size,89,102 and should therefore be stand-
ardized. In our suggested protocol, the delay time will 
be made uniform through the inclusion of DSC-MRI and 
T2-weighted imaging between i.v. GBCA administration 
and post-contrast 3D T1-weighted imaging.

Finally, in post-processing or live image review, clin-
icians may also benefit from reviewing 3D post-contrast 
T1-weighted image sets with overlapping maximum in-
tensity projections (eg, 10  mm sections reconstructed at 
4 mm intervals), which may help with accuracy and speed 
of image review for small metastases.103

When evaluating for osseous metastases, fat-saturated 
T2-weighted and T2-weighted FLAIR images, at least one 
post-contrast T1-weighted series, and DWI are helpful. 
Leptomeningeal metastases may be better evaluated with 
post-contrast T2-weighted FLAIR than some post-contrast 
T1-weighted imaging,104 which though not included in this 
basic protocol could be added for suspected or known lep-
tomeningeal metastasis. Post-contrast 3D TSE T1-weighted 
imaging with its relative vascular signal suppression is also 
useful for leptomeningeal metastasis detection.105 We also 
refer the reader to the RANO Leptomeningeal Response 
Assessment group’s recommendations for leptomeningeal 
metastasis.106,107

Stereotactic Radiosurgery and 
Radiation Necrosis

Many brain metastases are now treated with SRS, and many 
if not all clinical trials for brain metastases allow for SRS. 
This introduces the particular challenge of response assess-
ment for enlarging, contrast-enhancing lesions following 
SRS.108,109 Approximately one-third of treated metastases 
will increase in size on contrast-enhanced MRI following 
SRS,110 and this could represent progressive tumor and/or 
radiation injury, as radiation necrosis is not uncommon fol-
lowing SRS. This translates to roughly half of SRS-treated 
patients experiencing an enlarging contrast-enhancing le-
sion.110 The incidence of radiation injury/necrosis depends 
upon the radiation dose utilized, the volume of the target 
lesion, and the means by which radiation necrosis is deter-
mined, but has been estimated at 6–26%.21,111 However, it 
has been estimated to be as high as 60% cumulative risk for 
larger lesions111 and may be higher for patients also treated 
with immunotherapy.112 Radiation necrosis typically occurs 
3–18 months after SRS but can occur up to 3 years post-
SRS.21 However, conventional MRI poorly differentiates be-
tween radiation necrosis and tumor or an admixture of the 
two,113,114 and alternative methods using tumor segmenta-
tion115 or delayed imaging116 are time intensive and may be 
difficult to routinely employ in clinical care. Admixture of 
tumor and necrosis is not uncommon following SRS109 and 
further complicates diagnosis.

Investigators have pursued “advanced” or physiologic/
mechanistic MRI techniques, as well as other imaging mo-
dalities such as PET, to help discriminate between radi-
ation necrosis and recurrent tumor. DWI and ADC,117–119 

MR spectroscopy,120,121 arterial spin labeling (ASL),122 dy-
namic contrast-enhanced (DCE) MRI,119,123–125 and DSC-
MRI119,126–128 have all been evaluated in this clinical context, 
as have thallium-201 single-photon emission CT,122,129 
18F-FDG PET (fluorodeoxyglucose), and amino acid PET 
(11C-methionine, 18F-fluorodopa, 18F-fluoro-ethyltyrosine, 
18F-fluorocholine).130–138 Each of these techniques has some 
merit as well as unique challenges. None has been valid-
ated in multicenter trials of brain metastases treated with 
SRS. Some of these techniques also produce findings which 
may predictably evolve over time following SRS, compli-
cating their interpretation.139 Amino acid PET, with its low 
background activity in the brain, has particular promise for 
evaluating brain malignancies, but it is not FDA approved 
for brain metastases. Relatedly, it is not generally reimburs-
able in the United States, which makes it difficult to univer-
sally recommend. However, for trials involving other parts 
of the world such as Europe for which amino acid PET may 
be more feasible, it should certainly be considered for re-
sponse assessment post-SRS.140 Delayed contrast extrav-
asation MRI with TRAMs (treatment response assessment 
maps) has also been used and shows promise,116,141,142 in-
cluding with T1 mapping and subtraction,143 though this 
requires scanning at both 5 minutes and again at 60–105 
minutes after i.v. GBCA administration. This may not be 
practical for a protocol standardized for use across many 
institutions and requires specific software for its analysis, 
but investigators could consider this if it is feasible for their 
sites. Future means of imaging discrimination of radiation 
necrosis and viable tumor could include texture analysis144 
and deep learning.145

DWI is included in the standardized protocols, as it was 
for the BTIP protocol,23 for a few reasons. It is often in-
cluded in any brain MRI, given the unique information it 
provides with regard to unanticipated pathology such as 
infarction or abscess. It can suggest tumor cellularity. It is 
a very fast pulse sequence, requiring only on the order of a 
minute of MR gradient time, and so it does not cost much 
to perform. Last, as DWI has been117–119 and will likely con-
tinue to be used in clinical investigations of brain tumor 
response assessment, we provide it for investigators in the 
standardized protocols.

We encourage the use of DSC-MRI (which requires an i.v. 
bolus administration of GBCA) in the standardized brain me-
tastasis imaging protocol because it may help differentiate 
tumor progression, characterized by higher blood volume 
and lower percentage signal recovery, from radiation ne-
crosis in the post-SRS radiation treatment setting.126–128 
However, given the lack of validation of DSC-MRI for this 
purpose in multicenter trials, we encourage investigators 
to decide whether or not to mandate DSC-MRI within their 
own clinical trial contexts. DSC-MRI is widely available, tech-
nically robust, relatively short in acquisition time (typically 
on the order of 2–3 minutes), and requires no additional 
GBCA beyond that given for conventional post-contrast im-
aging. DSC-MRI requires less MRI gradient time and has 
substantially higher signal to noise than DCE-MRI, making it 
easier for a wide variety of imaging sites to perform. Based 
on recent computer simulations and in vivo studies, it has 
been suggested that DSC-MRI using a single-dose bolus of 
GBCA without preload, in combination with a low (eg, 30 de-
grees) flip-angle and post-processing leakage correction 
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which mitigates the effect of GBCA extravasation in contrast-
enhancing tumors, is an efficacious DSC-MRI protocol re-
quiring only a single dose of GBCA.146–148 This would be 
advantageous given that concerns about nephrogenic sys-
temic fibrosis101 and gadolinium deposition in other tissues 
including the brain100 have made some centers reluctant to 
use supra-standard (ie, >0.1 mmol/kg) doses of gadolinium. 
Importantly, particularly for studies which may perform 
quantitative analysis of DSC-MRI, parallel imaging is advised 
with DSC-MRI to minimize distortion.

Interpretation of DSC-MRI for brain metastases post-SRS 
is beyond the scope of this effort, but suffice it to say that it 
should be used with caution and some skepticism in clinical 
practice. Indeed, published data in this setting are limited to 
single-institution studies; its implementation and analysis 
are very technique dependent,149 and the timing of DSC rel-
ative to SRS and trends in DSC metrics over time probably 
matter. Generally speaking, increased blood volume and 
relatively low percentage signal recovery are concerning 
for recurrent tumor rather than radiation necrosis.126–128 
We do note that smaller lesions and peripherally located 
lesions near higher baseline cortical perfusion and cortical 
vessels are more difficult to evaluate with DSC perfusion.

Immunotherapy and Brain Metastasis 
Imaging

Immunotherapy has had remarkable success in different 
settings, including recent clinical trials demonstrating 
promising response rates in brain metastases from mela-
noma, increasing its investigation across brain metastases 
from many histologies. Because it purposefully stimu-
lates a host immune reaction against tumor, it can create 
“pseudoprogressive” contrast enhancement due to in-
flammatory response rather than recurrent metastases. 

This creates a challenge for response assessment, which 
has been addressed by the RANO immunotherapy (iRANO) 
criteria.150 In summary, if radiologic progression is seen 
within 6 months of immunotherapy, it is advised that pa-
tients remain on immunotherapy (if no clinical contrain-
dication) for 3 months, at which time repeat imaging can 
be used to judge whether this represents true progressive 
disease.150 Research into whether advanced imaging tech-
niques could distinguish between pseudo- and true pro-
gression earlier in this process has only just begun.151

Recommended Protocol(s)

The recommended MRI protocol for use in evaluating 
brain metastases is highly dependent on the scanner per-
formance and capabilities at the specific sites. A flowchart 
to guide decision making in terms of the recommended 
protocol(s) is illustrated in Fig. 2. Ideally, if sites are able 
to use a 3T MRI scanner and are able to perform 3D 
T1-weighted TSE, they should replace the 3D T1-weighted 
IR-GRE sequence both before and after i.v. GBCA adminis-
tration (Table 1). Additionally, as a large proportion of pa-
tients receive SRS for brain metastases, we encourage but 
do not mandate the inclusion of DSC perfusion MRI as part 
of a protocol for clinical trials as it can provide complemen-
tary information to distinguish tumor progression from 
treatment effect in any enlarging contrast-enhancing lesion 
post-SRS. DSC-MRI is brief, requires no additional GBCA, 
and should be easily acquired at any imaging center. It will 
not always be helpful in distinguishing between tumor 
progression and radiation necrosis, but sometimes the 
longitudinal changes provided may. We give updated sug-
gestions for DSC-MRI pulse sequence parameters as part 
of the ideal 3T protocol in Table 1. Tables 2 and 3 provide 
minimum standard recommended imaging parameters for 

  

MRI Field
Strength

Using 3D
T1-Weighted

TSE or
IR-GRE?

Table 1: “Ideal” Recommended 3T Protocol

Table 2: Minimum Standard 3T Protocol

- Use 3D T1w TSE in place of 3D T1w IR-GRE
- 1mm isotropic resolution on 3D scans
- Optional DSC Perfusion

- Use 3D T1w IR-GRE + Additional 2D SE Scans
- 1mm isotropic resolution on 3D scans

Table 3: Minimum Standard 1.5T Protocol
- Use 3D T1w IR-GRE + Additional 2D SE Scans
- ≤1.5mm isotropic resolution on 3D scans

3T TSE

IR-GRE

1.5T

Fig. 2 Metastatic brain tumor imaging protocol decision-making flow chart. If sites are using a 3T MRI scanner and have 3D TSE available, they 
should use Table 1 (ideal recommended 3T protocol). If sites are using a 3T MRI scanner and do not have 3D TSE, they should use Table 2 (min-
imum standard 3T protocol). If sites use a 1.5T scanner, they should use Table 3 (minimum standard 1.5T protocol). Note that DSC perfusion may be 
used with the minimum standard protocols at 3T and 1.5T as well as with the “ideal” 3T protocol.
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Table 1 “Ideal” recommended 3T metastatic brain tumor imaging protocol

3D T1w  
TSE Preb

Ax 2D  
FLAIRj,q

Ax 2D  
DWIp,v

DSCa Perfusion (Optional) Ax  
2D T2wh,i,q

3D T1w  
TSE Postb

Sequence TSEs TSEc,s SS-EPIg Contrast  
Injectiona

GE-EPI TSEc,s TSEs

Plane Sagittal or Axial Axial Axial Axial Axial Sagittal or Axial

Mode 3D 2D 2D 2D 2D 3D

TR [ms] 550–750 >6000 >5000 1000–1500 >2500 550–750

TE [ms] Min 100–140 Min 25–35 ms 80–120 Min

TI [ms]  2000–2500k     

Flip angle Defaultt 90º/≥160º 90º/180º 30º 90º/≥160º Defaultt

Frequency 256 ≥256 128 ≥96 ≥256 256

Phase 256 ≥256 128 ≥96 ≥256 256

NEX ≥1 ≥1 ≥1 1 ≥1 ≥1

FOV 256 mm 240 mm 240 mm 240 mm 240 mm 256 mm

Slice thickness 1 mm 3 mm 3 mm 3–5 mm as needed  
to cover tumor

3 mm 1 mm

Gap/spacing 0 0 0 0–1 mm as needed  
to cover tumor

0 0

Other options   b = 0, 500,  
1000 s/mm2  
≥3 directions

30–60 pre-bolus time points; 
>120 total time points

  

Parallel imaging Up to 3xu Up to 2x Up to 2x Up to 2x Up to 2x Up to 3xu

Abbreviations: TR = repetition time; TE = echo time; TI = inversion time; NEX = number of excitations; FOV = field of view. 
a 0.1 mmol/kg dose injection with a gadolinium chelated contrast agent. Use of a power injector is desirable at an injection rate of 3–5 cc/sec. 
(Note: If DSC perfusion is collected, contrast injection is performed after starting DSC acquisition. DSC perfusion can be performed with the 
“ideal” protocol at 3T as well as with the minimum standard protocols at 3T and 1.5T.)
b Post-contrast 3D T1-weighted images should be collected with equivalent parameters to pre-contrast 3D T1-weighted images.
c TSE = turbo spin echo (Siemens & Philips) is equivalent to FSE (fast spin echo; GE, Hitachi, Toshiba).
d FL2D = two-dimensional fast low angle shot (FLASH; Siemens) is equivalent to the spoil gradient recalled echo (SPGR; GE) or T1- fast field echo 
(FFE; Philips), fast field echo (FastFE; Toshiba), or the radiofrequency spoiled steady state acquisition rewound gradient echo (RSSG; Hitachi).  
A fast gradient echo sequence without inversion preparation is desired.
e IR-GRE = inversion-recovery gradient-recalled echo sequence is equivalent to MPRAGE = magnetization prepared rapid gradient-echo (Siemens 
& Hitachi) and the inversion recovery spoiled gradient-echo (IR-SPGR or Fast SPGR with inversion activated or BRAVO; GE), 3D turbo field echo  
(TFE; Philips), or 3D fast field echo (3D Fast FE; Toshiba).
f A 3D acquisition without inversion preparation will result in different contrast compared with MPRAGE or another IR-prepped 3D T1-weighted 
sequences and therefore should be avoided.
g In the event of significant patient motion, a radial acquisition scheme may be used (eg, BLADE [Siemens], PROPELLER [GE], MultiVane [Philips], 
RADAR [Hitachi], or JET [Toshiba]); however, this acquisition scheme is can cause significant differences in ADC quantification and therefore  
should be used only if EPI is not an option. Further, this type of acquisition takes considerable more time.
h Dual echo PD/T2 TSE is optional for possible quantification of tissue T2. For this sequence, PD is recommended to have a TE < 25ms.
i Advanced sequences can be substituted into this time slot, so long as 3D post-contrast T1-weighted images are collected between 4 and 8 min 
after contrast injection and this timing is constant across all MR exams performed in each patient.
j 3D FLAIR is an optional alternative to 2D FLAIR, with sequence parameters as follows per EORTC guidelines: 3D TSE/FSE acquisition; 
TE = 90–140 ms; TR = 6000–10,000 ms; TI = 2000–2500 ms (chosen based on vendor recommendations for optimized protocol and field strength); 
GRAPPA≤2; Fat Suppression; Slice thickness ≤ 1.5mm; Orientation Sagittal or Axial; FOV ≤ 250 mm x 250 mm; Matrix ≥ 244x244.
k Choice of TI should be chosen based on the magnetic field strength of the system (eg, TI ≈ 2000ms for 1.5T and TI ≈ 2500ms for 3T).
l In order to ensure comparable SNR older 1.5T MR systems can use contiguous (no interslice gap) images with 5mm slice thickness or increase  
NEX for slice thickness ≤4mm.
m For Siemens and Hitachi scanners. GE, Philips, and Toshiba scanners should use a TR = 5–15 ms for similar contrast.
n For Siemens and Hitachi scanners. GE, Philips, and Toshiba scanners should use a TI = 400–450 ms for similar contrast.
p Older model MR scanners that are not capable of >2 b-values should use b = 0 and 1000 s/mm2.
q Axial 2D T2-weighted FLAIR and Axial 2D T2-weighted images can be interchanged pre- and post-contrast.
r Sites may choose to perform the 3D T1w IR-GRE sequence prior to the 2D T1w TSE/SE because of the potential risk of patient movement and to help with 
patient comfort. However, there is less inherent lesion conspicuity in the 3D T1w IR-GRE sequence, so delaying this sequence to the end may be efficacious.
s Acceptable 3D T1w TSE sequences include CUBE (GE), SPACE (Siemens), VISTA (Philips), isoFSE (Hitachi), or 3D MVOX (Canon)
t Flip angles for 3D TSE sequences (including CUBE and SPACE) are complicated because many utilize variable flip angle refocusing radiofrequency  
pulses to produce the desired image contrast. Investigators are encouraged to work with their scanner vendors to determine the ideal parameters.
u Investigators are encouraged to work with their scanner vendors to determine the best parallel imaging strategies, which may include simultaneous multislice 
imaging (SMS), controlled aliasing in parallel imaging resulting in higher acceleration (CAIPI), iPAT, GRAPPA, as well as turbo or other acceleration factors.
v While some sites may choose to collect DWI post-contrast, studies have suggested this can lower ADC measurements as much as 3%.152
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Table 2 Minimum standard 3T metastatic brain tumor imaging protocol

3D T1w Preb Ax 2D  
FLAIRj,q

Ax 2D  
DWIp,u

Ax 2D  
T2wh,i,q

2D SE T1w Postr,s 3D T1w  
Postb,r

Sequence IR-GREd,e,f TSEc SS-EPIg Contrast  
Injection a

TSEc TSE/SE IR-GRE d,e,f

Plane Sagittal or Axial Axial Axial Axial Axial and/or Coronal Sagittal or Axial

Mode 3D 2D 2D 2D 2D 3D

TR [ms] 2100m >6000 >5000 >2500 < 500 2100m

TE [ms] Min 100–140 Min 80–120 Min Min

TI [ms] 1100n 2000–2500k    1100n

Flip angle 10º-15º 90º/≥160º 90º/180º 90º/≥160º 90º/≥160º 10º-15º

Frequency 256 ≥256 128 ≥256 ≥256 256

Phase 256 ≥256 128 ≥256 ≥256 256

NEX ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

FOV 256 mm 240 mm 240 mm 240 mm 240 mm 256 mm

Slice thickness 1 mm 3 mm 3 mm 3 mm 3 mm 1 mm

Gap/spacing 0 0 0 0 0 0

Other options   b = 0, 500,  
1000 s/mm2  
≥3 directions

 Fat suppression  
encouraged

 

Parallel  
imaging

Up to 3x t Up to 2x Up to 2x Up to 2x Up to 2x Up to 3x t

Abbreviations: TR = repetition time; TE = echo time; TI = inversion time; NEX = number of excitations; FOV = field of view. 
a 0.1 mmol/kg dose injection with a gadolinium chelated contrast agent. Use of a power injector is desirable at an injection rate of 3–5 cc/sec. 
(Note: If DSC perfusion is collected, contrast injection is performed after starting DSC acquisition. DSC perfusion can be performed with the “ideal” 
protocol at 3T as well as with the minimum standard protocols at 3T and 1.5T.)
b Post-contrast 3D T1-weighted images should be collected with equivalent parameters to pre-contrast 3D T1-weighted images.
c TSE = turbo spin echo (Siemens & Philips) is equivalent to FSE (fast spin echo; GE, Hitachi, Toshiba).
d FL2D = two-dimensional fast low angle shot (FLASH; Siemens) is equivalent to the spoil gradient recalled echo (SPGR; GE) or T1- fast field echo 
(FFE; Philips), fast field echo (FastFE; Toshiba), or the radiofrequency spoiled steady state acquisition rewound gradient echo (RSSG; Hitachi). A fast 
gradient echo sequence without inversion preparation is desired.
e IR-GRE = inversion-recovery gradient-recalled echo sequence is equivalent to MPRAGE = magnetization prepared rapid gradient-echo (Siemens 
& Hitachi) and the inversion recovery spoiled gradient-echo (IR-SPGR or Fast SPGR with inversion activated or BRAVO; GE), 3D turbo field echo 
(TFE; Philips), or 3D fast field echo (3D Fast FE; Toshiba).
f A 3D acquisition without inversion preparation will result in different contrast compared with MPRAGE or another IR-prepped 3D T1-weighted 
sequences and therefore should be avoided.
g In the event of significant patient motion, a radial acquisition scheme may be used (eg, BLADE [Siemens], PROPELLER [GE], MultiVane [Philips], 
RADAR [Hitachi], or JET [Toshiba]); however, this acquisition scheme is can cause significant differences in ADC quantification and therefore 
should be used only if EPI is not an option. Further, this type of acquisition takes considerable more time.
h Dual echo PD/T2 TSE is optional for possible quantification of tissue T2. For this sequence, PD is recommended to have a TE < 25ms.
i Advanced sequences can be substituted into this time slot, so long as 3D post-contrast T1-weighted images are collected between 4 and 8 min 
after contrast injection.
j 3D FLAIR is an optional alternative to 2D FLAIR, with sequence parameters as follows per EORTC guidelines: 3D TSE/FSE acquisition; 
TE = 90–140 ms; TR = 6000–10,000 ms; TI = 2000–2500 ms (chosen based on vendor recommendations for optimized protocol and field strength); 
GRAPPA≤2; Fat Suppression; Slice thickness ≤ 1.5mm; Orientation Sagittal or Axial; FOV ≤ 250 mm x 250 mm; Matrix ≥ 244x244.
k Choice of TI should be chosen based on the magnetic field strength of the system (eg, TI ≈ 2000ms for 1.5T and TI ≈ 2500ms for 3T).
l In order to ensure comparable SNR older 1.5T MR systems can use contiguous (no interslice gap) images with 5mm slice thickness or increase 
NEX for slice thickness ≤4mm.
m For Siemens and Hitachi scanners. GE, Philips, and Toshiba scanners should use a TR = 5–15 ms for similar contrast.
n For Siemens and Hitachi scanners. GE, Philips, and Toshiba scanners should use a TI = 400–450 ms for similar contrast.
p Older model MR scanners that are not capable of >2 b-values should use b = 0 and 1000 s/mm2.
q Axial 2D T2-weighted FLAIR and Axial 2D T2-weighted images can be interchanged pre- and post-contrast.
r Sites may choose to perform the 3D T1w IR-GRE sequence prior to the 2D T1w TSE/SE because of the potential risk of patient movement and to 
help with patient comfort. However, there is less inherent lesion conspicuity in the 3D T1w IR-GRE sequence, so delaying this sequence to the end 
may be efficacious.
s Adding FLAIR to this T1-weighted imaging at 3T could be considered for CSF suppression.
t Investigators are encouraged to work with their scanner vendors to determine the best parallel imaging strategies, which may include simulta-
neous multislice imaging (SMS), controlled aliasing in parallel imaging resulting in higher acceleration (CAIPI), iPAT, GRAPPA, as well as turbo or 
other acceleration factors.
u While some sites may choose to collect DWI post-contrast, studies have suggested this can lower ADC measurements as much as 3%.152
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Table 3 Minimum standard 1.5T metastatic brain tumor imaging protocol

3D T1w Preb Ax 2D  
FLAIRj,q

Ax 2D  
DWIp,t

Ax 2D  
T2wh,i,q

2D SE T1w Postr 3D T1w Postb,r

Sequence IR-GRE d,e,f TSEc SS-EPIg Contrast 
Injec-
tion a

TSEc TSE/SE IR-GRE d,e,f

Plane Sagittal or Axial Axial Axial Axial Axial and/or  
Coronal

Sagittal or Axial

Mode 3D 2D 2D 2D 2D 3D

TR [ms] 2100m >6000 >5000 >3500 400–600 2100m

TE [ms] Min 100–140 Min 80–120 Min Min

TI [ms] 1100n 2000–2500k    1100n

Flip angle 10º-15º 90º/≥160º 90º/180º 90º/≥160º 90º/≥160º 10º-15º

Frequency ≥172 ≥256 128 ≥256 ≥256 ≥172

Phase ≥172 ≥256 128 ≥256 ≥256 ≥172

NEX ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

FOV 256 mm 240 mm 240 mm 240 mm 240 mm 256 mm

Slice thickness ≤1.5 mm ≤4 mml ≤4 mml ≤4 mml ≤4 mml ≤1.5 mm

Gap/spacing 0 0 0 0 0 0

Other options   b = 0, 500,  
1000 s/mm2  
≥3 directions

 Fat suppression  
encouraged

 

Parallel Imaging Up to 2xs Up to 2x Up to 2x Up to 2x Up to 2x Up to 2xs

Abbreviations: TR = repetition time; TE = echo time; TI = inversion time; NEX = number of excitations; FOV = field of view. 
a 0.1 mmol/kg dose injection with a gadolinium chelated contrast agent. Use of a power injector is desirable at an injection rate of 3–5 cc/sec. 
(Note: If DSC perfusion is collected, contrast injection is performed after starting DSC acquisition)
b Post-contrast 3D T1-weighted images should be collected with equivalent parameters to pre-contrast 3D T1-weighted images
c TSE = turbo spin echo (Siemens & Philips) is equivalent to FSE (fast spin echo; GE, Hitachi, Toshiba)
d FL2D = two-dimensional fast low angle shot (FLASH; Siemens) is equivalent to the spoil gradient recalled echo (SPGR; GE) or T1- fast field echo 
(FFE; Philips), fast field echo (FastFE; Toshiba), or the radiofrequency spoiled steady state acquisition rewound gradient echo (RSSG; Hitachi). 
A fast gradient echo sequence without inversion preparation is desired.
e IR-GRE = inversion-recovery gradient-recalled echo sequence is equivalent to MPRAGE = magnetization prepared rapid gradient-echo (Siemens 
& Hitachi) and the inversion recovery spoiled gradient-echo (IR-SPGR or Fast SPGR with inversion activated or BRAVO; GE), 3D turbo field echo 
(TFE; Philips), or 3D fast field echo (3D Fast FE; Toshiba).
f A 3D acquisition without inversion preparation will result in different contrast compared with MPRAGE or another IR-prepped 3D T1-weighted 
sequences and therefore should be avoided.
g In the event of significant patient motion, a radial acquisition scheme may be used (eg, BLADE [Siemens], PROPELLER [GE], MultiVane [Philips], 
RADAR [Hitachi], or JET [Toshiba]); however, this acquisition scheme is can cause significant differences in ADC quantification and therefore 
should be used only if EPI is not an option. Further, this type of acquisition takes considerable more time.
h Dual echo PD/T2 TSE is optional for possible quantification of tissue T2. For this sequence, PD is recommended to have a TE < 25ms.
i Advanced sequences can be substituted into this time slot, so long as 3D post-contrast T1-weighted images are collected between 4 and 8 min 
after contrast injection.
j 3D FLAIR is an optional alternative to 2D FLAIR, with sequence parameters as follows per EORTC guidelines: 3D TSE/FSE acquisition; 
TE = 90–140 ms; TR = 6000–10,000 ms; TI = 2000–2500 ms (chosen based on vendor recommendations for optimized protocol and field strength); 
GRAPPA≤2; Fat Suppression; Slice thickness ≤ 1.5mm; Orientation Sagittal or Axial; FOV ≤ 250 mm x 250 mm; Matrix ≥ 244x244.
k Choice of TI should be chosen based on the magnetic field strength of the system (eg, TI ≈ 2000ms for 1.5T and TI ≈ 2500ms for 3T).
l In order to ensure comparable SNR older 1.5T MR systems can use contiguous (no interslice gap) images with 5mm slice thickness or increase 
NEX for slice thickness ≤4mm.
m For Siemens and Hitachi scanners. GE, Philips, and Toshiba scanners should use a TR = 5–15 ms for similar contrast.
n For Siemens and Hitachi scanners. GE, Philips, and Toshiba scanners should use a TI = 400–450 ms for similar contrast.
p Older model MR scanners that are not capable of >2 b-values should use b = 0 and 1000 s/mm2.
q Axial 2D T2-weighted FLAIR and Axial 2D T2-weighted images can be interchanged pre- and post-contrast.
r Sites may choose to perform the 3D T1w IR-GRE sequence prior to the 2D T1w TSE/SE because of the potential risk of patient movement and to 
help with patient comfort. However, there is less inherent lesion conspicuity in the 3D T1w IR-GRE sequence, so delaying this sequence to the end 
may be efficacious.
s Investigators are encouraged to work with their scanner vendors to determine the best parallel imaging strategies, which may include simulta-
neous multislice imaging (SMS), controlled aliasing in parallel imaging resulting in higher acceleration (CAIPI), iPAT, GRAPPA, as well as turbo or 
other acceleration factors.
t While some sites may choose to collect DWI post-contrast, studies have suggested this can lower ADC measurements as much as 3%.152
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evaluation of brain metastases at 3T and 1.5T, respectively. 
These minimum protocols include imaging series that will 
be familiar to current users of the BTIP.

The standard protocol limits GBCA administration to 
a single-dose (0.1 mmol/kg) bolus, based on recent data 
on DSC-MRI accuracy in the primary brain tumor set-
ting,146,147 but we also allow for double, 0.2 mmol/kg total 
GBCA dosing if investigators and sites prefer. If a double 
dose of GBCA is used and DSC perfusion is performed, 
the first GBCA dose should be used as gadolinium pre-
load, preceding the DSC series, which would then use the 
second GBCA dose. A higher relaxivity GBCA, for greater 
lesion contrast conspicuity and possibly improved DSC 
signal change (especially at 1.5T), is preferable but not 
mandated.

If sites have 3T scanners and if patients have no contra-
indications to scanning at 3T, we recommend acquiring 
brain imaging at 3T over 1.5T, as the advantages at 3T 
outweigh disadvantages. The current literature suggests 
that the most sensitive pulse sequence for the detec-
tion of small metastases is 3D TSE T1-weighted imaging 
with greater sensitivity at 3T compared with 1.5T. Three-
dimensional TSE T1-weighted imaging at 1.5T has not 
been well evaluated for brain metastasis detection, and 
its quality can vary depending upon scanner platform. 
Therefore, we recommend 3D TSE T1-weighted imaging be 
used at 3T but cannot universally endorse it at 1.5T until 
additional studies are conducted.

For sites not able to perform stand-alone 3D TSE 
T1-weighted imaging and would use the “standard” pro-
tocol with 3D IR-GRE instead, we recommend the addition 
of one post-contrast 2D SE or TSE T1-weighted series at 
the conclusion of the MR exam both for clinical purposes 
and for trial outcome purposes. This can assist in the de-
tection of small metastases that may not be detected on 
IR-GRE imaging or which may be obscured by artifacts 
that differ between the 2 post-contrast pulse sequences. 
For instance, a second post-contrast T1-weighted series 
may increase diagnostic confidence when considering 
SRS to new very small metastases, or if artifacts are 
present in a particular location on one imaging series. 
Although we advocate for acquisition of this additional 
sequence, we are not providing specific parameters for 
the second post-contrast T1-weighted series because: (i) 
we encourage sites to perform their best possible pulse 
sequence, which may vary significantly, and (ii) for clin-
ical trial evaluation purposes and generalizability, the 3D 
post-contrast T1-weighted scan should be used for meas-
urements and advanced image post-processing, whereas 
the post-contrast SE or TSE series can be used in a quali-
tative way to support the accuracy of the BTIP-based pro-
tocol. We recommend that such a 2D SE/TSE T1-weighted 
series have slice thickness no greater than 4 mm and no 
interslice gap.

Acknowledging that some imaging sites may routinely 
perform either turbo spin echo T2-weighted or T2-weighted 
FLAIR imaging in order to reduce exam time, we recom-
mend acquiring both. Current automated segmentation 
algorithms utilize both T2- and T2-weighted FLAIR, which 
may be important for some trials. However, if sites are able 
to acquire only one of these sequences, primary investi-
gators could consider this as acceptable, although less 

optimal. For instance, primarily cystic metastases may be 
best appreciated on T2-weighted imaging.

As T2-weighted FLAIR is also performed pre-GBCA ad-
ministration at some sites, and post-GBCA administration 
at others, we also allow for investigators and/or sites to 
choose this timing of T2-weighted FLAIR, simply pointing 
out that post-contrast T2-weighted FLAIR will depict as 
bright not only lesions with T2 lengthening but also GBCA-
enhancing lesions. Advantages of performing T2-weighted 
FLAIR post-gadolinium include the potentially better con-
spicuity of leptomeningeal metastases and some pa-
renchymal metastases. Lastly, it is crucial that at least 
one pulse sequence be performed between the adminis-
tration of GBCA and the first post-contrast T1-weighted 
series, to optimize lesion contrast enhancement. Typically, 
T2-weighted imaging is performed as this temporal 
“spacer,” since GBCA enhancement is not detectable in 
non-FLAIR T2-weighted images. However, if sites do not 
perform routine T2-weighted imaging, they will need an-
other pulse sequence such as a T2-weighted FLAIR at this 
time point in the imaging protocol.

Some imaging centers routinely perform susceptibility 
weighted imaging (SWI), which has very good sensitivity 
for paramagnetic substances such as hemosiderin in hem-
orrhagic tumors and deoxyhemoglobin in veins. SWI indi-
cates the presence of hemorrhage in many metastases,54 
which may have some utility in their evaluation, though 
SWI alone is not as sensitive for small metastases as is 
post-contrast T1-weighted imaging. Investigators should 
feel free to include SWI or allow it if desired; its only 
downside is that it requires MR gradient time on the order 
of 5 minutes.

It is strongly encouraged that imaging centers employ 
the same MRI scanner platform, including field strength, 
and the same imaging protocol, at all scan time points for 
any given patient. This will aid in accurately evaluating im-
aging changes over time. A cautionary note for clinical in-
vestigators is warranted here. The clear advantages to the 
“ideal” protocol over the “minimum standard” protocol 
justify its being used whenever possible, and its inclusion 
in this document could serve to also better inform sites 
when they are upgrading their MRI equipment. However, 
because many sites will not be able to perform the “ideal” 
protocol or may have only a single or limited number of 
capable scanners, this could present a challenge to per-
forming follow-up MR exams on a given patient on the 
same scanner platform. This underscores the need for 
clear communication and cooperation with radiology de-
partments or imaging centers.

The aforementioned protocol is meant to provide a fun-
damental standard for use in clinical trials involving brain 
metastases. Sites are welcome to add additional pulse 
sequences to meet their particular clinical needs. For ex-
ample, some sites may feel more comfortable always ac-
quiring a second, confirmatory post-contrast T1-weighted 
sequence for greater certainty in identifying small me-
tastases, particularly if there are artifacts. Also, sites may 
consider adding other imaging techniques with which they 
have experience and skill, such as 1-hour delayed post-
contrast T1-weighted imaging, ASL, DCE, MR spectros-
copy, or PET for better differentiation of radiation necrosis 
and recurrent tumor in the post-SRS setting.
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Conclusion

Brain metastases present some unique imaging challenges 
compared with gliomas. We therefore provide suggestions 
for a “minimum standard” as well as “ideal” MR imaging 
protocols, depending on imaging sites’ capabilities, that 
should serve well for clinical purposes as well as for pa-
tients with brain metastases on clinical trials.
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