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Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and
mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy
currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients
are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage
surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated
with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to
amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known
about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as
macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent
immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive
function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking,
suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete
understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to
therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a
critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be
beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment.
Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design
therapeutics.
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Introduction to Stroke

Stroke is a leading cause of death and disability worldwide.
Ischemic stroke is a blockage of blood vessels that supply the
brain, leading to a reduction or total loss of blood flow, while

hemorrhagic stroke is caused by the rupture of intracerebral
vessels [1]. Regardless of subtype, stroke causes rapid necrot-
ic death of all cells within the core, which is the region of
significant loss of oxygen and nutrients [2, 3]. Ultimately,
the amount of brain tissue death is affected by the absolute
area at risk, whether there is any residual tissue perfusion, the
length of the occlusion, and the degree of reperfusion [4]. In
some ischemic stroke patients, a “no-reflow” phenomenon is
observed, where even after clot removal the tissue will not
fully reperfuse, causing further damage [4]. In hemorrhagic
stroke, hematomas expand and surrounding edema further
compresses blood vessels resulting in more tissue damage
[5]. Finally, both the size and location of the ischemic lesion
are responsible for patient outcomes and observed symptoms.

Risk factors for stroke include aging, hypertension, obesity,
atherosclerosis, type II diabetes mellitus, and peripheral
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infection. There are also gender-specific risks within different
age groups [6–8]. Each of these risk factors is independently
correlated with poor short-term stroke outcome in both clini-
cal and experimental settings [9, 10]. All of these risk factors
for stroke also activate the peripheral immune system; thus,
there may be cross-talk between the brain and the systemic
inflammatory milieu that contributes to worse outcomes [11].

Acute treatments for arterial ischemic stroke restore blood
flow to hypo-perfused tissue through chemical or mechanical
thrombolysis, sometimes with dramatic success [12, 13].
Although the treatment window for thrombectomy has recent-
ly been extended through the use of modern imaging tech-
niques, many patients are still left untreated, and once ische-
mia has caused irreversible damage, therapies are limited
[14–16]. In the past, only a minority of patients were eligible
for intervention [17], and although this is improving, there are
still many patients who are not eligible, and/or who have sig-
nificant infarct burden even after successful revascularization.
Because of the prominent role that the immune response plays
in ischemic stroke pathology in both the subacute and chronic
phases, it is a promising target for any patient with a complet-
ed infarction. The immune system can further injure damaged
tissue, influence clearance of dead tissue, and either hinder or
facilitate neuronal rewiring, all processes that are critical to
recovery during the days and weeks after stroke.

Various aspects of the immune response to stroke have
been a focus for researchers, as summarized in Fig. 1.
During the acute phase, the brain activates resident microg-
lia and simultaneously recruits myeloid cells and neutro-
phils from the periphery. These events facil i tate

neuroinflammation and local repair after injury, and simul-
taneously activate the peripheral immune response. In the
days after stroke, patients also become immunosuppressed,
leading to high rates of infection. In addition, during this
time, the active process of resolution is initiated to avoid
excessive tissue damage. When inflammatory responses do
not resolve properly, it may however result in chronic ac-
tivation of the adaptive immune response, secondary neu-
rodegeneration, and dementia in stroke survivors. Overall,
understanding these different aspects of the immune re-
sponse is essential for maximizing recovery of stroke pa-
tients. Finally, by modulating reperfusion-induced inflam-
mation, these strategies have the potential to improve out-
comes even after tPA therapy.

Initiating Neuroinflammation After Stroke

Damage-Associated Molecular Patterns Damage-associated
molecular patterns (DAMPs), also known as alarmins, are
released by necrotic cells and act as endogenous signals to
stimulate the inflammatory response. Prior to secretion, these
molecules also have physiological functions that are indepen-
dent from their activities as rapid activators of the immune
system. Immediately following arterial occlusion, intracellular
ATP depletion and subsequent glutamate release to the extra-
cellular space result in uncontrolled calcium-ion influx into
cells [18]. Subsequently, dysregulated calcium signaling acti-
vates intracellular lipases and proteolytic enzymes, ultimately
resulting in cell death [18]. Necrotic cells in the ischemic core

Fig. 1 Summary of local and peripheral immune responses after stroke.
Immediately following stroke, brain-resident immune cells such as
microglia and astrocytes are activated to respond to injury.
Subsequently, peripheral immune cells are activated and recruited to the
brain to assist in the immune response. In the following days, peripheral

immunodepression can occur, with a subsequent increased risk for
systemic infections. The extent of these local and peripheral immune
responses to stroke is variable, and this plays an important role in
determining patient outcomes and overall functional recovery in the
acute and chronic phases after stroke
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release DAMPs into the extracellular circulation to assist in
the activation of brain resident immune cells (microglia)
through specific receptors on the extracellular surface. In ad-
dition, DAMPs recruit peripheral immune cells to the brain
once they have been released into the bloodstream. Peripheral
immune cells are activated outside the brain, and then traffic to
the brain to assist in repair and recovery [19].

High-mobility group box 1 (HMGB1) and heat shock pro-
teins (Hsps) are essential DAMPs for initiating the post-stroke
inflammatory response via activating receptors on peripheral
immune cells [20, 21]. Specifically, HMGB1 released from
activated monocytes and macrophages or necrotic cells can
bind to the receptor for advanced glycation end products
(RAGEs) and toll-like receptors (TLRs) 2 and 4 once secreted
into the bloodstream [21, 22]. Activation of these receptors
results in upregulation and subsequent secretion of multiple
cytokines that promote inflammation and cellular death after
ischemia, including matrix metalloproteinase 9 (MMP-9), tu-
mor necrosis factor-α (TNF-α), and interleukin (IL)-1β [20].
Activation of innate responses mediated by TLR-4 in mono-
cytes, such as NF-κB activity and TNF synthesis, is associated
with worse outcomes in stroke patients [23, 24]. Additionally,
adequate clearance of DAMPs is required for proper resolu-
tion of inflammation following injury–deficiency in the clear-
ance process results in severe inflammation and exacerbated
neuronal injury in a murine model of ischemic stroke [25]. In
contrast, astrocyte-produced HMGB1 may promote endothe-
lial recovery [26]. HMGB1 release from activated astrocytes
enhances neurite outgrowth, neuronal survival, and
neurovascular recovery [26]. Taken together, these data sug-
gest that HMGB1 likely plays a dual role in stroke pathophys-
iology and understanding the cell-specific role of this DAMP
is critical to understanding the downstream signaling effects.

Several Hsps have also been implicated in initiating the
innate immune response after ischemic stroke [20]. After se-
cretion, Hsp70 binds TLRs on the surface of macrophages and
dendritic cells in the periphery and microglia in the brain. Via
TLR signaling, Hsp70 activates NF-κB in addition to other
pro-inflammatory pathways [27]. It can also directly polarize
CD4+ T cells to a pro-inflammatory Th1 state through inter-
action with extracellular receptors [28]. In contrast, overex-
pressing Hsp70 in mice with stroke improves long-term out-
comes and knockout of Hsp70 worsens them [28, 29]. Hsp27
and Hsp32 have also been implicated in stroke. Extracellular
Hsp27 binds various receptors on peripheral immune cells
such as TLRs on the surface of activated macrophages, and
activates the pro-inflammatory NF-κB pathway [30]. In con-
trast, Hsp32, or heme oxygenase-1 (HO-1), increases ische-
mic brain damage via formation of reactive oxygen species
[31]. Interestingly, treatment of wild-type microglia with de-
feroxamine (a hypoxia mimetic) decreases neuronal damage,
but this effect is abolished in HO-1(−/−) microglia, indicating
cell-specific roles for this DAMP [32].

Due to their prominent role in the acute immune response
to stroke, DAMPs have been proposed as promising therapeu-
tic targets. However, it is often difficult to distinguish between
the beneficial and injurious roles of inflammation in stroke
recovery, as evidenced by the dual roles of many of these
proteins, and their abilities to target multiple pathways tomod-
ulate the immune response. These studies highlight the need
for further work in distinguishing cell-type specific roles and
downstream signaling pathways activated by DAMPs to se-
lectively target the harmful aspects of the immune response.

Blood–Brain Barrier Once peripheral immune cells have been
activated by DAMPs, they must access the brain to assist in
repair. In the healthy CNS, the blood–brain barrier (BBB) reg-
ulates the movement of nutrients and blood-borne molecules
into the brain, and metabolic waste out of the brain, both main-
taining a healthy environment and protecting the brain from
peripheral toxins [33, 34]. Under physiological conditions, the
BBB also excludes peripheral cells, but during pathological
conditions such as stroke, traumatic brain injury, or multiple
sclerosis, this function changes to attract immune cells [35].

Initially, circulating lymphocytes contact inflamed vessels
via P-selectin glycoprotein ligand-1 (PSGL-1), and interact
with endothelial cells via E-selectin and P-selectin [36]. This
interaction tethers peripheral cells to the endothelial surface.
Subsequently, integrins such as lymphocyte function-
associated antigen 1 (LFA-1) and very late antigen-4 (VLA-4)
on lymphocytes bind to ICAM-1 and VCAM-1 on endothelial
cells, respectively, causing firm lymphocyte adherence to the
endothelium and subsequent lymphocyte crawling [37].
Finally, PECAM-1 (CD31) and CD99 homophilic interactions
facilitate structural changes to tight junctions and endothelial
cell structure, and subsequently promote both paracellular and
transcellular diapedesis [38]. Several animal studies indicate
that trafficking of leukocytes into the brain contributes to
neuroinflammation-mediated neuronal cell death [39, 40].

Independent of cellular infiltration, the structural integrity
of the BBB is altered by MMP-2 activation within 6 h of
reperfusion, resulting in increased permeability [41]. MMPs
degrade basal lamina proteins such as fibronectin, laminin,
and heparan sulfate, which contributes to the vessel damage
associated with BBB breakdown and subsequent dysfunction
[41–43]. Additional degradation and remodeling of tight junc-
tions, and further increases in BBB permeability, occur within
48 h after reperfusion [41, 42, 44]. While the initial BBB
opening is transient, the later increase is the result of severe
damage to blood vessels by expression and activation of
MMP-9 and MMP-3 [41, 45].
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Innate Inflammation After Stroke

Initial Acute Brain Inflammation In the acute phase of stroke,
peripheral immune cells infiltrating the brain parenchyma con-
tribute to the inflammatory environment [33]. Signaling via the
chemokine receptor CCR2 recruits both monocytes and neutro-
phils from the periphery to the site of injury [46]. Neutrophils
are the primary cell type adhered to endothelial cells in brain
vessels following the initial myeloid cell response, and they are
found in significant numbers in the brain parenchyma by 3 days
post-stroke in animal models [39, 47].

Accumulating evidence from both human and rodent
models suggests that post-stroke accumulation of neutrophils
in the brain parenchyma worsens stroke outcomes [39, 48,
49]. Neutrophils obstruct capillaries in the microvascular bed
following reperfusion, suggesting that they play a causative
role in the “no-reflow” phenomenon observed in humans [4].
Pharmacological ablation of neutrophils reduces infarct vol-
umes and improves neurological outcomes, further supporting
a pathogenic role of neutrophil accumulation and activation
after stroke [50, 51]. Likewise, genetic deficiencies in adhe-
sion molecules such as ICAM-1 and P-selectin reduce neutro-
phil trafficking into brain parenchyma, resulting in smaller
infarct volumes 48 h after stroke [52, 53]. Neutrophil-
mediated damage may be mediated through their high proteo-
lytic enzyme content, their capacity to generate ROS, and
ability to activate the complement system [54, 55].

Myeloid cells are also among the first immune cells to
respond to injury [47, 56, 57]. Both brain resident microglia
and monocyte-derived macrophages (MDMs) that are derived
from peripheral monocyte ingress recognize DAMPs and oth-
er stress signals and become activated to migrate to the site of
injury. Initially, microglia in the stroke penumbra are activated
by cytokines and various DAMPs from the necrotic debris of
local dead or dying cells. Microglia are also recruited from the
surrounding brain regions by neuronal-derived chemokines
such as fractalkine (CX3CL1) [58–61].

Studies investigating the beneficial or detrimental effects of
microglia on the brain have been contradictory. This may be
due to the different stroke models utilized and the outcomes
assessed. Also, tools to distinguish MDMs from microglia in
the injured brain have historically been limited [62, 63]. Newly
developed chimeric models and microglia-specific markers
such as Tmem119 are helping to identify the individual roles
of each cellular subtype, and will hopefully lend clarity [62].

Overall, microglia likely have an early pro-inflammatory
role, while MDMs primarily serve a clearance and immune
resolving function [64]. However, there is more to learn about
the heterogeneity within each cell population [65]. Promoting
early inflammation may be critical, as when microglia are
ablated before ischemic stroke it causes exaggerated neuro-
logical deficits and increased infarct volume [66], perhaps

because they, via cross-talk with astrocytes, are critical for
termination of inflammation by neutrophil engulfment [67].

Subacute Innate Neuroinflammation Myeloid cells can also
transition from a naïve state to an anti-inflammatory phenotype
in response to interleukin-4 (IL-4) release from damaged neu-
rons via interferon regulatory factor (IRF)-4 signaling [68, 69].
IL-4 treatment of cultured microglia facilitated both trophic
factor expression and peroxisome proliferator–activated recep-
tor (PPAR)-γ-dependent phagocytosis, which are hallmark
characteristics of anti-inflammatory myeloid cells [68, 70].
Anti-inflammatory microglia may also reduce activation of im-
mune cells via release of the anti-inflammatory cytokines IL-10
or transforming growth factor (TGF)-β [71, 72]. There may
also be other, as yet undiscovered, factors that induce myeloid
cell polarization to an overall anti-inflammatory phenotype, and
may aid in repair following injury [68, 73].

There are also factors that polarize peripheral cells to pro-
inflammatory phenotypes, which are likely detrimental in the
context of stroke. Monocytes are recruited from the periphery
by monocyte chemoattractant protein-1 (MCP-1), also known
as CCL2 [46]. Within days after the initial injury, neurons re-
lease factors including ATP and Fas ligand, which promote pro-
inflammatory MDM phenotypes and activate pro-apoptotic
pathways [1, 74]. These MDMs release inflammatory media-
tors such as TNF-α and IL-1β, various MMPs such as MMP-9
and MMP-3, and reactive oxygen species (ROS), all of which
are implicated in ischemic damage [75, 76]. Clinical studies
suggest that blocking the IL-1β receptor may improve long-
term outcomes after stroke, suggesting these IL-1β secreting
macrophages are detrimental to patient recovery [77–79].
However, the fact that clinical outcomes improved in a trial
conducted prior to widespread use of thrombolysis, but were
neutral in a later trial with alteplase as the standard of care with
similar patient demographics, suggests a potential detrimental
interaction between tPA and IL-1β pathways [78, 79]. This was
suggested in the results of the SCIL-STROKE trial with IL-RA
where the effect of IL1-RA on lowering IL-6 levels seemed to
be beneficial but was counteracted by a potentially harmful
effect. This was not proven to be due to tPA; however, 70%
of the subjects were treated with alteplase [79].

There is still controversy, however, about when and which
myeloid cells are pro- vs anti-inflammatory and when and
why they transition from one phenotype to another. One study
reported transition of both microglia and MDMs towards a
pro-inflammatory state 4 days post-stroke [80]. However,
using more advanced tools, Wattananit et al. suggest that this
phenotypic shift may be limited to resident microglia [63]. By
2 weeks post-stroke, it appears that MDMs are primarily anti-
inflammatory, and this is associated with improved long-term
functional recovery. Likewise, when monocyte recruitment to
the brain was inhibited, no functional recovery was observed,
and there was decreased expression of anti-inflammatory
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genes such as TGFβ, CD163, and Ym1 [63]. Additionally,
age-related changes to IRF activity may change the polariza-
tion state of microglia, therefore altering the inflammatory
milieu both prior to and post-injury [69].

In summary, therapies targeted towards innate immune
cells can have a significant beneficial effect in animal models;
however, accumulating evidence suggests that, in order to
achieve clinical success, they must be able to promote resolu-
tion and an anti-inflammatory phenotype rather than block
inflammation completely. There remain controversies and
knowledge gaps as to when and how these cells change function,
and also about which functions will ultimately be beneficial.

The Effects of Stroke on the Acute Peripheral
Response

Immunodepression After Stroke Infection, predominantly
pneumonia and UTIs, complicate stroke recovery in up to
30% of cases [81]. Pneumonia is the most common and fatal
post-stroke complication, and correlates with poor stroke out-
comes and possibly death (Table 1; [81, 102, 103]). It is clear
that pathophysiological immunodepression, rather than pre-
existing infection or aspiration of oral microbiota, is a major
contributing factor [104]. For example, the severity of post-
stroke infection is directly correlated with stroke size, which itself
is correlated to the severity of leukocytopenia [105]. This is ev-
ident in murine stroke models, where one thousand-fold fewer
bacteria are needed to cause pneumonia after stroke [106]. In
addition, infection-induced inflammation exacerbates ischemic
damage and acute neurological deficits in an IL-1- and
neutrophil-dependent manner [9, 107].

Curiously, clinical studies with prophylactic antibiotic treat-
ment to combat this phenomenon have yielded mixed results
(Table 2). In a rodent study, treatment with ceftiofur (a β-
lactam antibiotic), enrofloxacin (a fluoroquinolone antibiotic),
or a vehicle control yielded no change in functional outcomes
at 24 h or 1 week post-stroke [113]. Interestingly, enrofloxacin-
treated rats hadworsemotor performance at 1month post-stroke,
suggesting this effect may be independent of the antibiotic mech-
anism and due to off-target effects of this antibiotic class [113]. In
stroke patients, treatment with some antibiotics has reduced in-
farct size or infection prevalence; however, these outcomes were
not associatedwith better overall recovery [114, 115]. In contrast,
prophylactic administration of the broad spectrum mezlocillin
alongwith the beta-lactamase inhibitor sulbactam decreased both
the incidence and severity of fevers within 3–4 days of stroke,
and improved long-term outcome [116]. Finally, minocycline
treatment significantly improved clinical outcomes in patients,
although this effect was not mediated through a decreased infec-
tion rate and actually may be due to an anti-inflammatory effect
on microglia [117]. Overall, post-stroke infection is a significant
risk for poor patient outcomes, and better understanding the

mechanisms of immunodepression would greatly benefit patient
recovery.

Leukocytopenia, or a reduction in white blood cell num-
bers, has been well documented in stroke patients [118, 119].
Studies have also detected a decrease in lymphocyte prolifer-
ation in response to mitogens and decreased ex vivo secretion
of pro-inflammatory cytokines, suggesting that lymphocyte
function is also impaired by stroke [105, 120, 121].
Consistent with this idea, T cell secretion of TNF, as well as
other Th1-associated cytokines such as IL-2, IL-12, and inter-
feron (IFN)-γ may be decreased in patients in the days after
stroke [122, 123]. This could be beneficial in the absence of
infection as pro-inflammatory responses in peripheral organs
can exacerbate brain damage and result in worse neurological
outcomes in stroke patients [124]. Thus, understanding the
relationship between immune activation and suppression in
peripheral organs following stroke is essential to successfully
treating patients.

In contrast, other studies show that despite decreased lym-
phocyte numbers, their function remains intact following
stroke [122, 125]. Many studies show a dramatic increase in
plasma and cerebrospinal fluid (CSF) levels of TNF-α and
other pro-inflammatory cytokines, which correlates with
stroke severity [125–128]. Thus, it is still unclear whether
lymphocytes respond normally to typical infectious patho-
gens, such as those responsible for pneumonia or UTIs. It is
clear, however, that lymphocytopenia correlates with the oc-
currence of post-stroke infections, suggesting a role for this
phenomenon in the development of infections, and subse-
quent poor patient outcomes [105, 119].

Stroke-induced activation of the autonomic nervous system
(ANS) may mediate immunodepression [129, 130]. The ANS
is comprised of the parasympathetic nervous system (PSNS)
and the sympathetic nervous system (SNS), and both affect
immune responses in the periphery [102]. Ischemic injury
immediately activates the SNS, leading to splenic contraction
and shrinkage [131]. The PSNS antagonizes the pathways
activated by the SNS, and is suppressed following stroke
[129, 132, 133]. Splenectomy prior to MCAO significantly
reduces infarct size, as well as the number of neutrophils and
activated microglia in the brain [134, 135]. Likewise, irradia-
tion of the spleen following stroke significantly reduces infarct
size in rats [136]. Thus, in the acute phase after ischemic
injury, splenic contractions contribute to immune cell efflux
and mobilization in the blood stream, which contributes to
inflammatory injury in the brain.

In the days after stroke, the supply of spleen-derived im-
mune cells becomes exhausted and spleen size is dramatically
reduced, contributing to immunodepression [137]. The β2-
adrenergic receptor (ADRβ2), the primary adrenoreceptor
on both innate and adaptive immune cells, suppresses immune
function upon activation by the SNS [138]. For example, treat-
ment with the ADRβ2 antagonist propranolol reduced
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Table 1 Clinical studies evaluating incidence of infection after stroke.
A summary of clinical trials, listed by year, evaluating the prevalence of
infection, or specifically urinary tract infection and/or pneumonia after
stroke. The outcomes assessed in each trial include the identification of

risk factors associated with infection, as well as functional outcomes in
patients that have acquired an infection. Studies were not included if they
were not controlled. Control is either placebo or conventional therapy

Cohort Studied Incidence of
infection

Risk factors identified Functional outcomes Ref.

52 patients with AIS PSP: 10% Elevated IL-6, CRP, abnormal leukocyte count N/A [82]
UTI: 19%

Other: 2%

279 patients PSP: 10% N/A 51% of deaths attributed to infectious
complications; worse functional outcomes
(GOS and BI) associated with infection

[83]
UTI: 11%

Other: 1%

330 patients; 85%
ischemic stroke and
15% hemorrhagic
stroke

RTI: 10% Urinary catheterization, age, stroke severity Infection resulted in worse functional outcomes
(GOS and SSS)

[84]
UTI: 12%

Other: 1%

119 patients RTI: 11% N/A Worse neurological deficit on admission
predicts fever

[85]
UTI: 2%

Other: 6%

3865 patients SAI: 10% Age, female gender, decreased SSS score Infection does not affect SSS but does delay
discharge

[86]

163 patients from SU PSP: 12% Poor BI score, large MCA infarct, poor GCS N/A [87]
UTI: 4%

124 patients from NICU PSP: 21% PSP: mechanical ventilation, multiplelocation
and vertebrobasilar stroke, dysphagia,
abnormal chest x-ray findings

PSP: worse functional outcome (BI and RS),
higher chance of mortality

[88]

14,293 patients with
acute stroke

PSP: 7% PSP: greater stroke severity, general frailty PSP increasesmortality at 30 days post-stroke [89]

1455 patients from
GAIN International
trial

PSP: 13.6% PSP: age, male gender, diabetes, stroke subtype PSP and UTI independently associated with
worse outcome (BI, NIHSS, RS);

[90]

UTI: 17.2% UTI: female gender, higher NIHSS, age PSP associated with increased mortality at 3
months post-stroke

52 patients in SU SAI: 27.5% Age, higher NIHSS score, larger lesion volume
(MRI), dysphagia, urinary catheterization

N/A [91]
-Bronchitis/PSP:

15%

-UTI: 5%

-PSP+UTI: 7.5%

663 patients with AIS in
California hospitals

PSP: 10% Age, atrial fibrillation, CHF PSP associated with increasedmortality risk and
worse discharge status

[92]
UTI: 13%

229 patients with stroke
admitted to NICU

SAI: 26% Tube feeding SAI not independently associated with worse
outcome (NIHSS) at discharge

[93]

439 patients; 91%
ischemic stroke and
9% TIA

PSP: 10% SAI: age, dependent status before admission,
total anterior circulation strokes, hypoxia on
arrival, urinary catheterization

SAI predicts increased mortality [94]
UTI: 7%

Other: 2%

412 patients, (IS: 94.9%
HS: 5.1%)

PSP:18.9% Age, aphasia, higher NIHSS score, cognitive
impairment, abnormal water swallow test
result

N/A [95]
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bacterial infections and subsequent mortality, supporting a
role for adrenergic signaling in post-stroke immunodepression
[102, 106]. Moreover, adrenergic signaling mediates a de-
crease in proliferation of spleen-derived immune cells after
stroke [139, 140]. Treatment of rats with carvedilol (a pan-
adrenergic receptor antagonist), prazosin (an α1-receptor an-
tagonist), or propranolol independently prevented the reduc-
tion in spleen size, but only carvedilol significantly reduced
infarct volume [131]. Together, these results suggest that the
splenic response to stroke is mediated through the activation of
both α and β adrenergic receptors, which results in an impaired
antibacterial immune response following stroke [102].

Additionally, the brain can modulate the gastrointestinal sys-
tem through SNS hyperactivation following stroke [129, 141]. In
various murine stroke models, this results in endothelial cell ne-
crosis, mucosal dissociation, and inflammatory cell infiltration
[129, 142]. The loss of mucosal integrity and immune cell dys-
function allows bacterial translocation and increases the risk for
systemic infections [143]. SNS activation and increased risk of
infection has also been observed in clinical studies [103, 144].
Another mechanism of gut-brain cross-talk is mediated via the
microbiome. Microbes in the gut synthesize neurotransmitters,
short-chain fatty acids, and bile acids that enter the blood stream

and signal to neurons, astrocytes, andmicroglia in theCNS [145].
The makeup of microbes in the gut not only influences stroke
outcomes, but is also itself altered after stroke [146–148]. Many
of the signaling mechanisms between the microbiome are not yet
understood, and these studies are not yet translated to human
populations. Both are active areas of current research.

Peripheral Immune Activation by StrokeAlthough post-stroke
immunosuppression has been confirmed in both clinical and
animal models, brain signaling to the periphery following
stroke can also activate the peripheral immune system.
Following CNS innate immune activation, secreted
chemokines and cytokines not only assist in local immune
activation but also signal back through the blood stream to
recruit peripheral cells, primarily from the spleen, to the site
of injury [149, 150]. This cross-talk between organ systems
occurs throughout the body, and it can be detrimental, as se-
vere neurological stress resulting from stroke, traumatic brain
injury, or infection can cause multiple organ failure [124]. In
humans, there is a long-lasting peripheral immune activation,
and the degree of activation is associated with later cognitive
decline [151].

Table 1 (continued)

Cohort Studied Incidence of
infection

Risk factors identified Functional outcomes Ref.

236 patients with AIS PSP:22% PSP: dysphagia, NIHSS, non-lacunar
basal-ganglia infarction, other infection
present on admission

N/A [96]

412 patients in urban
teaching hospital

UTI:15.8% Urinary catheterization, post-stroke disability,
age

No relationship between infection and NIHSS
or mRS scores at 3 months post-stroke

[97]

521 patients with AIS in
the Netherlands

SAI: 15% PSP: poor functional outcome Poor outcome (mRS) at discharge in 88% of
infected patients; 47% mortality within

[98]

PSP: 7.5% 1 year post-stroke
UTI: 4.4

94 patients with AIS SAI: 42% Age, higher NIHSS score Infection is a predictor of poor functional
outcome (NIHSS)

[99]
- Nonserious:

51%

- Serious 49%

PSP: 18%

Sepsis: 2%

UTI: 27%

133 patients with AIS in
Serbian hospitals

SAI: 47.4% N/A Infection as predictor of poor functional
outcome (mRS) and death 1 year after stroke

[100]
UTI: 20.3%

59,558 patients with AIS
in Austrian SU

PSP: 5.2% Age, stroke severity, chronic alcohol
consumption, atrial fibrillation

N/A [101]

AIS: acute ischemic stroke; BI: Barthel Index; CHF: congestive heart failure; CRP: C-reactive protein; GCS: Glasgow coma scale; GOS: Glasgow
outcome system; IL: interleukin; MCA: middle cerebral artery; mRS: modified Rankin Scale score; MICU: medical intensive care unit; MRI: magnetic
resonance imaging; NICU: neurological intensive care unit; NIHSS: National Institute of Health Stroke Scale; PSP: post-stroke pneumonia; RS: Rankin
scale; RTI: respiratory tract infection; SAI: stroke-associated infection; SSS: Scandinavian stroke scale; SU: stroke unit; TIA: transient ischemic attack;
UTI: urinary tract infection
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In addition to the SNS, the brain and spleen communicate
via activation of the hypothalamic–pituitary–adrenal (HPA)
axis. Both induce release of catecholamines and steroids that
trigger immune cell efflux from the spleen and trafficking to
the brain [152]. Cytokines such as IL-1, IL-6, IL-10, and
TNF-α are released by both brain resident and peripheral im-
mune cells following stroke, and mediate immune activation
[103, 153–155]. For example, IL-1 increases after stroke, and
signals to the hypothalamus to release corticotropin-releasing
hormone (CRH) into the blood [156, 157]. Subsequently,
CRH stimulates secretion of adrenocorticotropic hormone
(ACTH) from the anterior pituitary gland, which circulates
to the adrenal glands and induces secretion of glucocorticoids
by the adrenal cortex [158–160]. Interestingly, the adrenal
gland may also activate peripheral immune responses through
humoral mechanisms or catecholamines [103].

Adaptive Immune Cell Roles
in Neuroinflammation After Stroke

T Lymphocytes Adaptive immune cells such as B and T lym-
phocytes also traffic from the blood into the brain after stroke. T
cells are heterogeneous and include subsets with various
functions—regulatory (Treg), pro-inflammatory (Th1 and
Th17), and anti-inflammatory (Th2). Upon entering the brain,
their roles are determined by the specific populations of cells
that become activated. Although it has been suggested that
infiltration of T cells into the brain begins 3–4 days post-stroke,
following monocyte and neutrophil infiltration [161], Tregs ac-
cumulate within 24 h in rodent stroke models [61, 162, 163].

T cells are a key mediator of acute stroke pathology, and
ablating these cells after stroke may be neuroprotective [164].
In Rag1(−/−) mice, a reduction in infarct volume and an im-
provement in the neurological deficit of wild-type mice oc-
curred 24 h post-injury. This protection was reversed in
Rag1(−/−) mice reconstituted with wild-type splenocytes
[162]. Inhibition of lymphocyte trafficking results in fewer T
cells in the CNS following stroke, and reduced pro-
inflammatory cytokine production [162].

T cells can be subdivided into different populations based
on surface markers and cytokine expression, which deter-
mines their impact following stroke. For example, CD4+
CD25+FoxP3+ T cells proliferate and accumulate in the is-
chemic brain up to 30 days post injury and promote an anti-
inflammatory environment [165]. Additionally, adoptive
transfer of Tregs reduces inflammatory responses both intrin-
sic and extrinsic to the CNS [166]. Moreover, Tregs provide
neurovascular protection against stroke by inhibiting periph-
eral neutrophil-derivedMMP-9 production [166]. Thus, Tregs
may be promising candidates for cell-based therapies targeting
post-stroke inflammatory dysregulation and neurovascular
dysfunction. In contrast, CD8+ T cells are first observed inTa

bl
e
2

C
lin

ic
al
st
ud
ie
s
of

pr
op
hy
la
ct
ic
an
tib

io
tic
s
af
te
rs
tr
ok
e.
A
su
m
m
ar
y
of

cl
in
ic
al
tr
ia
ls
,o
rg
an
iz
ed

by
ye
ar
,t
ha
te
va
lu
at
ed

th
e
ef
fi
ca
cy

of
pr
op
hy
la
ct
ic
an
tib

io
tic

tr
ea
tm

en
ti
n
re
du
ci
ng

in
fe
ct
io
ns

ra
te
s

in
st
ro
ke

pa
tie
nt
s.
S
tu
di
es

w
er
e
no
ti
nc
lu
de
d
if
th
ey

di
d
no
ti
nc
lu
de

co
nt
ro
lt
re
at
m
en
ts
.C

on
tr
ol

is
ei
th
er

pl
ac
eb
o
or

co
nv
en
tio

na
lt
he
ra
py

S
tu
dy

na
m
e

D
ru
g(
s)

P
at
ie
nt

co
ho
rt

T
re
at
m
en
tr
eg
im

en
O
ut
co
m
es

m
ea
su
re
d

R
es
ul
ts

R
ef
.

E
ar
ly

Sy
st
em

ic
Pr
op
hy
la
xi
s
of

In
fe
ct
io
n

A
ft
er

St
ro
ke

(E
SP

IA
S)

L
ev
of
lo
xa
ci
n

24
0
pa
tie
nt
s

IV
:5

00
m
g/
10
0
m
L
/d
ay

or
pl
ac
eb
o
fo
r
3
da
ys

In
ci
de
nc
e
of

in
fe
ct
io
n
7
da
ys

po
st
-s
tr
ok
e;

N
IH

SS
sc
or
e
an
d
m
or
ta
lit
y
90

da
ys

po
st
--

st
ro
ke

N
o
ef
fe
ct

[1
08
]

Pr
ev
en
tiv

e
A
N
tib

ac
te
ri
al
T
H
E
R
ap
y
in

ac
ut
e
Is
ch
em

ic
St
ro
ke

(P
A
N
T
H
E
R
IS
)

M
ox
if
lo
xa
ci
n

80
pa
tie
nt
s

IV
:4

00
m
g/
da
y
or

pl
ac
eb
o

fo
r
5
da
ys

w
ith

in
36

h
po
st
-s
tr
ok
e

In
fe
ct
io
n
w
ith

in
11

da
ys
;n

eu
ro
lo
gi
ca
l

ou
tc
om

e,
su
rv
iv
al
,d
ev
el
op
m
en
to

f
st
ro
ke
-i
nd
uc
ed

im
m
un
od
ep
re
ss
io
n,
an
d
in
-

du
ct
io
n
of

ba
ct
er
ia
lr
es
is
ta
nc
e

R
ed
uc
es

in
fe
ct
io
n
ra
te
s

[1
09
]

T
he

M
an
nh
ei
m

In
fe
ct
io
n
in

St
ro
ke

St
ud
y

(M
IS
S
)

M
ez
lo
ci
lli
n
pl
us

su
lb
ac
ta
m

60
pa
tie
nt
s

IV
:2

g
m
ez
lo
ci
lli
n
an
d
1
g

su
lb
ac
ta
m

ov
er

20
m
in
;

ev
er
y
8
h
ov
er

4
da
ys

In
ci
de
nc
e
an
d
he
ig
ht

of
fe
ve
r;
ra
te
of

in
fe
ct
io
n

an
d
N
IH

SS
ov
er

3
da
ys

po
st
-s
tr
ok
e

D
ec
re
as
ed

bo
dy

te
m
p,
re
du
ce
d

in
fe
ct
io
n
ra
te
,a
nd

be
tte
r

cl
in
ic
al
ou
tc
om

e
(N

IH
SS

)

[1
10
]

Pr
op
hy
la
ct
ic
an
tib
io
tic
s
af
te
r
ac
ut
e
st
ro
ke

fo
r
re
du
ci
ng

pn
eu
m
on
ia
in

pa
tie
nt
s
w
ith

dy
sp
ha
gi
a
(S
T
R
O
K
E
-I
N
F)

A
m
ox
ic
ill
in

or
co
-a
m
ox
ic
la
v
w
ith

cl
ar
ith

ro
m
yc
in

12
17

pa
tie
nt
s,
n
=
61
5

an
tib

io
tic
s,
n
=
60
2

co
nt
ro
l

7
da
ys

tr
ea
tm

en
tw

ith
in

48
h

of
st
ro
ke

PS
P
w
ith

in
14

da
ys

N
o
ef
fe
ct

[1
11
]

Pr
ev
en
tiv

e
A
nt
ib
io
tic
s
in

St
ro
ke

St
ud
y

(P
A
SS

)
C
ef
tr
ia
xo
ne

25
38

pa
tie
nt
s
to
ta
l;

n
=
12
68

ce
ft
ri
ax
on
e,

n
=
12
70

co
nt
ro
l

IV
:2

g
ev
er
y
24

h
fo
r4

da
ys

m
R
S
at
3
m
on
th
s
po
st
-s
tr
ok
e

N
o
ef
fe
ct

[1
12
]

IV
:i
nt
ra
ve
no
us
;m

R
S:

m
od
if
ie
d
R
an
ki
n
Sc
al
e;
N
IH

SS
:N

at
io
na
lI
ns
tit
ut
es

of
H
ea
lth

S
tr
ok
e
Sc
al
e;
P
SP

:p
os
t-
st
ro
ke

pn
eu
m
on
ia

The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development 421



the brain at 3 h post-stroke and maintain their numbers in the
following days. CD8+ effector T cells are likely detrimental in
the acute phase of stroke due to pro-inflammatory properties
[165]. Thus, a primary role of Tregs is likely to provide neu-
roprotection by suppressing these effector cells [165].

Interestingly, Treg-mediated neuroprotection might depend
primarily on their ability to produce the anti-inflammatory
cytokine IL-10. Treg transfer from IL-10-deficient mice into
mice with stroke had a minimal effect on recovery, whereas
IL-10-producing Tregs reduced stroke damage by antagoniz-
ing the pro-inflammatory effects of IFN-γ and TNF-α [167,
168]. Several studies in various disease states have demon-
strated that antigen-specificity is necessary for Tregs to pro-
duce IL-10, whichmay further clarify why this cell population
is only beneficial in certain microenvironments [2, 169]. In
contrast, Treg depletion immediately after strokemay improve
stroke outcomes up to 1 week later, as Tregs are adherent to
cerebral blood vessels in the hours after stroke, and may con-
tribute to microvascular dysfunction and the “no-reflow” phe-
nomenon [170]. These discrepancies may be due to the differ-
ent stroke models utilized resulting in different stroke sizes,
and different methods of Treg depletion [167, 170].
Ultimately, it is apparent that the immune response is specific
to the stroke model utilized and the extent and severity of
ischemia accomplished in a given model [171].

Inhibiting specific T cell subtypes associated with detri-
mental cytokine signaling reduces infarct size [172–174].
Adoptive transfer of Th1- and Th17-type T cells into stroke
mice increases infarct volume suggesting that both IFN-γ- and
IL-17-mediated responses impact stroke damage [1, 164,
174]. Supporting this, post-mortem sections of human stroke
tissue identified IL-17 localization in CD4+ T cells and astro-
cytes [166]. Th1 cells are major producers of IFN-γ, and po-
tentiate damage by increasing monocyte expression of IFN-
inducible protein 10 (IP-10), or CXCL10, which is itself a
chemoattractant for activated T cells [162, 175]. Similarly,
mice lacking CCL5, which is critical for recruiting and acti-
vating T lymphocytes, had smaller infarct volumes compared
to wild-type mice, supporting a detrimental role of T cells
following stroke [176]. Furthermore, CD4+ T cell–induced
IL-21 has been observed in post-mortem human stroke tissue
[173]. Inhibition of IL-21 before transient MCAO in mice is
neuroprotective, supporting a detrimental role [173]. Overall,
these findings highlight the importance of identifying and
targeting specific T cell subpopulations in order to develop
appropriate therapeutic targets for stroke.

B Lymphocytes After Stroke B cells also infiltrate the brain in
the days after ischemic injury. B cell deficiency worsens his-
tological damage and functional outcomes after transient ce-
rebral ischemia [177]. B cell–deficient μMT mice had larger
infarct volumes, higher mortality, more severe functional def-
icits, and increased numbers of activated T cells,

macrophages, microglia, and neutrophils compared to wild-
type mice, and this effect was reversed following adoptive
transfer of B cells from wild-type mice [177]. In contrast,
other studies have not observed any differences in stroke size
or severity in μMT mice [178, 179]. Interestingly, when IL-
10-deficient B cells were transferred into μMT mice, this ef-
fect was not observed, supporting a role for IL-10-producing
B cells in stroke recovery [177]. Although regulatory B cells
represent only ~ 0.5% of CD19+ B cells, they are an important
subset that secrete high levels of IL-10 [180]. There is evi-
dence that early regulatory B cell responses to stroke are ben-
eficial. Regulatory B cells also limit inflammation in animal
models of MS via the production of IL-10 [181]. Together,
these data suggest that the role of B lymphocytes in cerebral
ischemia may be protective rather than pathogenic. It is nota-
ble, however, that this effect was observed only 48 h after
MCAO, before B cells are typically observed in the brain. In
a different study, B cell–deficient mice failed to show im-
provement against ischemic injury, although this may be be-
cause the analysis was performed only 24 h post-injury [162].
It may be that early effects exerted by B cells take place out-
side the brain, perhaps in lymphatic tissue. CNS antigens can
indeed be detected in the cervical lymph nodes of stroke pa-
tients within 3 days of stroke in concentrations proportional to
the extent of brain damage [182].

Overall, it is clear that all of these inflammatory compo-
nents (DAMPs, myeloid cells, and lymphocytes) are inter-re-
lated, and altering the activity of one population will influence
the others. While T cell responses following ischemic stroke
can directly affect stroke recovery, they also influence B cell
activation. For B cell activation and auto-antibody responses
to occur in response to stroke, CNS antigens released from
dead and damaged cells must bind the receptor of autoreactive
cells that have escaped negative selection. These CNS anti-
gens may reach secondary lymphoid tissue directly, or within
antigen-presenting cells that have phagocytosed dead tissue.
An impaired BBB may also facilitate direct antigen exit to
circulation. Additionally, autoreactive Th cells that have also
escaped negative selection must be present to provide a recip-
rocal secondary signal, and to fully activate the B cell [183].
Furthermore, DAMP-mediated activation of TLRs can in-
crease the expression of co-stimulatory molecules on B cells,
to further facilitate activation and autoimmunity [184].

Resolution Versus Chronic
Neuroinflammation After Stroke

Resolution of Neuroinflammation Proper resolution of inflam-
mation and subsequent repair require both debris clearance
and pro-inflammatory signaling [185]. Phagocytosis of cellu-
lar debris by myeloid cells results in the production of cyto-
kines such as TGF-β and IL-10 [186, 187]. While these
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cytokines do have pro-inflammatory properties, in the context
of inflammatory resolution they suppress Th1 responses and
promote Treg development, thereby promoting repair and sur-
vival rather than cell death and damage [186, 187]. Similarly,
the same cells (astrocytes, microglia, macrophages) that ini-
tially secrete pro-inflammatory cytokines transition phenotyp-
ically to become critical suppliers of growth factors and other
molecules required for neurogenesis, angiogenesis, and neu-
ronal sprouting, among other repair-oriented processes [188].
For example, astrocyte production of vascular endothelial
growth factor (VEGF) is essential for angiogenesis, and
microglial production of insulin-like growth factor-1 is re-
quired for neuronal sprouting following ischemia [188].

Resolving inflammation is an active process, rather than
simply a decline in inflammatory signaling. In the brain, one
cue for resolution of the inflammatory response is phagocytic
removal of apoptotic neutrophils [189]. Interestingly, as in
neutrophil activation, it appears macrophages require both
integrin-ligand interactions and TNF-α in order to properly
induce apoptosis [189]. Thus, proper inflammatory resolution
relies on each of these signals, and consequent removal of
cytotoxic cells. Unfortunately, however, the initiation of in-
flammatory resolution is otherwise not well described after
stroke.

There may be similar mechanisms to those important for
immune resolution in other conditions, such as wound
healing. Following tissue damage, glucocorticoid production
increases, which can induce macrophages to transition from a
pro-inflammatory to an anti-inflammatory phenotype [190,
191]. Moreover, IL-4 secretion by Th2 cells provides an ad-
ditional signal for macrophages to transition to a phenotype
that suppresses inflammation and favors wound healing [192].
The role of these molecules in triggering this transition fol-
lowing ischemia still needs more attention.

Resolving inflammation after stroke is crucial. When reso-
lution does not properly occur, a deleterious chronic condition
develops. This happens more frequently after brain ischemia
than ischemia in other organs [193], and several mechanisms
may be involved. Inflammation may be exacerbated by a fail-
ure of neutrophils to undergo apoptosis, or by a failure of
macrophages to phagocytose and clear the apoptotic cells or
extracellular myelin and cholesterol in a timely manner [188,
193]. Additionally, premature dampening of T cell effector
functions may allow inflammatory stimuli to persist, and re-
sult in non-resolving inflammation [188]. A chronic condition
may then develop and result in further tissue damage.

Post-stroke Dementia and B Lymphocytes Chronic neuroin-
flammation is associated with cognitive decline and dementia
after stroke. Dementia is a significant problem in stroke sur-
vivors [194]. Furthermore, stroke not only has the potential to
immediately affect cognition due to direct tissue damage in
the acute phase, it also worsens the trajectory of cognitive

decline [195]. Much work has been done to understand acute
recovery from the initial infarct, but this later chronic stage is
less well studied. While initial B cell activation likely occurs
in the periphery, the ischemic lesion may become an addition-
al site of B cell activation and auto-antibody production in the
weeks after stroke if the immune response does not resolve
properly.

In models of permanent distal MCAO, adult wild-type
mice with a cortical stroke are cognitively normal at 1 week
post-stroke [178, 196]. They then develop a cognitive deficit
8 weeks later [178, 196]. Importantly, the fact that mice are
cognitively normal 1 week after stroke suggests that cognitive
decline is not a direct effect of damage from the stroke itself.
When this same stroke model is utilized in μMT mice which
lack mature B cells, or in wild-type mice treated with anti-
CD20 to abolish B cells, the cognitive deficit does not develop
[178]. Together, these data suggest that B cells are critical to
the development of a delayed cognitive deficit following
stroke. Interestingly, there are increased numbers of B cells
in the brain in approximately two thirds of human stroke sur-
vivors who develop dementia after stroke [178].

In both animal models and in humans, antibodies specific
for CNS self-antigens can develop following stroke
[197–199], although negative studies have also been recently
published [200]. The specific B cell isotype is determined by
cytokines produced by Th cells [201]. Auto-antibodies of the
IgG, IgM, and IgA isotype have all been detected at an in-
creased frequency in the CSF of stroke patients, suggesting an
important role for T cell signaling in this pathogenesis [202,
203].

In the months and years following the initial injury, the
neuroimmune response may trigger a progressive neurode-
generative process driven by dysregulated adaptive immune
responses, and this may be a factor in vascular cognitive im-
pairment. Post-stroke cognitive impairment is indeed very
common, impacting 30–50% of stroke survivors [194, 204,
205], but a tight link to autoreactive antibodies against brain
proteins, found in both the periphery and the CNS in patients,
has not been established. Still, there are a few small studies
that strongly suggest a connection.

For example, one study analyzed serum antibodies
from a cohort of stroke patients who were subjected to
cognitive testing at multiple time points up to 365 days
after stroke [206]. It found that 17% of patients had a
decline in cognitive ability in the year after stroke,
while 83% were stable or improved [207]. Cognitive
decline was predicted by antibody titers to anti-myelin
basic protein (MBP) but not anti-proteolipid protein
(PLP) [207]. Additional clinical studies have identified
auto-antibodies against neurofilament, glial fibrillary
acidic protein, S100B, MBP, and PLP in plasma and
CSF of stroke patients [208–210]. The presence of
auto-antibodies in the CNS could be harmful via
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multiple mechanisms, including antibody-mediated cellu-
lar toxicity, fixation of complement, inhibition of signal
transduction, or direct induction of apoptosis.

Finally, it is unlikely that B lymphocytes act alone in the
pathogenesis of immune mediated post-stroke cognitive de-
cline. Innate immune cells, T cells, and even neuronal re-
sponses likely also play a role and are present late after stroke.
Larger studies with more detailed cognitive testing and longer
follow-up periods will be required to determine whether se-
rum and/or CSF auto-antibodies are predictive and causative
in post-stroke cognitive decline and dementia.

A working model is that a pro-inflammatory state in
the periphery acts as an adjuvant to brain proteins when
they are released into the bloodstream post-stroke. To
test this, we used single-cell mass cytometry to charac-
terize the peripheral immune response to stroke in the
year following stroke, and subsequently correlated this
response with cognitive changes [19]. Using Elastic Net
regression modelling, the systemic immune response
was categorized into three distinct phases: acute, inter-
mediate, and late. The acute phase (2 days post-stroke)
was characterized by increased signal transducer and
activator of transcription-3 (STAT3) signaling in innate
immune cells. The intermediate phase (5 days post-
stroke) was characterized by increased CREB signaling
in adaptive immune cells. The late phase (90 days post-
stroke) was characterized by elevated neutrophil num-
bers, and IgM+ B cells [19]. When aligned with chang-
es in cognitive function between days 90 and 365 post-
stroke, the acute inflammatory phase correlated with
post-stroke cognitive trajectories, supporting the idea
that the early immune response may influence later
adaptive immune response and subsequently alter post-
stroke cognition [19]. Further studies involving longer
term cognitive testing and immune analyses will be crit-
ical in understanding these relationships and translating
them into therapeutics.

Immunomodulation as a Potential Stroke
Therapy

Avariety of strategies have been utilized to target the immune
response to stroke, such as antioxidant therapies, statins, and
inhibition of leukocyte trafficking (Table 3). These studies in
murine models of stroke have yielded conflicting results, as
well as limited translational success in human patients in the
acute phase. The apparently contradictory results between
mouse and human studies are likely due to multiple factors:
the heterogeneity in stroke pathogenesis in different murine
models, the different time points assessed in each both animal
and human studies, the different models of stroke utilized in
the laboratory, the multitude of immune cells involved, andT
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the variety of factors that immune cells can produce.
Additionally, most trials were done before it was possible to
choose patients based on the volume of stroke core (dead
tissue) and tissue at risk (the brain region not functioning
due to low perfusion that is potentially salvageable). With
modern imaging techniques to select patients, it is possible
that some previously tried therapies might be more successful
in select subgroups of stroke patients.

Antioxidant treatment in stroke hinges on the idea that free
radical production, which occurs during tissue re-perfusion,
causes severe tissue damage and subsequent cell death
[227]. In rodent models, immediate treatment with ROS-
scavenging molecules reduces infarct volume and improves
acute recovery within 3 days of stroke [227]. While many of
these treatments seem to be safe and well-tolerated in human
patients, trials demonstrated at best only minor, short-term
improvement but were given later after stroke [223, 226,
228]. In contrast, studies of the lipid peroxidation inhibitor
tirilazad resulted in increased mortality and worse outcomes
in patients [225]. The reason for this lack of translation is
perplexing. Further work is necessary to improve the similar-
ities between animal models and human disease and under-
stand the differences.

Additionally, inhibition of lymphocyte trafficking has re-
ceived a lot of attention due to promising results in rodent
stroke models. Fasudil, a Rho kinase inhibitor, prevented neu-
trophil and monocyte infiltration into the brain, increased re-
gional cerebral blood flow, and upregulated eNOS activity in
endothelial cells in rodent studies [218, 229]. Animal studies
have demonstrated efficacy of Fasudil in reducing pulmonary
arterial pressure in models of pulmonary hypertension, but
effects on systemic blood pressure were not evaluated in clin-
ical trials targeting stroke recovery [230, 231].While a clinical
trial showed minor functional improvement in patients, the
short-term study (a 30-day assessment) makes it hard to assess
the overall patient benefit, as it is clear that the acute immune
response plays a critical role in determining long-term out-
comes [218].

In a clinical trial of UK-279,276 (a recombinant glycopro-
tein that inhibits leukocyte infiltration), no effect on infarct
size or overall recovery was observed 90 days after stroke
[217]. This is in contrast to rodent studies which observed a
reduction in neutrophil accumulation and infarct volume in
rats 7 days after stroke [232]. However, these studies did not
assess functional outcomes in rodent models. Therefore, if
future murine studies are to become translatable to human
trials, they should focus on longer term outcomes and func-
tional recovery which are the main endpoints assessed in clin-
ical trials, rather than just a reduction in infarct size.

Antibody-mediated blockade of adhesion molecules on en-
dothelial cells has been utilized to reduce lymphocyte traffick-
ing into rodent brains after stroke. ICAM-1-deficient mice
have reduced infarct volume, increased survival, and reduced

neurological deficits following transient MCAO [52].
However, a clinical trial assessing the efficacy of a murine
ICAM-1 antibody, enlimomab, revealed worsened neurologi-
cal performance, an increased number of stroke-related
deaths, and more adverse occurrences such as infections and
fever [212, 233]. These effects are thought to be mediated by
an immune response to the murine antibody treatment, how-
ever, rather than an effect of blocking ICAM-1.

Likewise, studies of VCAM-1 have yielded conflicting re-
sults. Reducing VCAM-1 expression diminished T cell infil-
tration into the CNS and decreased infarct volume in one
rodent study [168]. However, other studies using anti-
VCAM-1 antibodies revealed no change in outcomes com-
pared to IgG-treated animals [168, 234]. Unfortunately, none
of these studies examine the effects of adhesion molecule
inhibition on endothelial cell activation and signaling, as lack
of target engagement could explain some of these disparate
results.While anti-VCAM1 has not yet been tested in humans,
there have been two phase 2 clinical trials of Natalizumab
(anti-VLA-4, the ligand for VCAM-1 on lymphocytes). The
first 2a trial, ACTION, failed to reduce stroke size but dem-
onstrated safety and a trend towards better 30- and 90-day
outcomes [216]. ACTION II was a phase 2b trial aimed at
replicating these later favorable outcomes and is not yet pub-
lished but was reported to be negative [235]. In this case,
animal studies utilized shorter drug administration times and
yielded mixed results with different animal stroke models
[168, 236–239].

Another immunomodulatory agent, the sphingosine-1-
phosphate inhibitor Fingolimod, inhibits leukocyte trafficking
and is approved for use in multiple sclerosis patients [214].
Both rodent and human studies showed reductions in infarct
volumes and neurological recovery; however, the patient trials
have been small and were open label [213–215, 240].

In addition to the specific reasons above, there are system-
atic issues that may be critical to improve in order to develop
successful immunomodulatory therapies. Preclinical stroke
researchers primarily utilize younger, healthy male mice and
give drugs at the time of or 3 h after ischemia, while human
trials often choose later time points (Table 3). Animal studies
should include both sexes, permanent and transient stroke
models, and later dosing time points, and should also consider
inter-species differences in immune responses and the effects
of anesthetic use [241]. In addition, comorbid conditions are
understudied in animals. Common comorbidities in stroke pa-
tients include age, obesity, diabetes, and hypertension, and
each is independently associated with increased peripheral
inflammation, which results in worse outcomes for stroke pa-
tients [242–244] and likely would also affect the patient re-
sponse to immune modulating drugs. Research incorporating
these different considerations will hopefully lead to improved
translation between preclinical animal and clinical human
studies and facilitate therapeutic development.
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Future Research Priorities

The vast majority of clinical studies of immunomodulation
after stroke have focused on the acute phase, assessing out-
comes up to 90 days (Table 3). While this timing matches the
timing of assessments in many pre-clinical stroke models, the
lack of clinical translation highlights the need for longer term,
chronic follow-ups in both the clinic and the laboratory so that
we can better understand outcomes following stroke.
Additionally, many clinical studies begin treatment within
6 h of stroke onset. While this timing may be appropriate for
therapies targeting the innate immune response, it may
be detrimental in its inhibition of proper inflammatory
resolution. Further work is needed to understand the
complexities of immune activation and how it transi-
tions to successful inflammatory resolution after stroke,
as well as targeted therapies to promote anti-
inflammatory immune cell phenotypes. Additionally,
for therapies targeting adaptive immune cells, later treat-
ment in the days/weeks after stroke, when these cells
begin accumulating in the brain, may be more appropri-
ate. Finally, pre-clinical models that better mimic the
human disease by incorporating both permanent and
transient ischemia together, using both sexes and hu-
manized immune responses, and incorporate pro-
inflammatory comorbidities such as age, obesity, and
diabetes will facilitate clinical translation. Further hu-
man studies are also necessary to optimize these chang-
es and lead to a subsequent redesign of human trials
that will be better suited to beneficially modulate in-
flammation after stroke.
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