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Expression of SARS-CoV-2 receptor ACE2 and
coincident host response signature varies by
asthma inflammatory phenotype
Matthew Camiolo, MD, PhD,a Marc Gauthier, MD,a Naftali Kaminski, MD,b Anuradha Ray, PhD,a,c and

Sally E. Wenzel, MDa,c,d Pittsburgh, Pa, and New Haven, Conn
Background: More than 300 million people carry a diagnosis of
asthma, with data to suggest that they are at a higher risk for
infection or adverse outcomes from severe acute respiratory
syndrome coronavirus 2. Asthma is remarkably heterogeneous,
and it is currently unclear how patient-intrinsic factors may
relate to coronavirus disease 2019.
Objective: We sought to identify and characterize subsets of
patients with asthma at increased risk for severe acute
respiratory syndrome coronavirus 2 infection.
Methods: Participants from 2 large asthma cohorts were
stratified using clinically relevant parameters to identify factors
related to angiotensin-converting enzyme-2 (ACE2) expression
within bronchial epithelium. ACE-2–correlated gene signatures
were used to interrogate publicly available databases to identify
upstream signaling events and novel therapeutic targets.
Results: Stratifying by type 2 inflammatory biomarkers, we
identified subjects who demonstrated low peripheral blood
eosinophils accompanied by increased expression of the severe
acute respiratory syndrome coronavirus 2 receptor ACE2 in
bronchial epithelium. Genes highly correlated with ACE2
overlapped with type 1 and 2 IFN signatures, normally induced
by viral infections. T-cell recruitment and activation within
bronchoalveolar lavage cells of ACE2-high subjects was
reciprocally increased. These patients demonstrated
characteristics corresponding to risk factors for severe
coronavirus disease 2019, including male sex, history of
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hypertension, low peripheral blood, and elevated
bronchoalveolar lavage lymphocytes.
Conclusions: ACE2 expression is linked to upregulation of viral
response genes in a subset of type 2–low patients with asthma
with characteristics resembling known risk factors for severe
coronavirus disease 2019. Therapies targeting the IFN family
and T-cell–activating factors may therefore be of benefit in a
subset of patients. (J Allergy Clin Immunol 2020;146:315-24.)

Key words: COVID-19, ACE2, coronavirus, SARS-CoV-2, asthma,
interferons, viral response, Type-2 low

Evolving epidemiological data during the coronavirus disease
2019 (COVID-19) pandemic have shed light on populations at
risk for severe infection. Chronic lung disease is consistently
listed as a risk factor, though relationship to specific underlying
conditions is unclear.1 The impact of asthma remains particu-
larly controversial,2 ranging anywhere from protective effect
to 3-fold risk for hospitalization in young adults.1 Furthermore,
asthma is a remarkably heterogeneous disease with differing un-
derlying immunobiology, severity, and response to treatment.3

Thus, a more granular understanding of asthma and its subtypes
is required to address the controversies related to the health
impact of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2).

Entry of SARS-CoV-2 is mediated by fusion of the viral spike
protein and cellular membranes through interaction with cell
surface angiotensin-converting enzyme-2 (ACE2).4,5 Previous
work confirms ACE2 expression by bronchial epithelial cells
(BECs) and supports a link to type 1 (T1) immunity.6,7 In contrast,
asthma, formost, is thought to be a type 2 (T2) (IL-4, IL-5, and IL-
13)-driven immune process. Whether this skewing toward T2
immunity and away from T1 could alter COVID-19 clinical
outcomes is not yet clear.

Despite this relationship to T2 immunity, the BEC transcriptome
of patients with asthma, particularly those with severe disease, is
markedly heterogeneous and includes both T2 and T1 signature
genes.8-10 This understanding contributed to the current paradigm
for defining asthma by the presence or absence of T2 biomarkers,
such as fractional exhaled nitric oxide, blood, and sputum eosino-
phils.5 While T2-high asthma has been associated with more
frequent exacerbations, a subset of severe patients exhibit a T1-
polarized immune response typified by increased IFN-g.11,12 As a
known viral response gene, IFN-g could critically impact
COVID-19. Thus, we hypothesized that T1 polarization of the im-
mune response inBECswould link to a high-riskCOVID-19 pheno-
type that could be identified in relation to ACE2 gene expression.

To assess the impact of immune polarization on ACE2
expression, we stratified patients by biomarkers of T2
315
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inflammation. We next looked for genes correlated with ACE2
expression to assemble a signature for patients with elevated
expression. Ontological term enrichment was performed to
ascribe function to these genes and comparison to in vitro stimu-
lation and knockdown condition data sets was done to confirm
relationship to pathways and upstream ligands. Patient clustering
with our ACE2 gene signature then informed a supervised classi-
fication model in which commonly available clinical data were
used to predict epithelial gene expression.
METHODS

Lead contact and materials availability
Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Sally Wenzel (swenzel@

pitt.edu).
Human subjects
All subjects provided informed consent in accordance with an institutional

review board protocol approved by the University of Pittsburgh. Male and

female nonsmoking (<10 pack-year and no smoking in the previous year)

subjects meeting the European Respiratory Society/American Thoracic

Society definition of severe asthma were recruited.13 Also recruited were sub-

jects with milder asthma on no or lower doses of inhaled corticosteroid (FEV1

>60% predicted with no history of frequent or severe exacerbations of asthma

in previous year) and healthy controls. Subjects comprised all racial/ethnic

backgrounds and were between the ages of 18 and 60 years. Subjects under-

went extensive baseline characterization, including physiologic (spirometry,

diffusing capacity, and PC20), allergic, and clinical characterization.14 Sub-

jects also underwent bronchoscopy per published protocols and consistent

with procedures established at the University of Pittsburgh consistent with

the Severe Asthma Research Program (SARP).
Epithelial cell transcriptional profiling
Microarray expression profiling was performed on isolated epithelial

cells from subjects of the SARP cohort as previously described.9 Participants

enrolled in the ImmuneModulation in Severe Asthma (IMSA) cohort under-

went research bronchoscopy with endobronchial brushing. RNA isolated

from endobronchial brushings was used to generate cDNA libraries using

the Illumina TruSeq RNA Library Prep Kit (Illumina, San Diego, Calif).

The libraries were sequenced using the Illumina NextSeq500 System. Qual-

ity control for raw FASTQ files was performed using FastQC, and the low-

quality reads and 3’ adapters were trimmed with Trim Galore! (Babraham

Bioinformatics, Cambridge, United Kingdom). The RNA sequence aligner

STAR was used to align the trimmed reads to the reference human genome

(hg19).15 Gene expression was subsequently quantified by counting the

number of read fragments uniquely mapped to genes using featureCounts.16
Gene expression data were normalized using the rLog package from the DE-

Seq2 suite.17 Samples were controlled for batch effect using the COMBAT

algorithm.18 Duplicate gene identities were resolved using maximum

values.
Whole transcriptome correlation analysis
Spearman rank correlation was calculated between ACE2 and all other

genes in both the IMSA and SARP epithelial cell data sets, followed by

P-value adjustment for a false-discovery rate of less than 5%. For assembly of

ACE2-correlated signatures, an arbitrary cutoff set at the 99th percentile of all

positive rho values for a given data set was selected. This corresponded to 122

genes in IMSA and 189 in SARP. Hashed lines correlation plots indicate these

respective cutoffs. Negative correlations were not included in overlap

analysis.
Epithelial phenotype scoring
Patients in the SARP and IMSA cohorts were scored for strength of expression

for curated lists of genes related to asthma phenotype. T1 asthma scoring was

performed using the geometric mean of 8 genes identified as upregulated by IFN

family members and increased in patients with asthma compared with healthy

controls.19 The T2 score was similarly calculated using 3 genes identified as up-

regulated by IL-13 stimulation of cells and increased in asthma.10
Overlap with Library of Integrated Network-Based

Cellular Signatures gene sets
Hypergeometric overlap of the ACE2-correlated signature was performed

via tools available through the National Institutes of Health Library of

Integrated Network-Based Cellular Signatures.20 Comparison with gene lists

related to viral infection was accomplished using Enrichr21 to interrogate the

‘‘Virus Perturbations from GEO’’ data set. Metadata from gene lists that

demonstrated significant overlap with P value less than .05 after correction

formultiple testingweremined for semantic similarity using hierarchical clus-

tering based on cosine similarity measurement, identifying SARS-CoVas the

most common term. CommunityMap was used to interrogate overexpressed

gene signatures and ligand stimulation conditions for similarity with ACE2-

correlated genes.
Transcription factor target analysis
Using Enrichr, the ACE2-correlated gene signature was used to interrogate

the ChEA,22 TTRUST,23 and ENCODE24 databases for overlapping target

sets. Metadata from target lists that demonstrated significant overlap with P

value less than .05 after correction for multiple testing were mined for seman-

tic similarity using hierarchical clustering based on cosine similarity measure-

ment, allowing for quantification of term frequency for pie chart assembly.
Graph-based transcription factor activity prediction
Genes identified as transcription factor targets from interrogation of

databases as detailed above were used for network assembly using the R

package linkcomm (version 1.0-12).25 Connectivity between network neigh-

borhoods was used to identify transcription factors most likely to account

for ACE2-correlated genes via greatest connectedness scoring.
Transcription factor binding site prediction
The National Center for Biotechnology Information (NCBI) Reference

Sequence (RefSeq NM_021804, chrX:15620192) of the ACE2 gene was used

for transcription factor binding site prediction with the Web-based Contra

(version 3) platform.26 The top-ranking transcription factor predictions from

semantic similarity and graph-based analysis were used to interrogate the

genomic region 500 bp upstream of the ACE2 locus through the promoter

region.
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Gene ontology map construction
Gene lists were submitted to the Cytoscape27 (version 3.8.0) application

ClueGo.28 Network complexity was set to medium, with filtering of gene

ontology terms that met a P value of overlap less than .001. Redundant term

collapse was enabled.
Estimation of number of patient clusters
The determination of patient group number used to cut the dendrogram of

epithelial expression data for both IMSA and SARP cohorts was accom-

plished via gap statistic calculation using the R package ‘‘NbClust’’ (version

3.0).29
Clustering of patients based on BEC gene

expression
Following filtering for the cohort-specific ACE2-correlated gene signature,

dendrograms were assembled using Euclidean distance and the ‘‘ward.D2’’

method of hierarchical clustering. The dendrograms were then cut using the

number of patient groups determined by gap statistic as described above.
BEC cluster prediction modeling
To build a predication model for BEC expression cluster using cell count

and clinical data, we used sparse partial least squares discriminant analysis

within the ‘‘mixOmics’’ package in R (version 6.10.8).30 Model training was

performed using the IMSA data set using all patients including healthy con-

trols, patients with mild to moderate asthma, and patients with severe

asthma. Initial input for model parameters included age, FEV1% predicted,

exhaled nitric oxide, systolic blood pressure, diastolic blood pressure, sex,

and absolute blood cell counts. The number of weighted vectors and vari-

ables included in our model was chosen on the basis of tuning and cross-

validation. MixOmics offers leave-one-out or fold cross-validation as op-

tions for these steps, and models assembled using both protocols performed

similarly in area under the receiver operating characteristic curve generation

and model error rate measurement. A model featuring absolute lymphocyte

count, absolute eosinophil count, diastolic blood pressure, and sex was

determined to have optimal performance. Because blood pressure measure-

ments were not available for SARP, external cross-validation could not be

performed. For the area under the receiver operating characteristic curve,

5-fold cross-validation was used. Receiver operating characteristic curves

were calculated as one class versus the others using 5-fold validation. Re-

ported area under the curve values (right of plot) are based on comparison

of predicted scores of one class versus the others using a 2-component

model. Wilcoxon test for one class versus the others met a significance

threshold of P less than .05 for all groups.
Ligand response estimation
Ligand response data sets were aggregated for pie chart construction using

semantic similarity as described above. A graph-based approach was taken to
identify genes that belonged to at least 5 response conditions to form a list of
‘‘hub’’ genes. This list was then used for CommunityMap interrogation of
knockdown perturbations that opposed their expression. The resultant
conditions were filtered for cytokines and soluble factors.
Statistical analysis
All statistical analysis was performed using the R computing environment

(version 3.5.3 or 3.6.1 contingent on package dependencies) unless otherwise

noted. Statistical testing and methodology are described within figure legends

or above within context-specific methodologies. For presentation of boxplots,

bars represent median values, with bounds of boxes representing interquartile

range and whiskers representing 1.5 times the upper or lower interquartile

range. For comparison of categorical variables across BEC expression

clusters, independence of distribution was calculated via likelihood-ratio

chi-square test.
Data and software availability
BEC and BAL gene expression datasets are available through the NCBI

Gene Expression Omnibus (GEO). Software and custom code will be

available upon request.
RESULTS

T2-low asthma expresses higher levels of ACE2 and

viral response genes
To assess whether expression of ACE2 may be linked to

parameters used in the evaluation of patients with asthma, we
interrogated 2 large cohorts: our local IMSA cohort (demographic
characteristics listed in Table E1 in this article’s Online Reposi-
tory at www.jacionline.org) as well as BEC gene expression
data from phases 1 and 2 of the SARP (demographic characteris-
tics previously reported in Modena et al9).8,9 We found that abso-
lute blood eosinophil count, a commonly used biomarker of T2
inflammation, effectively identified patients with differential
expression of ACE2 using clinically relevant cutoffs of 150 and
300 cells/mL (see Fig E1 in this article’s Online Repository at
www.jacionline.org and Fig 1, A). Increased ACE2 expression
in participants with low blood eosinophils suggests increased ca-
pacity for viral binding. No other parameter, including sex,
ethnicity, age, or oral corticosteroid use, showed a relationship
(see Figs E2 and E3 in this article’s Online Repository at www.
jacionline.org).

Patients with asthma with lower blood eosinophils and higher
ACE2 expression are also likely to have low levels of T2
inflammation as suggested by poor historic response to therapies
targeted at T2 cytokines such as IL-4 or IL-5.3 To assess for rela-
tionship to clinical asthma phenotype, we compared ACE2
expression to T1 or T2 signatures in BECs (see Fig E3 and Fig
1, B and C), identifying positive correlation between ACE2 and
T1 score and negative correlation between ACE2 and T2 score.
These data suggest that high levels of ACE2 expression are
more likely in T2-low patients with asthma. On examining genes
correlated with ACE2 in BECs of the IMSA cohort, we found
striking correlation to transcripts identified as upregulated in viral
infection31 (Fig 1, B and C). This included genes known to be up-
regulated by influenza family members H1N1 and H5N1, as well
as the highly related SARS-CoV, which also uses ACE2 for cell
entry.5,6 Interrogation of publicly available gene signatures
through the Library of Integrated Network-Based Cellular Signa-
tures showed overlap betweenACE2-correlated genes fromBECs
and those induced by in vitro overexpression of known viral
response genes IFNB1, IFNG, and CD40.32

To corroborate activation of downstream pathways, we
searched transcription factor target databases ChEA, TTRUST,
and ENCODE using our ACE-2 correlated gene signature (Fig 1,
E).22-24 Aggregating these results by semantic similarity, we
found strong evidence supporting activation of multiple transcrip-
tion factors including signal transducer and activator of transcrip-
tion (STAT) 1, IFN regulatory factor 1, nuclear factor Kappa B
subunit 1, and STAT3 (see Fig E4 in this article’s Online Repos-
itory at www.jacionline.org). Implementing a graph-based
approach to resolve redundancy between enrichment sets, we
identified STAT1 and IRF1 as having the highest predicted activ-
ity in relation to expression of ACE2-correlated genes (Fig 1, F).
Supporting a role for STAT1 and IRF1 activation, putative
binding sites were identified at the ACE2 locus on the human X
chromosome using genomic regulatory factor databases26,33
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FIG 1. ACE2 is increased in T2-low patients with asthma and is correlated with viral response genes. A, Box-

plot of ACE2 by blood absolute (ABS) eosinophil (Eos) cutoff. Comparison made using Student t test.

Spearman rank correlation for composite T1 (B) or T2 (C) gene expression score vs ACE2 transcript level

with rho and P value as indicated. D, Spearman rho vs 2log10(P value) for genes associated with ACE2.

Hashed lines indicate 99th percentile of rho values. Genes of interest are highlighted in red. E, Count of

GEO data sets upregulated in viral infections overlapping with ACE2-correlated genes. F, Heatmap indi-

cating strength of overlap between in vitro overexpression conditions from the LINCS database vs ACE2-

correlated signature from the IMSA cohort. G, Plotting of TFT sets overlapped with BEC ACE2-correlated

signature from the CHEA, TTRUST, and ENCODE libraries. H, Graphical resolution of membership between

TFT sets identifying STAT1 and IRF1 as having greatest enrichment in the ACE2-correlated gene list. LINCS,
Library of Integrated Network-Based Cellular Signatures; TFT, transcription factor target.
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(see Fig E3). Importantly, the correlation between ACE2 and viral
response genes was independently recapitulated in the SARP
cohort (see Fig E5 in this article’s Online Repository at www.
jacionline.org). Transcripts associated with ACE2 overlapped be-
tween cohorts and shared enrichment for ontological terms such
as regulation of IFN-a and IFN-g as well as viral release from
host cell.34,35 These gene ontology terms, as well as those relating
to T-cell activation, innate immune regulation, and antigen pro-
cessing, were significantly enriched in an expanded ACE2-
correlated signature (Fig 2, A).
Clustering of patients using an ACE2-correlated

gene signature identifies differing asthma risk

phenotypes
Having found relationship between T1 immune response and

ACE2 expression within BECs, we next identified subjects within
the IMSA cohort who demonstrated upregulation of this axis.
Using genes most highly correlated with ACE2, we clustered
participants on the basis of BEC gene expression (Fig 2, B andC).
As anticipated, the 4 clusters differed in levels of blood
eosinophils (Fig 3,D), which varied significantly along with their
ACE2 expression (Fig 2, C). Mean T1 gene expression score was
highest in patient cluster 1 (PC1), which also exhibited the highest
ACE2 transcript level (Fig 2, D). PC1 scored lowest in mean T2
gene expression despite being composed entirely of patients
with severe asthma (Fig 2, E and F). Although the clusters did
not differ by disease severity (Fig 2, E), asthma exacerbation his-
tory was highest in PC1 and patient cluster 4 (PC4) (Fig 2, G),
which corresponded to opposite ends of the spectrum for blood
eosinophils, T1/T2 scoring, and ACE2 expression. Importantly,
patient clusters with similar molecular and clinical characteristics
could be independently identified within the SARP cohort (see
Fig E6 in this article’s Online Repository at www.jacionline.
org), suggesting generalizability to these findings.
Noninvasive biomarkers predict a high-risk ACE2

patient cluster
Several risk factors have been associated with more severe

COVID-19 outcomes including male sex, hypertension, and high
neutrophil-to-lymphocyte ratios in peripheral blood.2,36,37 The

http://www.jacionline.org
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FIG 2. Patient clustering using ACE2-correlated genes identifies 2 groups of patients with severe asthma

with distinct immune profiles. Following identification of an ACE2-correlated gene signature within the

IMSA cohort, (A) gene ontology enrichment mapping was performed using the Cytoscape plug-in ClueGo.

Only terms that met a significance threshold of P value less than .001 are included in the graph. B, Heatmap

of expression of ACE2-correlated genes within BECs across patients in the IMSA cohort. Row side bar indi-

cates those participants with absolute blood eosinophil counts less than (blue) or greater than (red) 300

cells/mL. C, Boxplot of normalized ACE2 expression across BEC expression clusters. Kruskal-Wallis testing

for variation in expressionwas performed, with P value indicated on the graph. Boxplot of mean T1 (D) or T2

(E) gene expression across BEC expression clusters. Breakdown of (F) clinical disease severity and (G) his-

tory of exacerbation in preceding year across BEC expression clusters. ABS, Absolute; Eos, eosinophils.
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ACE2-high PC1, which was exclusively male (Fig 3, A), also ex-
hibited higher resting diastolic blood pressure and trended toward
a greater history of physician-diagnosed hypertension (x2 P value
of .113) (Fig 3, B). Consistent with increased risk for severe
COVID-19, PC1 demonstrated a higher neutrophil-to-
lymphocyte ratio36 (Fig 3,C). Absolute blood cell counts also var-
ied between BEC gene expression clusters; PC1 demonstrated
significantly lower absolute lymphocytes and eosinophils (Fig
3,D), similarly reflecting reports of lymphopenia and eosinopenia
in COVID-19.2,36,38,39 Given these strong relationships with re-
ported COVID-19 risk factors, we developed a predictive model
trained on the IMSA data set for patient classification using blood
differential cell count, sex, and resting diastolic blood pressure,
which achieved an area under the receiver operating characteristic
curve of 0.96 for PC1 (Fig 3, E). This model did not require infor-
mation on asthma severity for classification, making it broadly
applicable for BEC gene expression prediction. Examination of
model variables showed that readily available parameters could
identify ACE2-high patients who are potentially at risk for severe
COVID-19 (Fig 3, F).
Reciprocal T-cell activation from a separate lung

compartment associates with high-risk PC1
Study of asthma has underscored reciprocal signaling between

epithelial and immune cell compartments as crucial for propaga-
tion of inflammation.3,40 We found variation in the relative
composition of compartmentally distinct bronchoalveolar lavage
(BAL) immune cells between our BEC patient clusters, with PC1
demonstrating the highest percentages of lymphocytes and PC4
the highest percentages of eosinophils (Fig 4, A).

To gain more granular insight into how BAL immune cells may
affect epithelium, we assessed bulk BAL (RNAsequencing)
transcriptional data for genes correlated with BEC ACE2
expression (Fig 4, B). Consistent with the observed increase in
T lymphocytes within ACE2-high PC1, BAL genes associated
with antigen-presenting cells such as the CD1 family were highly
correlated with BEC ACE2.41 Looking at expression of cytokines
and soluble factors, we found multiple potential links between
immune and epithelial cells (Fig 4, C). Among BAL genes posi-
tively correlated with BEC ACE2 were IL6, CCL3, IL36B, and
IL1B. CCL3 was shown to regulate the function and migration



FIG 3. Noninvasive clinical and peripheral blood factors identify the potentially high COVID-19 risk in PC1.

A, Distribution of sex across BEC expression clusters. Independence of distribution was calculated via

likelihood-ratio chi-square test. B, Boxplot of diastolic BP across BEC expression clusters. Variation was

tested by Kruskal-Wallis. C, Stacked bar chart of peripheral blood differential cell counts across BEC expres-

sion clusters in the IMSA cohort. Height of bars represents mean cell percentages across patients in the BEC

cluster. P value of difference in proportion for neutrophils and lymphocytes is reported in the figure. D, Ab-

solute blood cell counts plotted across BEC expression clusters. Variation was tested using Kruskal-Wallis.

E, ROC curve of predictionmodel for BEC expression cluster using differential blood cell count, sex, and dia-

stolic BP. Wilcoxon test for one class vs the others met a significance threshold of P less than .05 for all

groups. F, Plot of variance for included prediction parameters across components used in model. ABS, Ab-
solute; BP, blood pressure; DBP, diastolic blood pressure; Eos, eosinophils; Lymph, lymphocytes; ROC,
receiver operating characteristic.
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of CD81 T cells, a source of IFN-g, following viral infection.42

T1 immune response genes showed a positive relationship with
BEC ACE2 expression, whereas those associated with T2
response such as IL-13, CCL1, and CCL26 showed a negative
relationship. These data suggest that BECs from ACE2-high pa-
tients interact with BAL immune cells to induce expression of cy-
tokines and chemokines associated with viral infection leading to
T-cell activation and T1 polarization.42-47

To further investigate this relationship, we performed tran-
scription factor target analysis on BAL transcription data and
found enrichment of E2F family-related genes in association with
BEC ACE2 (Fig 4, D). The transcriptional repressor E2F2 may
cooperate with cAMP response element-binding protein
(CREB) in the silencing of genes responsible for DNA meta-
bolism and cell cycle regulation,48 suggesting that loss of T-cell
quiescence is associated with higher levels of BEC ACE2. Gene
ontology term enrichment confirms this relationship between T-
cell cytotoxicity and expression of ACE2 in bronchial epithelium
(Fig 4, E).
ACE2-correlated genes predict novel therapeutic

targets
Targeted treatments for T2-low asthma have remained elusive

despite widespread recognition of this phenotype.49 To identify
candidates for intervention that may counteract changes seen in
ACE2-high epithelium, we interrogated the Library of Integrated
Network-Based Cellular Signatures database to find ligand stimu-
lation conditions that induce similar patterns in vitro (Fig 5, A). In
aggregate, this list included multiple hits for type I and II IFNs,



FIG 4. Intercompartmental crosstalk links high epithelial ACE2 with activated BAL lymphocytes. A, Boxplot

of BAL immune cell composition across BEC clusters. Variation was tested using Kruskal-Wallis. B,

Spearman rho vs2log10(P value) for association of BEC ACE2with genes in BAL cells. Hashed lines indicate

99th percentile of rho values. Genes of interest are highlighted in red. C, Correlogram of cytokine expression

by BAL cells vs epithelial ACE2. Colors of circles indicate directionality: red for positive and blue for negative

Spearman rho values. Circle sizes are inversely proportional to P values. D, TFT sets overlapped with BAL

ACE2-correlated signature. E,Gene ontology enrichment mapping of BAL ACE2-correlated signature. PMN,

Polymorphonuclear cell; TFT, transcription factor target.
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TNF-a, and IL-1 (Fig 5, C). Because many of these genes were
listed in multiple sets, we used a graph-based approach to identify
hub genes shared between them (Fig 5, B). Querying the database
for knockdown conditions shown to decrease expression of these
hub genes, we pinpointed cytokines that may be reasonable targets
for abrogating ACE2-correlated gene expression (Fig 5, D). This
included T-cell stimulatory factors IL-15 and IL-12 as well as
inflammasome-activated proteins IL-18 and IL-1b. Intriguingly,
IL-6 knockdown was tied for the highest predicted impact on
ACE2-correlated expression. Anecdotally, treatment of patients
with COVID-19 with immunosuppressive drugs, including those
specifically targeted at IL-6, has demonstrated some efficacy in se-
vere disease.50 Although these data have not yet been confirmed by
randomized controlled trials, pathological data from autopsy have
supported increased IL-6 and an overabundance of T cells in fatal
cases.51 Thus, it is tempting to hypothesize that an essential
element of SARS-CoV2 responsemay be captured by gene expres-
sion changes noted in our cohort studies.
DISCUSSION
Given the known heterogeneity in asthma, it is not surprising

that reports on COVID-19 outcomes in relation to the disease
have reported conflicting results. We found that a subset of
patients with asthma display a distinctive gene expression
signature in their bronchial epithelium that includes co-
expression of ACE2 with a viral response network related to
IFN signaling among others. These patients exhibit a high T1 and
low T2 epithelial gene expression signature, in addition to low
blood eosinophils, consistent with a T2-low asthma phenotype.
Separately, BAL cells from these individuals show reciprocal
increase in their expression of upstream signaling molecules,
including CCL3, IL36B, and IFNA16 and IL1B, consistent with
compartmental crosstalk. These participants were exclusively
male and had higher diastolic blood pressure. Consistent with a
higher risk phenotype, they also had eosinopenia, lymphopenia, a
higher neutrophil-to-lymphocyte ratio in peripheral blood, and
increased BAL lymphocytes.2,36,38,51 Transcription factor target



FIG 5. Novel targets for antagonizing ACE2-correlated gene expression are identified using curated ligand

stimulation models. A, Plot of 2log10(P value) overlap between ligand stimulation conditions in cultured

cell lines and ACE2-correlated BEC signature. B, Graphical approach to resolving overlapping membership

of genes between ligand stimulation conditions identified hub genes shared between data sets. C, Pie chart

of count for aggregated results from ligand stimulation and ACE2-signature overlap. D, Arbitrary perturba-

tion score plots from the LINCS database for cytokines that negatively impact the expression of ACE2 hub

genes upon knockdown in vitro. LINCS, Library of Integrated Network-Based Cellular Signatures.
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analysis of ACE2-correlated genes identifies potential binding
sites for STAT1 and IRF1 at the ACE2 genomic locus, with
growing evidence to suggest that ACE2 expression is indeed posi-
tively regulated by upstream IFN stimulation.7 These data suggest
that activation of host response pathways in some patients with
asthma may in fact be deleterious during the COVID-19
pandemic. Further work is needed to confirm the ability to miti-
gate SARS-CoV-2 infectivity via decrease of cell surface ACE2
through manipulation of specific signaling pathways.

As part of these analyses, another PC was identified (PC4) with
shared severity and exacerbation measures but had high blood
eosinophils and lowACE2. This cluster is consistent with a recent
report that the T2 cytokine IL-13 is suppressive of ACE2
expression in BECs.52 This suppression may explain the associ-
ated lower nasal epithelial ACE2 expression in children with
atopic asthma. Interestingly, low ACE in children was not associ-
ated with high blood eosinophils, suggesting differences between
children and adults, and perhaps contributing to the largely low
risk of children for severe COVID-19.53

It is important to note that patients in both the IMSA and SARP
cohorts were not actively exacerbating and were on stable doses
of controller medication at the time of bronchoscopy. Although
further validation is required to conclusively determine whether
the antiviral gene signature is related to upregulation or down-
regulation of cell surface ACE2, the concurrent association of
ACE2 mRNAwith clinical risk factors for COVID-19 gives some
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reassurance that transcript dose reflects protein. Whether level of
ACE2 alone mediates susceptibility to SARS-CoV-2 or severity
of COVID-19 remains to be determined.
Conclusions
We provide evidence that easily available noninvasively

obtained clinical and inflammatory biomarkers can identify
patients with a BEC profile concerning for an overwhelming
inflammatory response to SARS-CoV-2. In addition, the substan-
tial association of ACE2-correlated genes with immune pathways
for which targeted immunosuppressive therapies are currently
available supports future work studying the impact of targeting
IFNs, IL-1b, and IL-6 pathways in severe cases.
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Clinical implications: T2-low patients with asthma may be at
increased risk for adverse outcome from COVID-19 and
deserve increased vigilance upon developing symptoms.
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FIG E1. Biomarkers for T2 inflammation identify patients with differential ACE2 expression. Evaluation of

participants in asthma cohorts for differential expression of ACE2 based on clinically relevant biomarkers of

T2 inflammation. A, A cutoff of more than 300 eosinophils/mL of peripheral blood identifies patients with

differential expression of ACE2 by bronchial epithelium in the IMSA cohort. Boxplot represents normalized

ACE2 expression broken down by blood absolute eosinophil cutoff. Bars represent median values, with

bounds of boxes representing interquartile range (IQR) and whiskers representing 1.5 times the upper or

lower IQR. Testing was performed using Student t test. B, Differential expression of ACE2 can be identified

using a cutoff of either more than 150 or more than 300 eosinophils/mL of peripheral blood in the SARP

cohort. C, Comparison of ACE2 level for patients with measured exhaled nitric oxide over the commonly

used threshold of more than 24 parts per billion showed no difference in expression in either the IMSA

cohort or the SARP cohort. ABS, Abslolute; Eos, eosinophils.
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FIG E2. Relationship between clinical parameters and ACE2 expression. Testing for differential expression

of ACE2 using clinical parameters including (A) asthma status, (B) clinical disease severity, (C) sex, (D)

ethnicity, or (E) oral corticosteroid (OCS) use did not reveal significant variation in either the IMSA cohort

or the SARP cohort. Boxplots of normalized ACE2 expression broken down clinical parameters are plotted

as indicated. Bars represent median values, with bounds of boxes representing IQR and whiskers represent-

ing 1.5 times the upper or lower IQR. Testing was performed using Student t test. AA, African American;HC,
healthy control; IQR, interquartile range; MMA, mild to moderate asthma; SA, severe asthma.
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FIG E3. Correlation between other clinical parameters and ACE2 expression. Spearman rank correlation

between (A) age or (B) FEV1% predicted and normalized ACE2 expression using Spearman rank was per-

formed in both IMSA and SARP cohorts, demonstrating no significant relationship. Spearman rank corre-

lation for composite T1 (C) or T2 (D) gene expression score vs ACE2 transcript level for participants in

the SARP cohort with rho and P value as indicated.
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FIG E4. Transcription factor binding predictions at the ACE2 genomic locus. A, Results of transcription fac-

tor target analysis from the CHEA, ENCODE, and TTRUST data sets were aggregated using semantic sim-

ilarity and relative count plotted as fractions in pie chart. B, ConTra analysis of predicted transcription

factor binding sites at the ACE2 genomic locus on the X chromosome was performed using the relevant

JASPAR binding sequences indicated in the figure. C, Predicted sites for STAT1, IRF1, STAT1:STAT2,

STAT2, and STAT3 within the ACE2 promoter region through 500 bp upstream.
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FIG E5. ACE2-correlated genes are consistent between independent asthma cohorts. A, Plotting of

Spearman correlation rho vs 2log10(P value) for genes associated with ACE2 in BECs in the SARP cohort

with P value less than .05 after correction for multiple testing for FDR less than 5%. Hashed lines indicate

the 99th percentile of rho values. Genes of interest are highlighted in red as indicated in the figure. B,

Venn diagram indicating overlap of genes in the IMSA and SARP cohorts that had a Spearman rho value

of more than 0.4, with P value less than .05 after correction for multiple testing for FDR less than 5%. C, Heat-

map of expression of genes identified in overlap analysis across patients in the IMSA cohort. Row side bar

indicates those participants with absolute blood eosinophil counts less than (blue) or greater than (red) 300

cells/mL. Patients (rows) and genes (columns) are ordered according to similarity. D, Gene ontology enrich-

ment term mapping for transcripts correlated with ACE2 in both IMSA and SARP cohorts using the Cyto-

scape plug-in ClueGo. FDR, False-discovery rate.
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FIG E6. Clustering of the SARP cohort by ACE2-correlated genes recapitulates groupings similar to IMSA.

Ability to cluster patients into clinically meaningful groups was validated in the SARP cohort using ACE2-

correlated genes. A, Heatmap of expression of ACE2-correlated genes across patients in the SARP cohort.

Row side bar indicates those participants with absolute blood eosinophil counts less than (blue) or greater

than (red) 300 cells/mL. Patients are clustered according to similarity in gene expression. B, Boxplot of pe-

ripheral blood absolute eosinophil count across BEC clusters in the SARP cohort. Bars represent median

values, with bounds of boxes representing IQR and whiskers representing 1.5 times the upper or lower

IQR. Kruskal-Wallis testing was performed, with P value indicated on the graph. C, Boxplot of normalized

ACE2 expression across BEC expression clusters. Variation in expression was tested by Kruskal-Wallis.

ABS, Absolute; Eos, eosinophils; IQR, interquartile range.
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TABLE E1. Demographic characteristics of the IMSA cohort

Characteristic

Healthy control

Mild to moderate asthma

(MMA) Severe asthma (SA)

P value(n 5 17) (n 5 25) (n 5 24)

Mean age (y) 40.4 6 12.9 36.6 6 14.6 46.7 6 11.6 .025

Sex: male/female 5/12 6/19 9/15 .587

Race (Asian/black and

AA/white)

0/1/16 1/4/20 1/5/18 .6192216

Mean BMI (kg/m2) 26.6 6 4.5 29 6 6.1 32.7 6 8 .015

Median FENO (ppb) 14 6 6.1 30 6 37.1 21 6 50.2 .002

Mean ABS blood

eosinophils (cells/mL)

169 6 86 272 6 233 273 6 386 .216

Mean ABS blood

lymphocytes (cell/mL)

2077 6 521 2389 6 514 2165 6 972 .1274207

Mean FEV1 (%predicted) 99 6 13.7 84.6 6 17.3 58 6 22.1 <.0001

Mean diastolic blood

pressure (mm Hg)

70 6 9.3 69 6 12.2 72.7 6 11.2 .4970527

ABS, Absolute; BMI, body mass index; FENO, fractional exhaled nitric oxide; ppb, parts per billion.

Mean or median values are as reported in the table. Age, BMI, FENO, ABS blood eosinophils, ABS blood lymphocytes, and diastolic blood pressure are presented as 61 SD.

FEV1% predicted is presented as 61 SEM. P value of differential testing for age, BMI, FENO, ABS blood eosinophils, ABS blood lymphocytes, diastolic blood pressure, and FEV1

was calculated using Kruskal-Wallis. P value reported for race and sex was calculated using Pearson x2.
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