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Abstract
Disease-specific therapeutic options for critically ill neurological patients are limited. The identification of new preventive,
therapeutic, and rehabilitation strategies is of the utmost importance in the field of neurocritical care research. Population genetics
offers powerful tools to identify and prioritize biological pathways to be targeted by novel interventions. New treatments with
supportive genetic evidence have twice the chances of obtaining final FDA approval compared to those without this support.
Large collaborations, public access to data, reproducible science, and innovative analytical methods have exponentially increased
the pace of discoveries related to neurocritical care genetics.
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Introduction

Patients with neurocritical illness often have severe brain and/or
spine injury and an elevated risk of death and severe disability.
Therapeutic options are limited for many of the diseases fre-
quently encountered in the Neurosciences Intensive Care Unit
(NeuroICU), making the discovery of novel targets for preven-
tion, acute treatment, and rehabilitation a high priority in the
field for neurocritical care research. Unfortunately, several treat-
ments aimed to ameliorate acute brain injury in neurocritical
care diseases failed to show benefit in clinical trials, despite
promising preliminary evidence obtained in observational and
animal studies [1–5]. Population genetics offers powerful tools
to identify new mechanisms involved in causing the severe
neurologic injury that we encounter in the NeuroICU. In this
review, we describe the properties that make mutation-disease
associations a unique tool for biological discovery, present im-
portant concepts needed to appropriately appraise genetic stud-
ies, and review concrete examples of the application of popu-
lation genetics to the field of Neurocritical Care.

Using Genetic Information to Identify New
Biological Targets and Pathophysiological
Mechanisms

Population genetics offers powerful tools for causal inference.
Inherited genetic variation provides numerous “experiments
of nature” that connect specific mutations—and underlying
genes and cellular pathways—to human disease. Because mu-
tations are randomly distributed during meiosis, mutation-
disease associations are immune to confounding by postnatal
exposures. In this setting, mutations strongly associated with
the diseases encountered in the NeuroICU point to genes,
proteins, and cellular pathways involved in these conditions.
This notion extends beyond the primary diagnosis that brings
the patient to the hospital and applies to mechanisms of sec-
ondary brain injury that contribute to the morbidity and mor-
tality regardless of the initial insult. Leveraging genetic anal-
yses to identify new targets and mechanisms constitutes a
promising strategy for NeuroICU-related conditions, as com-
mon and rare genetic variation explains an important propor-
tion of the variance of several of them (Table 1) [6–10]. For
the same reasons, genetic information is likely to become the
pillar of precision medicine approaches aimed to identify pa-
tients that belong to specific groups of interest, like those that
may respond to a specific drug or that are likely to have a poor
outcome. Because current genotyping technologies capture
information from the entire human genome, it is now possible
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to agnostically interrogate all possible cellular process and
pathways. This is a crucial strength of this approach, as it does
not require an a priori hypothesis.

Genetic Analyses Improve the Yield
of the Translational Research Cycle

It is challenging to complete the full cycle of clinical re-
search (Fig. 1), from identifying a pathophysiological
mechanism to demonstrating the feasibility, safety, and
clinical efficacy in humans of using an agent that acts on

this pathway. An important proportion of interventions
with promising results in preclinical stages fail to show
benefit when evaluated in costly and time-consuming clin-
ical studies in humans, a notion called the “Translational
Valley of death.” Because of its agnostic approach when
identifying novel biological mechanisms in human disease,
genetic analyses can significantly reduce the proportion of
new treatments that fail in clinical trials. An important
study compared clinical interventions with and without ge-
netic support. The investigators utilized the Informa
Pharmaprojects database to acquire data on interventions,
targets, and indications; and GWASdb and OMIM, two

Table 1 Heritability estimates for
diseases commonly managed in
the neurocritical care unit

References Phenotype Sample size Heritability estimate

Bevan et al. [6] Ischemic stroke 3752 cases

5972 controls

38%

Devan et al. [7] Intracerebral hemorrhage 791 cases

876 controls

44%

Devan et al. [7] Intracerebral hemorrhage mortality 791 cases

876 controls

41%

Korja et al. [8] Subarachnoid hemorrhage 504 cases

79,644 twin pairs

41%

Speed et al. [9] Epilepsy 1258 case

5129 controls

32%

Blum et al. [10] Guillain-Barré syndrome 191 cases

639 controls

15%

Fig. 1 The cycle of translational
research. Genetics can contribute
to many steps in the cycle. First,
genome-wide association studies
can identify novel loci and lead to
biological pathways implicated in
diseases. Secondly, selecting tar-
gets based on them having genetic
support, and assessing causality
through Mendelian randomiza-
tion can improve the rate of suc-
cess in the development and effi-
cacy testing of new interventions.
Lastly, genetic risk stratification
can identify patients that need to
be screened or treated, and
pharmacogenomics can guide
treatment in an individualized
manner
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open access resources that collect information on genetic
risk factors for complex and Mendelian conditions, respec-
tively, to obtain data on genetic support. After evaluating
19,085 target-indication pairs and 13,855 gene-trait com-
binations, the authors estimated that selecting genetically
supported targets doubles the success rate of the research
cycle [11]. Importantly, the continuous increase in number
of genetic studies coupled with new methods in statistical
genetics, like Mendelian Randomization (see below), will
likely increase these estimates.

Primer on Population Genetics

The field of population genetics studies the distribution
of genetic variation across different species, including
humans. One important goal is to estimate the proportion
of a given trait the can be explained by genetic variation,
a concept known as heritability (Table 1). These traits
include physiological characteristics, like height and eye
color; physiological traits that can become deleterious in
the extremes, like blood pressure, blood glucose, and
cholesterol levels; and discrete pathological entities. For
traits with high genetic contribution, one important addi-
tional goal of population genetics is to pinpoint the spe-
cific genetic variants that lead to an elevated heritability.
The concepts below will facilitate the discussion that
follows [12, 13].

Penetrance Penetrance refers to the proportion of individ-
uals with a specific mutation showing manifestations of
the studied condition.

Mendelian Genetic Contribution A Mendelian pattern of in-
heritance refers to rare mutations with high penetrance.
Diseases with mendelian inheritance are also called monogen-
ic or familial conditions and can be classified between auto-
somal dominant (one mutated allele is enough to cause the
disease) or recessive (both alleles need to have the mutation
for the disease to be expressed).

Non-Mendelian Genetic Contribution A non-Mendelian pat-
tern of inheritance refers tomutations with low penetrance that
have a small but statistically significant effect on the risk of
expressing disease. Conditions with non-Mendelian patterns
of inheritance are usually called complex diseases or traits,
meaning that we cannot predict if one individual will have
the disease by looking at just one mutation. However, recent
advances have made it possible to stratify risk by pooling the
contributions of multiple mutations in genetic risk scores.

Heritability Heritability is a measure of the amount of varia-
tion in a trait explained by genetics [14, 15]. It ranges from 0

(genetic variation does not influence the trait) to 1 (genetic
variation completely explains the trait). For example, height
is a highly heritable trait, with around 80% of the variance
explained by genetics. An elevated heritability indicates that
the corresponding trait likely has numerous risk factors to be
discovered and utilized for treatment development.
Heritability can nowadays be estimated using information
provided by genome-wide association studies (GWAS). For
some traits, the number of identified genetic risk factors does
not account for the estimated heritability, leading to “missing”
heritability. Although some evidence indicates that this miss-
ing heritability is due to shared environment or nonadditive
genetic variation, a definitive answer is still lacking.

Minor Allele Frequency The most commonly studied muta-
tions are single nucleotide polymorphisms (SNPs). SNPs are
genetic variants involving only one base pair position of the
genome. Most SNPs have only two possible alleles: the major
allele and the minor allele, which are carried by the majority
and the minority of the population, respectively. This distribu-
tion can be expressed by the frequency of the minor allele
(MAF), which divides variants into common (MAF > 5%),
low-frequency (MAF > 0.5–5%), rare (MAF < 0.5%), and pri-
vate (minor allele presents only in single families).

Linkage Disequilibrium Genetic variants usually segregate
with other variants located closely in distance. At the popula-
tion level, this leads to correlation between variants, a phe-
nomenon termed linkage disequilibrium (LD). Conversely,
when variants are independent of one another, they are in
linkage equilibrium. LD can be measured through a coeffi-
cient called r2 which varies from 0 (uncorrelated) to 1
(completely correlated). Researchers use different r2 thresh-
olds to filter out variants, using only uncorrelated SNPs, for
example, when developing polygenic risk scores.

Genomic Locus A group of highly correlated genetic variants
(i.e., in elevated LD) represent an LD block (Fig. 2). In
GWAS, these are referred to as susceptibility loci.
Association studies can expose these loci, but challenges re-
main when trying to identify the specific variant causally re-
lated to disease.

Study Design and Analytical Methods
in Population Genetics

Candidate Gene Studies These studies were the main ap-
proach for association testing between genes and diseases be-
fore the development of high-throughput genotyping technol-
ogies [16–19]. This hypothesis-driven approach builds upon
previous data supporting specific biological pathways and al-
lows researchers to evaluate a discrete list of presumed causal
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SNPs. Nowadays, candidate gene studies are still useful when
studying low-frequency mutations or small samples, and they
are also a practical option for replication of GWAS results.

Genome-Wide Association Studies In contrast to candidate
gene analyses, genome-wide association studies (GWAS)
are hypothesis-free studies that agnostically interrogate
millions of SNPs from across the genome for association
with a particular disease [20]. Considering the large num-
ber of comparisons made, it is standard to use an adjusted
significance threshold of p < 5 × 10e−8 to account for the
approximately 1 million independent loci found across the
human genome. Importantly, the number of genome-wide
significant loci identified for many complex traits grows
exponentially with sample size.

Sequencing Studies [21] Next-generation sequencing has
revolutionized the amount of data we can produce. With
whole-genome sequencing, an important proportion of the
3 billion base pair positions in the human genome can be
genotyped and become available for analysis. This tech-
nology comes with a new set of statistical and computa-
tional challenges, driven by the need to manipulate, cu-
rate, and analyze massive amounts of data, and the in-
creasingly small signal-to-noise ratio [22].

Polygenic Risk Scoring Studies [23] Because the first GWAS
was published in 2007 [24], the number of well-described

mutation-disease associations has increased dramatically.
This growing number of susceptibility loci, including multiple
mutations associated with a single trait, allows the creation of
scores that summarize the load of mutations related to a spe-
cific trait carried by a person. In a simplistic approach, the
polygenic risk score can be calculated as the sum of risk alleles
for a given person. This score is often a more powerful pre-
dictor of disease occurrence than an individual SNP. A more
sophisticated approach leverages the effect size of each SNP
on the trait of interest as a weight, improving the performance
of the scores. Polygenic risk scores can be used for both causal
inference and prediction. The latter option is currently being
tested in clinical settings [25] and will likely lead to numerous
applications in coming years.

Mendelian Randomization Studies [26] This analytical meth-
od constitutes an especial case of instrumental variable anal-
ysis, an approach that involves the utilization of a variable that
is strongly associated with the exposure and not with the out-
come except through the exposure. When the instrument is
appropriately chosen and the relevant assumptions are met,
this approach yields association results with strong causal im-
plications. In Mendelian Randomization analyses, the instru-
ment is either onemutation or a collection of mutations known
to influence the exposure of interest. Because the distribution
of alleles occurs randomly before birth, they are immune to
confounding by environmental factors encountered through-
out life. For example, when investigating causality between

Fig. 2 Zoom plot showing a
genetic locus
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high blood pressure and cardiovascular risk, one option would
be to randomize patients to blood pressure lowering drugs
versus placebo. Another option, leveraging Mendelian
Randomization analyses, would be to utilize alleles known
to strongly associate with blood pressure reduction. A signif-
icant association between these alleles and reduced cardiovas-
cular risk would support a causal link between blood pressure
levels and cardiovascular risk.

Accelerated Pace of Discovery in Population
Genetics

In the last 10 years, the fields of human and Neurocritical Care
genetics research have grown rapidly. This expansion has
been the result of a combination of circumstances, including
changes in culture, now favoring highly collaborative research
environments and public access to data; the creation of large
international consortia designed to share ideas and data and
pursue harmonization of genetic, clinical, and neuroimaging
data with the ultimate goal of achieving massive sample sizes;
and the development of novel analytical methods designed to
efficiently deal with large-scale data (colloquially referred to
as Big Data) [27, 28].

Public access to genetic data is having a particularly pro-
found influence on Neurocritical Care genetics. Genetic
studies are complicated, expensive, and, even after comple-
tion, require significant amount of resources for quality con-
trol, harmonization, and analysis. Public access to genetic
data of diseases related to Neurocritical Care is maximizing
the return generated by funds destined to this type of re-
search although in parallel increasing the amount of down-
stream analytical resources utilized to derive new biological
insights from a given dataset. Open access resources can be
classified into repositories, that aim to store already gener-
ated genetic data; large population studies with attached
biobanks; disease-specific studies with built-in genomic da-
ta intended for public access since conception; and scientif-
ic platforms, that combine access to data with a closed com-
putational environment that allow investigators to access
and work with data without directly downloading informa-
tion to their local institutional servers.

Table 2 summarizes open access data resources that are
already having a significant impact in the field of
Neurocrit ical Care genetics. The NIH-sponsored
Database of Genotypes and Phenotypes (dbGaP) [33]
and the Cerebrovascular Disease Knowledge Portal
(CDKP) [37], in the USA, and the European Genome-
phenome Archive (EGA) [34], in Europe, represent three
large and successful examples of open access repositories
that seek to make genetic data publicly available. The UK
Biobank [29] and the China Kadoorie Biobank [32] con-
stitute very successful examples of large population-based

prospective studies providing open access to all collected
data, enrolling more than 500,000 individuals each, and
gathering a wide range of data types, including genetic,
laboratory, electronic health record, and physical measure-
ments. In terms of disease-specific open access studies,
the Ethnic/Racial Variations of Intracerebral Hemorrhage
(ERICH) study [38] has proven an invaluable resource in
Neurocritical Care and Stroke research, leading to numer-
ous subanalyses related to ICH outcome and risk [39–44].
The ERICH study has enrolled 6000 extremely well-
phenotyped ICH cases and controls, including equal num-
bers of whites, blacks, and Hispanics. All ICH cases are
undergoing whole-genome sequencing. Finally, the
American Heart Association Precision Medicine Platform
constitutes an example of a scientific platform that offers
public access to numerous data sets containing genetic
and nongenetic data using a closed computational envi-
ronment that utilizes Jupyter Notebooks [45] to script, and
Amazon Web Services to provide computational support
to investigators. Along these lines, the All of Us Research
Program [31], scheduled to become operational in the
winter of 2020, will provide large amounts of data by
enrolling at least 1 million people in the USA from di-
verse race/ethnicities.

In addition to publicly available data, the field of pop-
ulation and medical genetics has significantly benefited
from online, open access resources that provide valuable
tools for interpretation and analysis. Table 3 summarizes
some of the most important of these resources. The UCSC
Genome Browser and the Ensembl Genome Browser pro-
vide comprehensive genetic information using reference
panels. Resources like the Cerebrovascular Disease
Knowledge Portal [37], GWAS Catalog [46], and GWAS
atlas [47] publicly share summary statistics from pub-
lished studies. Furthermore, the recently launched
Polygenic Score Catalog [48] offers pre-specified and al-
ready tested genetic risk scores for several traits, greatly
contributing to facilitate and standardize the implementa-
tion of PRS analyses. Other useful tools are the
Functional Mapping and Annotation of Genome-Wide
Association Studies site (FUMA) [49], used to annotate,
prioritize, visualize, and interpret GWAS results,
LocusZoom [50], an online tool and library to visualize
GWAS results at a locus level (Fig. 1).

Combining Genetic and Nongenetic Data
Sources to Accelerate Discovery

Genetics is one of many contributors to Big Data in clin-
ical research. Other sources include neuroimaging data,
electronic health records (natural language data), and bio-
markers (e.g., blood pressure monitoring, laboratory data).
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Analytical methods designed to integrate different types
of data constitute a powerful tool in neurocritical care
research [51, 52]. Currently, nongenetic data is only uti-
lized to provide the dependent variable for genetic analy-
sis. For example, neuroimaging data on white matter dis-
ease is used to conduct GWAS analyses to understand the
genetic architecture of cerebral small vessel disease [53].
However, this simplistic utilization of nongenetic data
represents only the tip of the iceberg. The integration of
different data types via powerful deep learning and artifi-
cial intelligence tools has increased the statistical power
of genetic analysis, although at the same time broadening
the scope of biological questions to be tackled. Along
these lines, there have been recent efforts to harmonize
and publicly release nongenetic data as well. For example,
the Medical Information Mart for Intensive Care-III
(MIMIC-III) database is an extensive collection of data
of patients admitted to Intensive Care Units at the Beth
Israel Deaconess Medical Center [35]. This large dataset
has led too several studies using machine learning to de-
velop decision support systems. Inspired by the MIMIC-
III project, a joint effort from several centers from across
the world led to the eICU Collaborative Research
Database [36], another large repository of critical care
data available to interested investigators.

Applications to Acute Brain Injury
and Recovery in Neurocritical Care

We present a summary of These application to NeuroICU is
presented in Table 4

Sur1-Trpm4 Influence on Cerebral Edema

The nonselective cation channel formed by the proteins sulfo-
nylurea receptor 1 (SUR1) and transient receptor potential
melastatin 4 (TRPM4) constitutes a promising drug target
for acute treatment of several conditions encountered in the
NeuroICU. The combination of animal, genetic, and clinical
trial evidence supporting a role of this pathway in acute brain
injury makes SUR1-TRPM4 a prototypic example of new
therapy development in our field. Preclinical studies using
animal models showed that this channel is not expressed in
the normal brain, but it is upregulated in the setting of acute
brain injury, when SUR1 associates with TRMP4 causing
depolarization and water influx, leading to tissue swelling
and cerebral edema [62]. Of note, it is possible to pharmaco-
logically modulate these pathways with sulfonylureas, a com-
monly used group of anti-diabetic medications.

Importantly for the purposes of this review, genetic studies
in humans confirmed a possible role of SUR1-TRPM4 in

Table 2 Open access data resources

Ref. Name Website Resource type Sample size Access type

[29] UK Biobank https://www.ukbiobank.ac.uk/ Observational study 500,000 Open

[30] Million Veteran Program https://www.research.va.gov/mvp/ Observational study 1 million Restricted

[31] All of Us https://allofus.nih.gov/ Observational study 1 million Open

[32] China Kadoorie Biobank https://www.ckbiobank.org/ Observational study 500,000 Restricted

[33] dbGAP https://www.ncbi.nlm.nih.
gov/gap/

Repository – Open

[34] EGA https://ega-archive.org/ Repository – Open

[35] MIMIC-III https://mimic.physionet.org/ Database 61,532 Open

[36] eICU-CRD https://eicu-crd.mit.edu/ Database 200,000 Open

UK = United Kingdom, dbGAP = database of genotypes and phenotypes, EGA = European Genome-phenome Archive, MIMIC-III = Medical
Information Mart for Intensive Care-III, eICU-CRD = eICU Collaborative Research Database

Table 3 Online resources

Ref. Name Website Description

[37] Cerebrovascular Disease
Knowledge Portal

http://www.cerebrovascularportal.org/ A platform that allows for searching, visualizing and
analyzing variations related to cerebrovascular disease.

[46] GWAS Catalog https://www.ebi.ac.uk/gwas/ Catalog of GWAS results

[47] GWAS atlas https://atlas.ctglab.nl/ Catalog of GWAS results

[48] PGS Catalog http://www.pgscatalog.org/ Catalog of Polygenic Risk Scores

[49] FUMA https://fuma.ctglab.nl/ Functional Mapping and Annotation of GWAS results

[50] Locus Zoom http://locuszoom.org/ Visualization of GWAS results at the locus level

GWAS = genome-wide association study, PGS = polygenic score, FUMA = functional mapping and annotation
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acute brain injury [54]. A study that evaluated 15 tag SNPs in
ABCC8, the gene encoding SUR1, found that 4 of these SNPs
were associated with cerebral edema and outcome in pa-
tients with severe traumatic brain injury. Specifically,
rs7105832 was independently associated with cerebral
edema, rs11024286 and rs4148622 with outcome, and
rs2237982 with both cerebral edema and outcome.
Because these SNPs are intronic, the most likely mecha-
nistic link is via transcriptional function.

The combination of animal and genetic evidence
supporting a role of the SUR1-TRPM4 channel in acute brain
injury, coupled with the possibility of intervening on this tar-
get via existing medications, led to the repurposing of sulfo-
nylureas to treat acute brain injury in several Neurocritical
Care diseases. The phase II Glyburide Advantage in
Malignant Edema and Stroke (GAMES-RP) randomized clin-
ical trial evaluated the safety and efficacy of intravenous
glyburide in a critically ill, acute ischemic stroke population
at high risk for brain swelling. The study was stopped early
due to funding reasons, but showed that intravenous glyburide
was safe in this patient population [63]. Although the trial’s
clinical endpoints were negative, subsequent secondary anal-
yses revealed an association between glyburide treatment and
reduction in both deaths attributable to malignant edema [64]
and water accumulation and mass effect in these patients [65].

Expectations are high for the currently recruiting phase III
Cerebral Edema Following Large Hemispheric Infarction
(CHARM) s tudy (Cl in ica lTr ia l s .gov iden t i f i e r :
NCT02864953), with results expected in 2021. This phase 3
randomized clinical trial aims to enroll 680 adult patients with
large hemispheric brain infarcts and assign them either to
receive intravenous glyburide or placebo, and to evaluate its
impact in long-term functional outcome.

Intravenous glyburide is also being evaluated for acute
traumatic brain injury. A phase 2 randomized, quadruple-
blinded clinical trial is underway (ClinicalTrials.gov
NCT03954041), aiming to enroll 160 participants with a
traumatic brain contusion. The study’s primary outcome will
be the expansion of the qualifying contusion 96 h after starting
treatment. Although underpowered to fully evaluate clinical
outcome, the trial’s secondary endpoints include 90-day post
trauma improvements in Extended Glasgow Outcome Scale
and Modified Rankin Scale.

Sphingosine-1-Phosphate Modulates Vascular
Integrity

Existing therapies for acute ischemic stroke aim to recanalize
obstructed vessels using thrombolytics or mechanical
thrombectomy. One limitation of these strategies is the risk

Table 4 Summary of applications to Neurocritical Care

Ref. Year Disease Phenotype Findings

[54] 2018 TBI ICP; radiographic edema; functional outcome rs7105832 and rs2237982 were associated with lower average ICP and
decreased radiographic edema. rs2237982 was also associated with
favorable 3-month GOS.

[55] 2015 Ischemic stroke Infarct size, neurological scores S1pr2-/- mice had significantly reduced infarct size and improved
neurological scores.

[56] 2011 ICH Hematoma volume; functional outcome Each additional ε2 allele associated with 18% increase in the size of
hematoma, and 50% increase in the risk of poor outcome.

[57] 2018 ICH Hematoma volume; functional outcome 17p12 is a susceptibility risk locus for hematoma volume, and each
additional G allele in rs11655160 is associated with 94% increase in the
risk of poor outcome at 3 months.

[58] 2013 ICH Hematoma volume; functional outcome Each additional SD of a polygenic risk score comprising 42 SNPs
associated with blood pressure is associated with 29% larger hematoma
volume and 71% increased risk of poor functional outcome.

[59] 2019 Stroke; TBI Motor and cognitive recovery Improvement in motor and cognitive recovery in animal models of stroke
and TBI.

Patients from an ischemic stroke cohort with naturally occurring
loss-of-function mutations in CCR5 had better motor and cognitive
recovery months after the event.

[60] 2019 Ischemic stroke Functional outcome Each additional G allele of rs76221407 was associated with a 0.4 increase
in mRS.

[61] 2019 Ischemic stroke Functional outcome An intronic variant in the LOC105372028 gene, functionally associated
with PPP1R21, a gene implicated in brain plasticity, is associated with
functional outcome after ischemic stroke. Several others suggestive
associations were also found.

ICH = intracerebral hemorrhage, TBI = traumatic brain injury, ICP = intracranial pressure, SD = standard deviation, SNPs = single nucleotide
polymorphisms, GOS = Glasgow Outcome Scale, mRS = Modified Rankin Scale
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of reperfusion injury, mediated by excessive generation of
reactive oxygen species that lead to the activation of matrix
metalloproteinases (MMP), vasogenic edema and, ultimately,
hemorrhagic transformation. Novel promising strategies have
been specifically designed to target this pathway. A recent
study in mice evaluated the effect knocking out S1PR2 in a
standardized animal model of transient cerebral ischemia.
S1PR2 encodes sphingosine-1-phospate receptor 2, a member
of the G protein-coupled receptors that participates in cell
proliferation, survival, and transcriptional activation. The in-
vestigators found that animals lacking this gene had reduced
infarct size, reduced volume of cerebral edema, and improved
neurological scores [55]. The study also showed that the ad-
ministration of JTE013, a potent and selective S1P antagonist,
produced similar results.

The evidence outlined above led to the evaluation of
immunomodulatory drugs originally designed for multi-
ple sclerosis in cerebrovascular disease. Fingolimod is an
oral sphingosine-1-phosphate–receptor modulator that
has shown neuroprotective effects in animal models
[66]. This effect could be mediated, at least in part, by
reducing brain infiltration of T-lymphocytes [67].
Considering fingolimod’s adverse effects in the cardio-
vascular system, researchers have also evaluated the
more selective S1PR1 modulator RP101075, a drug with
fewer off-target effects and a better safety profile. This
selective immunomodulatory strategy also displayed pro-
tective effects in experimental models of ICH [68].
These results led to a proof-of-concept study in humans
that enrolled 23 subjects with ICH and assigned them to
standard treatment plus fingolimod administration or
standard treatment alone. This small trial showed that
the administration of fingolimod was safe, reduced peri-
hematomal edema and improved neurological deficits
[69]. This promising evidence ultimately justified a
phase-2 randomized clinical trial currently underway
(clinicaltrials.gov identifier: NCT03338998). This study
randomizes patients to the administration of siponimod
or placebo looking for differences in perihematomal
edema at day 14 after the event and is expected to be
completed by November 2020.

Genetic Determinants of Intracerebral Hemorrhage
Volume and Outcome

The volume of the hematoma in the patients with sponta-
neous, nontraumatic intracerebral hemorrhage (ICH) is the
most powerful predictor of outcome in this condition [70].
Importantly for the purposes of this review, a substantial
proportion of the variation in this neuroimaging pheno-
type of radiological severity can be attributed to genetic

variation, as expressed by a heritability estimate of ~ 50%.
The epsilon 2 variants within APOE, the gene that codes
for Apolipoprotein E, constitute one of the genetic risk
factors that mediate this elevated heritability. In a study
that included ICH patients of European ancestry, each
additional e2 allele was associated with a 5.3 mL, or
18%, increase in hematoma volume, with a concomitant
50% increase in risk of poor outcome [56]. Subsequent
studies indicated that the effect of APOE epsilon 2 ex-
tends beyond admission hematoma volume to also influ-
ence the risk of having a spot sign on CT angiogram and
of sustaining hematoma expansion [71, 72]. Although the
mediating biological mechanism has not been fully eluci-
dated, it is possible that following the rupture of the cul-
prit vessel, the leaking blood injures the already damaged
vessels in the vicinity, causing additional bleeding [73].
This paradigm, proposed by C. Miller Fisher and known
as the “cascade hypothesis,” serves as a general explana-
tion for the observation that factors that lead to cerebral
small vessel disease are associated with both increased
risk and larger hematoma size in ICH.

Another genetic determinant of hematoma volume and
outcome in intracerebral hemorrhage is the aggregate load
of hypertension-related risk alleles. This genetic load can
be modeled via polygenic risk scores (see above), a tool
that summarizes the genetic contribution of several genet-
ic variants into a single measurement. In a study of 323
ICH patients, a polygenic risk score built with 42 blood
pressure-related genetic variants was associated with he-
matoma volume and poor clinical outcome. In this study,
each additional standard deviation of the hypertension-
based polygenic risk score was associated with a 29%
increase in baseline hematoma volume in patients with
deep hemorrhages and 71% increase in the risk of a poor
outcome [58]. As for APOE, the exact pathophysiological
mechanism mediating this association has not been iden-
tified, although the “cascade hypothesis” has also been
put forward to explain the observation.

The GWAS framework is now taking its first steps in
acute brain injury and clinical severity of ICH. The first
genome-wide scan of hematoma volume has been recently
completed. The study reported a susceptibility locus lo-
cated on a narrow genetic region in the short arm of chro-
mosome 17 [57]. The G allele for rs11655160, the top
associated variant within this locus, was associated with
a 2.6 mL increase in baseline hematoma volume. In line
with the known strong correlation between hematoma size
and clinical severity and outcome, this same allele was
associated with an 83% change in admission Glasgow
Coma Scale and an 94% increased risk of poor functional
outcome 3 months after the event. The 17p12 locus co-
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localizes with numerous copy number variants of different
size, some compromising half the chromosome, offering a
clear next target to pursue to understand the biology un-
derlying this associations.

Recovery After Ischemic Stroke

Significant progress is also happening for genetic studies eval-
uating recovery after ischemic stroke. A recent study in mice
found that knockout animals for CCR5, the gene encoding the
C-C chemokine receptor type 5, had improved recovery after
stroke and traumatic brain injury. Similarly, a population-
based genetic study of stroke demonstrated that patients with
naturally occurring loss-of-function mutations in CCR5 had
better motor and cognitive recovery months after the event
[59]. Of note, CCR5 antagonist drugs are already approved
by the FDA [74] for use in the treatment of HIV infection and
clinical trials that test this pathway in acute brain injury are
expected to be underway soon.

The recent creation of large, international, multidisci-
plinary research groups focusing on outcome and recov-
ery after stroke now allows a more systematic evaluation
of genetic targets. A GWAS meta-analysis undertaken by
the Genetics of Ischaemic Stroke Functional Outcome
(GISCOME) network found an intronic variant in
LOC105372028, a widely expressed gene in the brain that
codes for a long noncoding RNA molecule that regulates
the expression of KLRAQ1. The latter encodes a regula-
tory subunit of protein phosphatase 1 (PP1), a protein
with putative regulatory roles in processes such as learn-
ing, memory and neuroplasticity [61]. Functional experi-
ments to confirm to delineate a possible therapeutic target
for recovery are warranted. Another recent meta-analysis
of GWAS focusing on stroke recovery identified several
low-frequency variants within PATJ, a gene encoding the
PALS1-Associated Tight Junction Protein [60]. The large
effect size of these variants, in the order of 40% increase
in poor functional outcome, makes of this pathway an
appealing target for follow-up functional experiments.

Novel Analytical Tools Based on Machine Learning
and Artificial Intelligence

Analytical methods based on machine learning, deep
learning and artificial intelligence are rapidly changing
all aspects of Big Data analysis. One application of these
approaches to population genetics involve fine mapping,
the process of learning more about a genetic locus iden-
tified via genetic studies. Genetic loci identified by
GWAS are often located in noncoding regions of the ge-
nome, either intronic or intergenic. As discussed above

(see primer on population genetics), each newly discov-
ered locus contains several genetic variants in high link-
age disequilibrium. The most important next step after
finding a novel genome-wide locus is to pinpoint the
causal variant that mediates the observed association.
Analytical methods based on artificial intelligence and
deep learning are increasingly utilized for these purposes
(Table 5). Several models based on these tools have been
developed and trained to predict the effect of noncoding
variants on the expression of other genes and well as
protein and pathways function. One example is DeepSea
[75], a tool that aims to prioritize regulatory variants
using a deep-learning model trained to predict chromatin
effects of sequence alterations.

From Genetic Associations to Biological Mechanisms

The genetic studies described above yielded important
associations between specific genetic variants and a num-
ber of relevant diseases and traits in the field of
Neurocritical Care. After identifying the causal variant
responsible for each association, it is crucial to precisely
delineate the biological pathway that mediates the ob-
served allele–outcome correlations, a process that requires
the combination of translational research strategies like
gene editing, cellular models and animal models. The suc-
cessful completion of this process requires the assembly
of multidisciplinary teams that include genetic epidemiol-
ogists, statistical geneticists, bench researchers, and clini-
cians. Increasingly, these collaborative networks are cre-
ated around broad topics with the goal of evaluating mul-
tiple pathways and targets, as opposed to ad hoc collabo-
rations intended to pursue one specific questions. As an
example, the NIH/NINDS-sponsored Stroke Preclinical
Assessment Network (SPAN) will facilitate the evaluation
of up to 6 promising neuroprotective drugs or interven-
tions to be given prior to, or at the time of, reperfusion in
experimental models of ischemic stroke.

Crucial Next Steps

The intersection of Neurocritical Care and genetics will only
grow in coming years. The successful application of genetic
advances in Neurocritical Care depend on a number of factors.
The creation of new collaborations to bring together clini-
cians, investigators, and institutions invested in Neurocritical
Care research will be crucial. One important goal for these
collaborations will be to integrate genetic data with the mas-
sive amounts of other data types produced in the Neuroscience
Intensive Care Unit, including clinical information, laboratory
results, neuroimages, EEG, vital signs, and multimodality
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monitoring. Public and fast access to these data will constitute
an important catalyzer to accelerate the pace of scientific dis-
covery and increase the overall yield of these endeavors. As
these impactful changes happen, it will be important to protect
our patients’ privacy [76].
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