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Fyn tyrosine kinase, a downstream target of receptor 
tyrosine kinases, modulates antiglioma immune 
responses
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Abstract
Background. High-grade gliomas are aggressive and immunosuppressive brain tumors. Molecular mechanisms 
that regulate the inhibitory immune tumor microenvironment (TME) and glioma progression remain poorly un-
derstood. Fyn tyrosine kinase is a downstream target of the oncogenic receptor tyrosine kinase pathway and is 
overexpressed in human gliomas. Fyn’s role in vivo in glioma growth remains unknown. We investigated whether 
Fyn regulates glioma initiation, growth and invasion.
Methods. We evaluated the role of Fyn using genetically engineered mouse glioma models (GEMMs). We also gen-
erated Fyn knockdown stem cells to induce gliomas in immune-competent and immune-deficient mice (nonobese 
diabetic severe combined immunodeficient gamma mice [NSG], CD8−/−, CD4−/−). We analyzed molecular mech-
anism by RNA sequencing and bioinformatics analysis. Flow cytometry was used to characterize immune cellular 
infiltrates in the Fyn knockdown glioma TME.
Results. We demonstrate that Fyn knockdown in diverse immune-competent GEMMs of glioma reduced tumor 
progression and significantly increased survival. Gene ontology (GO) analysis of differentially expressed genes 
in wild-type versus Fyn knockdown gliomas showed enrichment of GOs related to immune reactivity. However, 
in NSG and CD8−/− and CD4−/− immune-deficient mice, Fyn knockdown gliomas failed to show differences in 
survival. These data suggest that the expression of Fyn in glioma cells reduces antiglioma immune activation. 
Examination of glioma immune infiltrates by flow cytometry displayed reduction in the amount and activity of im-
mune suppressive myeloid derived cells in the Fyn glioma TME.
Conclusions. Gliomas employ Fyn mediated mechanisms to enhance immune suppression and promote 
tumor progression. We propose that Fyn inhibition within glioma cells could improve the efficacy of antiglioma 
immunotherapies.

Key Points

1.  Inhibition of Fyn tyrosine kinase in genetically engineered mouse glioma models delays 
tumor initiation and progression. 

2.  The oncogenic effects of Fyn in vivo are mediated by downregulation of antiglioma 
immunity.
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Glioblastoma multiforme (GBM), or high-grade glioma, 
is the most frequent and aggressive primary tumor of the 
central nervous system. It is characterized by extensive 
infiltrative growth and resistance to therapy.1 Mutated/ac-
tivated driver genes such as the receptor tyrosine kinases 
(RTKs) (epidermal growth factor receptor [EGFR], platelet 
derived growth factor receptor [PDGFR], hepatocyte growth 
factor (HGF)/MET), tumor suppressor genes (tumor pro-
tein 53 [TP53], phosphatase and tensin homolog/neuro-
fibromatosis type 1[ PTEN/NF1]), and downstream Ras/
mitogen-activated protein kinase kinase (MEK)/extracellular 
signal-regulated kinase (ERK) or phosphatidylinositol-3 ki-
nase (PI3K)/Akt pathways contribute to the malignity of 
glioma.2 Fyn, a non-RTK member of the Src family kinase 
(SFK), is a downstream proto-oncogene target of the RTK 
pathway.3–6 However, the specific mechanisms by which Fyn 
stimulates glioma growth and invasion remain unknown. 
Fyn is rarely mutated7 in human high-grade glioma, but is 
significantly overexpressed.

Several in vitro studies showed that Fyn knockdown is as-
sociated with decreased cell migration and proliferation of 
glioma cells.3,8,9 Nevertheless, in vivo human glioma xen-
ograft models of Fyn knockdown in immune-suppressed 
animals failed to show differences in survival.8 Therefore, 
an immune-competent mouse model that enables study of 
gliomas with Fyn knockdown was established.

In this study we demonstrate that Fyn, a downstream 
target of RTK signaling, inhibits the antiglioma immune 
response. We demonstrated that Fyn tyrosine kinase pro-
motes glioma initiation and growth utilizing both immune-
competent and immune-deficient mouse glioma models. 
We observed that genetically engineered mouse glioma 
models (GEMMs) of gliomas and implantable gliomas, both 
with Fyn knockdown, displayed an extended survival com-
pared with wildtype Fyn tumor bearing immune-competent 
mice. However, Fyn knockdown tumors implanted into 
immune-deficient mice did not extend survival compared 
with controls. Molecular analysis revealed a significant 
overrepresentation of immune-related gene ontologies 
(GOs) in short hairpin (sh)Fyn tumors. The overrepresen-
tation of immune-related GOs suggests the possibility that 
Fyn is somehow suppressing immune function. Our data 
suggest that Fyn expression in glioma cells suppresses 
the immune responses by stimulating the expansion and 
activity of myeloid-derived suppressor cells (MDSCs) in 
the glioma tumor microenvironment (TME). Gliomas have 
been demonstrated to employ a variety of immunosup-
pressive mechanisms which promote tumor progression, 
thus reducing the effectiveness of immunotherapies.10,11

Our data uncover a new paradigm of how Fyn tyro-
sine kinase expressed within the tumor cells regulates 
antiglioma immune responses. We propose that tumor 

cell–specific inhibition of Fyn tyrosine kinase will increase 
the sensitivity of gliomas to immune attack, and repre-
sents a potential target for future treatments of glioma 
patients.

Materials and Methods

Glioma Cells

Mouse neurosphere cells were derived from GEMMs of 
gliomas. These cells were generated in our lab using the 
Sleeping Beauty (SB) transposon system.12,13 All cells were 
cultured as described in the Supplementary Material.

Generation of Stable Cell Lines with Fyn 
Knockdown

Neurospheres of shp53 and NRAS (NP) and shp53, NRAS 
and shATRX (NPA) cell lines were used to generate stable 
cell lines with Fyn knockdown. The pLenti pLKO-nontarget 
shRNA control vector (SHC002) and 2 different pLenti-
mouse shRNA vectors for Fyn were selected from Sigma 
Aldrich MISSION shRNA vectors. The Fyn  shRNA identi-
fication numbers are: TRCN0000023383 (shFyn #1) and 
TRCN0000361213 (shFyn #2). Cells were infected with the 
lentivirus as described previously by us.14 Immunoblotting 
was used to confirm Fyn knockdown. Fyn shFyn #2 cells 
were selected for in vivo experiments. Moreover, to vali-
date the specificity of the shFyn and discard any potential 
off-target effects, we performed a rescue experiment, as 
described in detail in the Supplementary Material.

Intracranial Implantable Syngeneic Mouse 
Glioma Model

Studies were conducted according to the guidelines ap-
proved by the Institutional Animal Care and Use Committee 
(IACUC) at the University of Michigan (approved protocol, 
PRO00007666 for C57BL/6 immune-competent mice and 
PRO00007669 for immune-suppressive mice). Implanted 
were 3.0  ×  104 neurospheres into the striatum of mouse 
brains to generate tumors. See the Supplementary Material.

Generation of Genetically Engineered Mouse 
Glioma Model for Fyn Knockdown

The animal model studies were conducted in C57BL/6 
mice (Jackson Laboratory), according to IACUC approved 
protocol PRO00007617. A  Fyn knockdown glioma murine 

Importance of the Study

Fyn is an effector of receptor tyrosine kinase signaling in 
glioma. However, its role in vivo remains unknown. Our 
study demonstrates that Fyn tyrosine kinase is a novel reg-
ulator of the antiglioma immune response. We show that 

Fyn inactivation suppresses glioma growth, increases 
survival, and enhances antitumor immune reactivity. Our 
findings suggest that suppressing the expression of Fyn 
in glioma cells could provide a novel therapeutic target.
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model and the appropriate controls were created by the 
SB transposon system as described.12,13 The genotypes of 
SB-generated tumors were: (i) shp53 and NRAS, (ii) shp53, 
NRAS, and shFyn (NPF), (iii) shp53, NRAS, and shATRX, 
(iv) shp53, NRAS, shATRX, and shFyn (NPAF), (v) shp53, 
NRAS, and PDGFβ (NPD), (vi) shp53, NRAS, PDGFβ, and 
shFyn (NPDF). Design and cloning of shFyn vector are in 
the Supplementary Material.

Immunoblotting

Glioma cells (1.0  ×  106 cells) were seeded in a 100  mm 
dish and grown at various time points as shown in the 
Supplementary Material.

Immunohistochemistry of Paraffin Embedded 
Brains 

Immunohistochemistry assay was performed on paraffin 
embedded tissue as described previously.15

Immunofluorescence of Paraffin 
Embedded Brains

Brains that were fixed in 4% paraformaldehyde were pro-
cessed, embedded in paraffin, and sectioned as described 
previously.15 Fyn antibody was conjugated with the Alexa 
Fluor 488 Tyramide SuperBoost Kit, goat anti-rabbit immu-
noglobulin G (# B40922) following the manufacturer’s in-
structions (Invitrogen/Thermo Fisher Scientific).

RNA Isolation and RNA Sequencing

SB NP, NPF, NPA, NPAF, NPD, and NPDF tumors were 
studied by RNA sequencing (RNA-Seq) analysis. RNA 
was isolated using the RNeasy Plus Mini Kit (Qiagen) fol-
lowing the manufacturer’s instructions. RNA-Seq was per-
formed at the University of Michigan DNA Sequencing 
Core. Detailed analysis is described in the Supplementary 
Material.

Flow Cytometry

For flow cytometry analysis of immune cells within the 
TME, we generated tumors by intracranial implantation 
of 3.0 × 104 NPA-nontreated (NT) and NPA-shFyn cells in 
C57Bl6 mice. Protocol was performed as described be-
fore16 and detailed in the Supplementary Material.

In Vitro MDSC Migration Assay

We generated mouse bone marrow–derived MDSCs as 
described by Marigo et  al.17 We analyzed in vitro MDSC 
(monocytic [M]-MDSC and polymorphonuclear [PMN]-
MDSC) migration using Transwell polycarbonate mem-
brane inserts (Corning) of 6.5  mm diameter and 8  µm 
pore size. Detailed methodology is described in the 
Supplementary Material.

T-Cell Proliferation Assays

We measured MDSC immune suppressive activity using in 
vitro T-cell proliferation assay. MDSCs were purified from 
TME of shp53, NRAS and shATRX-non target (NPA-NT) 
and shp53, NRAS and shATRX-shFyn  (NPA-shFyn) tumors 
from moribund mice. MDSCs were purified by flow sorting 
as Gr-1high (PMN-MDSC) and Gr 1low(M-MDSCs) as de-
scribed.16 See detailed methodology in the Supplementary 
Material.

Statistical Analysis

All experiments were performed in at least 3 or more in-
dependent biological replicates, depending on the specific 
analysis. Data are presented as the mean ± SEM. All statis-
tical tests used are indicated within the figure legends and 
in the Supplementary Material.

Results

Fyn Was Identified as a Potential Regulator of 
Glioma Progression

Fyn tyrosine kinase is activated by several RTKs, such as 
EGFR, PDGFR, and c-MET, commonly mutated genes in 
gliomas. Following Fyn activation, there are several down-
stream Ras-dependent and Ras-independent signaling 
pathways such as Ras/MEK/ERK, PIK3/Akt, focal adhesion 
kinase, paxillin, beta-catenin, signal transducer and acti-
vator of transcription 3 (STAT3), Src homology 2 domain-
containing (SHC)-transforming protein member of the 
Src homology and Collagen family and vav guanine nu-
cleotide exchange factor 2 (VAV2), leading to changes in 
proliferation, migration, invasion, and cell-cell adhesion 
(Fig. 1A).

We analyzed RNA-Seq and Microarray human data 
from the Gliovis (http://gliovis.bioinfo.cnio.es) database. 
According to the Repository of Molecular Brain Neoplasia 
Data (REMBRANDT), The Cancer Genome Atlas (TCGA), 
and Gravendeel databases, Fyn mRNA expression levels 
were higher in different types of human gliomas compared 
with normal brain tissue (Supplementary Figure 1A). We 
observed that Fyn expression was positively correlated 
with mouse glioma cell aggressiveness. Figure. 1B shows 
that the survival of animals implanted with NP and NPA 
glioma cells is significantly shorter than that of animals 
implanted with NPAI cells. In accordance, western blot 
analysis in Figure. 1C demonstrates that the levels of Fyn, 
but not Src, are higher in NP and NPA cells compared with 
NPAI cells.

To further analyze the importance of Fyn in glioma malig-
nancy, we investigated differential expression (DE) of genes 
in highly aggressive glioma NPA neurospheres (NRAS, 
shp53, shATRX, isocitrate dehydrogenase [IDH] wild-type) 
compared with NPAI neurospheres (NRAS, shp53, shATRX, 
IDH1R132H), of lower aggressiveness.13 The network of DE 
genes identified Fyn to be one of the most highly connected 
nodes (degree, 63; fourth node from the top), a hub in the 
network (Fig. 1C, D). Figure. 1D, E displays the network of 

http://gliovis.bioinfo.cnio.es
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
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Fyn, a set of nodes directly connected to Fyn. Higher magni-
fication of the networks is shown in Supplementary Figure 
1A, B. Analysis of the functional network GO terms discloses 

Cell Proliferation, Cell migration, MAPK cascade, Positive 
regulation of PI3K signaling, VEGF receptor signaling, 
Cellular response to PDGF as significant GO Biological 
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Fig. 1 Fyn is a potential regulator of aggressiveness in mouse gliomas. (A) Fyn tyrosine signals downstream from mutated membrane RTK and 
integrin driver genes. Red: mutation/amplification, green: mutation/deletion, orange: Fyn overexpression. (B) Kaplan–Meier survival curves of 
implantable mouse glioma models show difference in tumor malignancy. NPAI display an increased survival compared with NP and NPA glioma-
bearing mice. NPAI (MS, 34 days; n = 4), NP (MS, 24 days; n = 4), NPA (MS, 23 days; n = 4). (C) Fyn levels correlate positively with glioma cell 
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Fig. 2 Knocking down Fyn in GEMM prolongs animal survival. (A–C) Kaplan–Meier survival curves of SB mouse glioma models demonstrate that 
animals bearing Fyn knockdown tumors have increased median survival. (A) NP (MS, 94 days; n = 15) versus NPF (MS, 131 days; n = 29). (B) NPA 
(MS, 80 days; n = 16) versus NPAF (MS, 142 days; n = 28). (C) NPD (MS, 69 days; n = 15) versus NPDF (MS, 108 days; n = 23). Log-rank (Mantel–Cox) 
test; ***P < 0.001, ****P < 0.0001. (D–F, top) Fyn expression in tumors (green = tumor, blue = DAPI [4′,6′-diamidino-2-phenylindole] stained nuclei), 
quantified as fluorescence integrated density using ImageJ software (D–F, bottom); n = 5 per condition, scale bar = 50 μm. Ten random fields per 
tumor section per animal were imaged. Bars ± SEM are shown (***P < 0.001, *P < 0.05 using linear mixed effect models) (G–I). Histopathological 
analysis was performed in tumor sections stained with hematoxylin and eosin; shFyn tumors were compared with controls. Scale bars: 100 μm. P: 
pseudo-palisades, N: necrosis, H: hemorrhage, VP: vascular proliferation, MS, mesenchymal component, SC: small cells, G: giant cells. (J) Table 
representing histopathological semi-quantitative analysis: very low (+/−), low (+), medium (++), and high (+++). (K‒M) Cell proliferation analysis: 
Positive P-H3-S10 cells were counted by ImageJ software. Scale bars: 50 μm. P-H3-S10 positive cells per total cells in the visual field; n = 5. Ten 
fields of each section were selected at random. Error bars represent ± SEM; linear mixed effect models, ***P < 0.001, **P < 0.01.
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Processes involving Fyn (Supplementary Figure 1B). The 
list of GO terms with their respective q and p values is 
shown in Supplementary Table 1.

Loss of Fyn Reduces Tumor Malignancy 
and Prolongs Survival of Mice Harboring 
GEMM Tumors

The SB Transposon System GBM model (GEMM) was 
used to understand the function of Fyn.12 We generated 
a Fyn-deficient genetically engineered mouse glioma 
model (Supplementary Figure 3A, B). We corrobor-
ated the efficacy of the shRNAs of Fyn by western blot 
analysis (Supplementary Figure 3C). The shFyn-(b) was 
selected for the GEMM glioma generation. We gen-
erated tumors harboring wildtype or Fyn knockdown 
in the presence of various genotype combinations 
(Supplementary Figure 3D).

Downregulation of Fyn increased median survival (MS) 
in comparison to wildtype Fyn control groups (Fig. 2A–C) in 
all genotype models. The NPF group displayed an increased 
MS of 131 days compared with 94 days in the NP control 
group (Fig. 2A). The experimental group with knockdown 
of Fyn in the context of loss of ATRX (alpha thalassemia/
mental retardation syndrome X-linked) (NPAF) exhibited an 
increased survival (MS, 142 days) compared with the NPA 
control (MS, 80 days) (Fig. 2B). In the third experimental 
group, Fyn knockdown plus PDGFβ ligand upregulation 
(NPDF) also displayed an increased MS of 108 days com-
pared with the NPD control group (MS, 69 days) (Fig. 2C). 
We corroborated the downregulation of Fyn protein in 
all experimental groups as shown in Figure.  2D–2F re-
spectively. Histopathology analysis of tumors showed no 
evidence of significant differences in glioma malignant 
pathological markers (Fig.  2G–J). We further evaluated 
cellular proliferation of the tumor. Quantification demon-
strated a significant decrease in the ratio of P-H3-S10 cells 
per total cells in Fyn knockdown groups (Fig. 2K, L). These 
data demonstrate that Fyn downregulation increases an-
imal survival by decreasing tumor initiation, development, 
and proliferation.

RNA-Seq and Bioinformatics Analysis Reveal 
Increased Representation of Immune Ontologies 
in Fyn Knockdown Glioma Models

RNA-sequencing and bioinformatics analysis were used to 
discover changes in GOs that could help us understand the 
mechanism by which Fyn knockdown leads to the inhibition 
of tumor growth and progression. Genomic studies were 
performed in the following GEMM groups: NPF versus NP, 
NPAF versus NPA, and NPDF versus NPD. RNA-Seq anal-
ysis revealed a group of 515 DE genes in NPF versus NP 
(205 upregulated genes and 310 downregulated genes); 
1295 DE genes in NPAF versus NPA (469 upregulated and 
826 downregulated), and 630 DE genes in NPDF versus NPD 
(565 upregulated and 65 downregulated) (Supplementary 
Figure 4A–D). Using network analysis (Cytoscape) we 
analyzed the functional interaction of the DE genes re-
sulting from Fyn knockdown (Supplementary Figure 4). 

The analysis of the network interactions revealed several 
genes which represent hubs and thus potential regulators 
of the network functions (Supplementary Figure 5 A–C). 
We found in NPF versus NP that STAT1, integrin subunit 
alpha (ITGA)2, ITGA3, ITGA9, G protein subunit alpha 
14 (GNA14), calcium/calmodulin dependent protein ki-
nase II alpha (CAMK2A) represent highly connected hubs 
of the network. In NPAF versus NPA, the most connected 
genes on the network were NFKB1, STAT1, Src homology 
2 domain-containing transforming protein 1 (SHC1), ITGB2, 
fibronectin 1, vinculin, ITGB7, and CAMK2A. In NPDF versus 
NPD the hubs of the network are represented by Fyn, 
STAT1, spleen tyrosine kinase (SYK), Ras-related C3 botu-
linum toxin substrate 2 (RAC2), VAV1, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit gamma 
[PIK3CG], and ITGB2. These genes play an essential role 
in gene regulation and biological processes. Moreover, 
the functional network analysis found the following path-
ways as commonly overrepresented in all 3 shFyn tumors 
independent of the genetic background of the tumors: ex-
tracellular matrix organization, focal adhesion, interleukin 
(IL)-12–mediated signaling events, integrin signaling 
pathway, pathways in cancer, PI3K/Akt signaling pathway, 
and cytokine-cytokine receptor interaction (Supplementary 
Figure 6A–C and Supplementary Table 2A–C ). As is shown 
in the figures, other pathways were specifically impacted 
for each genetic condition. Further, GO analysis per-
formed by iPathwayGuide platform (Advaita Corporation), 
corrected for multiple comparisons using Elim pruning 
method, is compatible with the hypothesis that Fyn knock-
down mediates an activation of immune response among 
all GEMM of glioma. The analysis shows that the set of top 
overrepresented GO terms, in shFyn glioma for each indi-
vidual genetic background, are mostly related to immune 
functions (Fig.  3A–D and Supplementary Table 3A–C). 
Furthermore, to identify common gene ontologies shared 
between all GEMM glioma models for Fyn downregulation 
(NPF vs NP, NPAF vs NPA and NPDF vs NPD), DE genes of 
each genetic background were compared by meta-analysis. 
We encountered 58 common overrepresented GO terms 
shared by all 3 Fyn knockdown glioma models (Fig.  3A). 
Significantly overrepresented GOs in the meta-analysis 
were associated with immune biological functions, in-
cluding “cellular response to interferon-gamma,” “cellular 
response to interferon-beta,” “antigen processing and pres-
entation of exogenous peptide antigen via MHC class  II,” 
“cellular response to interleukin-1,” “myeloid dendritic cell 
differentiation,” “positive regulation of T cell proliferation,” 
among others (Fig. 3E). These signaling pathways and GO 
terms represent potential mechanism by which Fyn knock-
down decreases glioma malignancy in NPF, NPAF, and 
NPDF glioma models. Details of the selected GO terms are 
shown in Supplementary Table 4A–C.

The Role of Fyn in Glioma Growth, Malignancy, 
and Immune Response Interaction

To test the hypothesis that Fyn depletion stimulates 
antitumor immune responses in vivo, we implanted Fyn 
knockdown cells in immune-competent and immune-
deficient mice. Preceding the in vivo experiments, we 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
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identified by western blot that Fyn was successfully 
downregulated. Both shRNAs were specific for Fyn and do 
not have effect on Src tyrosine kinase. Decreased expres-
sion of SFK phosphorylation sites P-Y416 and P-Y530 was 
observed (Supplementary Figure 7A, B).

To test if potential off-target effects due to shFyn in-
fluence our results, we performed an in vitro rescue 
experiment. NPA-shFyn cells transduced with a plv-
cherry-Fyn vector expressing a silent-mutated form of 
Fyn gene, designed to be resistant to the shRNA of Fyn, 
were used to rescue the shFyn induced knockdown. 
Expression of this construct counteracted the inhibition 
of shFyn (Supplementary Figure 7C). We then tested the 
biological effects of Fyn expression on cell viability. We 
observed a decreased proliferation in NPA-shFyn cells 
compared with NPA-NT. Fyn overexpression within 
NPA-shFyn cells reversed the effects of Fyn knockdown 
(Supplementary Figure 7D). The in vivo study showed 
that inactivation of Fyn in glioma cells strongly sup-
press tumor growth and increase survival in immune-
competent mice (C57BL/6) (Fig.  4A, B), but the effects 
in immune-compromised (NSG) mice was negligible 
(Fig.  4C, D). Fyn knockdown group displayed a MS of 
34 days compared with the NP- NT control group (MS, 
27 days) (Fig. 4A ). Also, NPA-shFyn had a significantly 
higher median survival (MS, 30 days) than the NPA-NT 
control group (MS, 20)  (Fig.  4B). Moreover, in vivo bi-
oluminescence analysis of the tumors at 13 days post-
implantation (dpi) showed that NP-Fyn knockdown 
tumors exhibited lower signal. Tumor size evaluation 
at necropsy showed a correlation with in vivo tumor 
bioluminescence analysis (Supplementary Figure 7E, 
F). These results validate the role of Fyn in immune-
competent mice. However, tumor induction in NSG 
immune-deficient mice with NP-shFyn tumors did not 
exhibit a significant difference in survival compared 
with the control NP-wildtype Fyn tumors (MS, 24 vs 
26 dpi) (Fig. 4C). In mice bearing NPA-shFyn tumors, a 
minor yet statistically significant increase in MS (22 vs 
24 dpi) was observed (Fig. 4D). Moreover, implantation 
of NP-shFyn and NPA-shFyn tumors in cluster of differ-
entiation (CD)8 knockout mice showed no difference in 
survival compared with the control tumor-bearing mice 
(Fig. 4E and Supplementary Figure 7G). Implantation of 
NPA-shFyn tumors in CD4 knockout mice showed no dif-
ference in survival (Fig.  4F). Collectively, these results 
demonstrate that enhanced survival in Fyn knockdown 
tumors is mediated by the immune system, including 
CD8 and CD4 T cells.

As was observed above, the survival benefit of shFyn is 
larger in GEMM than in implantable tumors. The reason for 
the different survival benefit is that in the GEMMs, tumors 
originate de novo as a result of the genetic modification 
of neural stem cell progenitors in one-day-old pups. In the 
implantable glioma model, tumors are induced by intra-
cranial implantation of 30 000 cells. Median survival is 80, 
94 days in GEMM, and 27, 20 days in implantable tumors. 
Percentage-wise, shFyn increases survival by 139%, 177% 
in GEMM (NP, NPA), and by 125%, 150% in NP, NPA im-
plantable tumors (Fig. 2A, B; Fig. 4A, B). We believe that the 
survival benefit of shFyn is reduced in implantable gliomas 
due to their increased growth rate.

Fyn Downregulation in Glioma Reduces MDSC 
Amount and Activation Markers and Inhibitory 
Potency within the TME

To determine whether downregulation of Fyn in gliomas 
has an effect on the immune response, we examined 
the immune cellular infiltrates in the TME. First, we ana-
lyzed the role of T cells in the TME of shFyn tumors. No 
significant difference in the frequency of CD4+ T cells 
(CD45+, CD3+, CD4+) or CD8+ T cells (CD45+, CD3+, 
CD8+) were observed in NPA-NT versus NPA-shFyn tu-
mors (Fig. 5A–D). However, we found a reduction in CD8 
T cells that express programmed cell death 1 (PD1), a 
marker of T-cell exhaustion (Fig.  5E, F). In gliomas, in-
creases in MDSCs are an important mechanism of 
antitumor immune evasion.16 Therefore, we evaluated 
the expansion of MDSC-mediated immunosuppression 
in the glioma TME. MDSCs were identified as M-MDSC 
(CD45+, CD11b+, Ly6Chi, Ly6G−) or PMN-MDSC (CD45+, 
CD11b+, Ly6Clo, Ly6G+). Interestingly, we observed a 
1.79-fold decrease of M-MDSCs (Fig. 5G, 5I) and a 3.04-
fold decrease of PMN-MDSCs (Fig. 5H, 5I) in the TME of 
NPA-shFyn gliomas compared with NPA-NT controls. 
Further, we analyzed the immunosuppressive function of 
MDSC isolated from the TME of GEMM tumors. We first 
characterized MDSC by expression of T-cell immunosup-
pressive molecules (ie, as arginase 1 [ARG1] and CD80). 
We observed a significant decrease in the proportion of 
CD80+ and ARG+ M-MDSCs, and ARG+ PMN-MDSCs in 
shFyn tumors (Fig. 5J, K, L, M). To test whether decreased 
numbers of MDSCs in shFyn TME is due to reduced MDSC 
migration, we performed an in vitro bone marrow–de-
rived MDSC migration assay (Fig.  6A). This experiment 
showed that shFyn conditioned media reduced M-MDSC 
migration. Migration of PMN-MDSCs was not decreased 
in the shFyn group (Fig.  6B). Finally, we analyzed the 
functional MDSC-mediated T-cell immune suppressive 
activity. We observed that PMN-MDSCs (GR1hi CD11b+) 
or M-MDSCs (Gr1low CD11b+) from the TME of NPA-NT 
and NPA-shFyn decreased T-cell proliferation stimulated 
by SIINFEKL peptide. However, MDSCs isolated from the 
shFyn tumors were significantly less inhibitory. These 
data suggest that the microenvironment of shFyn glioma 
tumors reduce the capacity of MDSCs to inhibit T-cell acti-
vation (Fig. 6C, 6D, 6F).

Besides, we analyzed the expansion and activation 
status of macrophages. We did not observe a sig-
nificant increase in the frequency of macrophages 
(CD45+, CD11c−, F4/80+) (Supplementary Figure 8A, 
B). The expression of major histocompatibility com-
plex 2 (MHCII) on macrophages in the TME was in-
creased by 1.4-fold in NPA-shFyn gliomas versus 
NPA-NT controls (Supplementary Figure 8C, D). It is 
likely that the lower proportion and suppressive ac-
tivity of MDSCs in shFyn tumors lead to increases of 
M1 macrophages (MHCIIhi) and therefore reduced po-
larization to M2 macrophages. Overall, our data show 
that downregulating expression of Fyn in glioma tu-
mors decreases expansion of MDSCs in the TME due 
to reduced migration potential, decreased expression 
of CD80 and ARG1, and lower functional immune-
suppressive activity.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa006#supplementary-data
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Discussion

In this study we demonstrate that glioma cell–specific ge-
netic inhibition of Fyn tyrosine kinase increases antiglioma 
immune responses, thus significantly delaying tumor 
progression.

Fyn is an effector of the RTK (EGFR, MET, PDGFR) 
pathway in glioma and other cancers. Downstream 
of RTK, Fyn signals through Ras-dependent (via Ras/

MEK/ERK) and Ras-independent pathways (via PIK3/
Akt, β-catenin, FAK, paxillin, STAT3, VAV1, and/or SHC) 
(Fig.  1A). To activate several downstream molecular 
pathways, and physiological processes such as cellular 
proliferation, migration, and cell adhesion.4,18 RTK are 
commonly mutated drivers in high grade gliomas; yet 
their detailed downstream signaling pathways remain in-
completely understood.3,4,18–20

Molecular analyses of high-grade glioma from the 
REMBRANDT, TCGA, and Gravendeel databases,7 and 
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Fig. 4 Tumor growth delay and increased survival in Fyn downregulated gliomas are immune mediated. (A, B) Kaplan–Meier survival curves for 
glioma in C57BL/6 immune-competent mice. (A) NP-Fyn knockdown gliomas displayed significant increases in MS: 27 vs 34 days; *P = 0.011. (B) 
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data from Lu et al,3 indicate increased expression of Fyn. 
These human data correlate with our results in mouse 
models of gliomas, in which increased levels of Fyn ex-
pression correlate with higher glioma aggressiveness. 

Further, our molecular gene interaction network anal-
ysis highlights Fyn as a central network hub, suggesting 
it might function as a potential regulator of glioma 
malignancy.
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Fig. 6 Fyn knockdown in glioma decreases MDSC migration potential and immune-suppressive activity within the TME. (A) Diagram of experi-
mental design of MDSC Transwell migration assay. MDSCs derived from bone marrow and induced with IL-6 and granulocyte-macrophage colo-
ny-stimulating factor were seeded on the top of the Transwell and incubated for 15 hours in NT and shFyn conditioned media. The migrated cells 
were analyzed using CellTiter-Glo. (B) MDSC migration assay results. Data are expressed as percentage of migrating cells relative to the control 
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ANOVA, followed by Duncan multiple comparisons. ns: nonsignificant, *P < 0.05, **P < 0.005.
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Previous studies have shown that Fyn is expressed by 
both tumor cells and immune cells.21 In T cells, Fyn regu-
lates effector functions and amplifies T-cell antigen receptor 
signaling.4,19,20,22 However, it has been difficult to establish the 
role of Fyn within glioma in vivo. The function of Fyn can be 
studied genetically (ie, knockdown) or pharmacologically (ie, 
saracatinib or dasatinib inhibitors). Genetic inhibition is highly 
specific. Pharmacological inhibition, however, is nonspecific. 
Saracatinib or dasatinib will inhibit all SFK members and will 
inhibit SFK in all cell types (ie, Fyn in the immune cells).

For instance, in vitro studies using SFK inhibitors show 
that Fyn promotes cell proliferation and migration in 
gliomas.3,9,23,24 In vivo, effects of saracatinib treatment have 
been mixed, yet we are unable to determine any specific role 
of Fyn in glioma growth.3,8 Importantly, dasatinib did not ex-
tend survival of glioma patients in a phase II clinical trial.25 In 
vivo, however, there was no effect on animal survival.

As saracatinib and dasatinib are nonspecific inhibitors 
of individual SFK members,26 the genetic inhibition of Fyn 
remains the best option to study its functions in glioma 
biology. Indeed, genetic downregulation of Fyn expres-
sion inhibited glioma cell migration and proliferation in 
vitro,3,8,9,27 yet failed to affect glioma progression in in vivo 
immune-suppressive mice.8

To address this paradox, we developed a genetic approach 
to inhibit Fyn expression in tumor cells using a GEMM 
model of glioma in immune-competent animals. Our results 
suggest that shFyn delays tumor initiation and progression 
in vivo by inhibiting the antiglioma immune response.

We demonstrated the role that Fyn plays as central hub 
in antiglioma immune response and tumor progression by 
inducing tumors in immune-deficient animals. The effect 
of Fyn in delaying tumor growth was abolished in NSG, 
CD8−/− and CD4−/− immune-deficient animals. Both CD8 
and CD4 T cells are necessary for increased tumor rejection 
of shFyn gliomas. These studies suggest that Fyn plays a 
crucial role in conveying immune inhibitory messages 
from within the glioma cells to the immune cells, thereby 
engineering the local immune response to favor tumor 
growth. Herein, we uncovered a new cell non-autonomous 
mechanism by which Fyn knockdown within glioma cells 
modulates the antiglioma immune responses.

Analysis of the molecular changes induced by shRNA-
Fyn strongly suggests that the downregulation of Fyn in 
tumor cells activates the antitumor immune response. Meta-
analysis of GO for NPF versus NP, NPAF versus NPA, and 
NPDF versus NPD revealed a significantly common immune-
related biological process among all genetic glioma models 
of Fyn knockdown such as “cellular response to interferon-
gamma,” “cellular response to interferon-beta,” “antigen 
processing and presentation of exogenous peptide antigen 
via MHC class  II,” “cellular response to interleukin-1,” “my-
eloid dendritic cell differentiation,” “positive regulation of T 
cell proliferation,” and others. Moreover, further functional 
network analysis found that Fyn knockdown tumors dis-
play central hub regulators and overrepresented pathways 
as STAT1, a prominent regulator of the immune system.28  
This module regulates immune functions, interferon-γ cel-
lular signaling, Janus kinase–STAT pathways, cell differentia-
tion of T helper cells (Th)1, Th2, and Th17, T-cell activation, and 
natural killer cell–mediated cytotoxicity.29,30 Although they ex-
hibit the same final phenotype and common biological pro-
cesses or signaling pathways, the specific mechanisms by 

which Fyn downregulation regulates the antiglioma immune 
response would be different for each GEMM of glioma.

Finally, our glioma TME analysis suggests that, Fyn 
downregulation in glioma tumors decreases MDSC expan-
sion and their immune-suppressive activity. We and others 
have previously reported that glioma infiltrating MDSCs play 
a key role in inhibiting antitumor T-cell immune responses, 
thus promoting tumor progression.16 The inhibitory immune 
microenvironment in glioma is thought to contribute to the 
ineffectiveness of immunotherapies.31 Novel therapeutics 
approaches that reverse the inhibitory microenvironment 
are essential to counteract these effects, and we propose 
that the inhibition of Fyn within glioma cells could repre-
sent such a strategy. ShFyn gliomas determined a reduced 
MDSC migration potential, a decreased immunosuppres-
sive cell phenotype (fewer CD80 and ARG1 cells), and lower 
functional immune-suppressive activity. T-cell depletion of 
L-arginine through arginase causes interference with the CD3-
zeta chain and proliferative arrest of antigen-activated T cells. 
Inhibitory CD80 receptors of the B7.1 family were implicated 
in MDSC-mediated immune suppression.16,32 Glioma micro-
environment of Fyn knockdown glioma diminished myeloid 
cell–mediated immunosuppression, leading to increased 
T-cell proliferation and cytotoxicity and decreased T-cell ex-
haustion and M1 to M2 macrophage polarization amplifying 
antiglioma immunity.

We propose that inhibition of Fyn within glioma cells 
could be an immune-mediated therapeutic target to re-
strict MDSC immune-suppressive expansion. Since Fyn 
is expressed by both immune cells and tumor cells, ther-
apeutic approaches will need to target Fyn specifically in 
tumor cells. We propose that the combination of tumor 
cell–specific Fyn inhibition with other immune-stimulatory 
treatments—such as immune checkpoint blockade (PD1 
and PD1 ligand inhibitors) and Ad-hCMV-TK and Ad-hCMV-
Flt3L gene therapy11,33,34—is a promising avenue that is 
worth being explored in future experiments.
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