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Abstract
Brain–machine interfaces (BMI) permit bypass motor system disruption by coupling contingent neuroelectric signals related to
motor activity with prosthetic devices that enhance afferent and proprioceptive feedback to the somatosensory cortex. In this
study, we investigated neural plasticity in the motor network of severely impaired chronic stroke patients after an EEG-BMI-
based treatment reinforcing sensorimotor contingency of ipsilesional motor commands. Our structural connectivity analysis
revealed decreased fractional anisotropy in the splenium and body of the corpus callosum, and in the contralesional hemisphere
in the posterior limb of the internal capsule, the posterior thalamic radiation, and the superior corona radiata. Functional
connectivity analysis showed decreased negative interhemispheric coupling between contralesional and ipsilesional sensorimotor
regions, and decreased positive intrahemispheric coupling among contralesional sensorimotor regions. These findings indicate
that BMI reinforcing ipsilesional brain activity and enhancing proprioceptive function of the affected hand elicits reorganization
of contralesional and ipsilesional somatosensory and motor-assemblies as well as afferent and efferent connection–related motor
circuits that support the partial re-establishment of the original neurophysiology of the motor system even in severe chronic
stroke.
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Introduction

Advances in the brain–machine interface (BMI) field have
shown that human patients with severe neurological insults
can artificially bypass the injury and re-animate paralyzed
limbs through learned control of external devices [1–3].

Tetraplegic patients through implanted multielectrode array,
recording spike and field potentials in the hand motor repre-
sentation areas, were able to learn to control a computer cursor
in several directions [2], as well as a robotic arm performing
three-dimensional reach and grasp movements [1, 3]. These
procedures are impressive and extremely significant for their
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neuroscientific and clinical implications but are not shown to
directly promote restoration or improvement of hand/arm mo-
tor functions in paralyzed patients.

Alternatively, other BMI systems allow to bypass motor
system disruption and to stimulate functional recovery and
neuroplasticity by coupling contingent neuroelectric signals
related to motor commands with movements of assistive pros-
thetic devices that crucially provide afferent and propriocep-
tive feedback to the somatosensory cortex. Increasing evi-
dence shows that chronic stroke patients with minimal resid-
ual hand movements can control prosthetic devices fixed to
the paretic upper limb through BMI-mediated learned regula-
tion of motor-related oscillatory brain activity [4–10]. This
approach is particularly important for severe stroke patients
with minimal or no residual motor functions, which are usu-
ally excluded from intensive therapeutic intervention and re-
habilitation such as constrained induced movement therapy,
bilateral arm training, or robot-assisted training, as they rely
on the existence of residual motor functionality [4, 11–15]. In
these patients, contingencies between overt actions and con-
sequences can no longer be used to drive reorganization with-
in functional brain networks, making them prone to devolu-
tion towards a maladaptive state indicative of learned disuse
[16, 17]. Severely impaired chronic stroke patients often show
increased activity in the unaffected hemisphere during upper
limb movement, which in most cases represents vicariation of
motor function [18, 19]. However, the disuse of the
ipsilesional hemisphere and compensatory overuse of the
healthy contralesional hemisphere have been also associated
with abnormal interhemispheric inhibition from the intact to
the damaged hemisphere [20–22], which is even more pro-
nounced in the case of severe motor impairment [23].
Typically, functionally significant motor recovery is associat-
ed with a rebalanced sensorimotor cortex activity towards the
ipsilesional/contralateral hemisphere [24–29].

Stimulation and reinforcement of the remaining preserved
structures in the affected hemisphere might thus represent a
more neurobiologically appropriate approach to foster recov-
ery. A previous double-blind randomized placebo-controlled
study demonstrated the clinical efficacy of EEG-BMI for
stroke rehabilitation [15]. Pilot studies also suggested that
EEG-BMI-based intervention exploiting ipsilesional motor
commands might indeed stimulate adaptive functional and
structural reorganization in patients after stroke [12, 13, 30].
More recently, changes in functional and structural brain
reorganization in stroke patients showing upper limb motor
recovery were demonstrated after EEG-brain–computer in-
terface (BCI) [8–10, 31, 32]. The capability of non-invasive
neuromodulation techniques of inducing brain plasticity has
been further indicated by other instrumental learning ap-
proaches revealing for instance structural and functional con-
nectivity reorganization after short motor imagery–based
neurofeedback training [33]. Here, structural and functional

motor network connectivity was assessed in partially recov-
ered chronic stroke patients after EEG-BMI training. We
hypothesized that reinforcement of the ipsilesional sensori-
motor activity contingent on upper limb movement attempts
induced rebalancing of interhemispheric network interac-
tions towards the re-establishment of original motor system
neurophysiology.

Methods

Participants

Patients in both experimental and sham control groups were
recruited via public information (German stroke associations,
rehabilitation centers, hospitals) all over Germany. All partic-
ipating patients fulfilled the following criteria: paralysis of 1
hand with no active finger extension after unilateral stroke;
interval since stroke of at least 10 months; age between 18
and 80 years; no psychiatric or neurological condition other
than stroke; no cerebellar lesion or bilateral motor deficit; no
pregnancy; no claustrophobia; no epilepsy or medication for
epilepsy treatment during the last 6 months; eligible to under-
go magnetic resonance imaging (MRI); ability to understand
and follow instructions. Exclusion criteria included depression
or other psychological impairment, active finger extension,
more than 1 stroke, no motivation to participate after detailed
information of the study (mostly due to geographic distance),
and other health complications such as brain trauma or cancer.
Patients were pseudo-randomly assigned to experimental (n =
16) and control (n = 14) groups; group assignment was
blinded for all participants and for the scientific clinical per-
sonnel so that none of the patients or therapists was able to
characterize group assignment (double-blind). Groups were
matched for age, gender, lesion location, and functional ca-
pacity scores at time of inclusion (see supplementary materi-
al). One patient was excluded from the study for unreliability
of clinical outcome measurements. The study was conducted
at the University of Tübingen in Germany. Informed consent,
including informed consent to publish identifying
information/images in an online open-access publication,
was obtained from all patients involved. The study was ap-
proved by the ethics committee of the Faculty of Medicine of
the University of Tübingen. The methods carried out in this
work are in accordance with the approved guidelines and
regulations.

BMI Intervention and Behavioral Outcome Measures

Thirty participants underwent a 4-week EEG-BMI-based in-
tervention for upper limb rehabilitation. Movements of the
arm/hand were directly dependent upon sensorimotor oscilla-
tions of 8 to 13 Hz recorded over the ipsilesional sensorimotor
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cortex. Patients in the experimental (n = 16, contingent feed-
back) and control (n = 14, sham feedback) groups were
instructed that during training, they had to try to reach, grasp,
and bring to their lap an imaginary apple (thus involving fin-
ger extension during the reach and grasp movement [34])
assisted by 2 separate hand and arm orthoses (Fig. 1).
During the first training sessions (no. of sessions, 6.5 ± 3.8,
experimental group; 5.1 ± 3.9, control group), a robotic device
(Motorika, Israel) connected to the active EEG electrodes over
the motor ipsilesional cortex supported upper arm reaching
movements of the paretic arm. The patient’s arm, strapped to
the robot’s arm, moved forward for 5 s if the patient produced
an event-related desynchronization (ERD) of his/her pre-
identified sensorimotor rhythm (SMR). An average of 16 runs
of 11 trials, each separated by few seconds of rest and several
breaks of few minutes, were performed for each session (day
of training). The robot training was dependent on the patient’s
ability to move the upper arm and reach towards the front. If
the patient was able to perform such movement, the training
started directly using the hand robotic orthosis. During the
consecutive hand-orthosis training sessions (no. of sessions,
11 ± 3.8 experimental group; 13.1 ± 3.9 control group), the
paretic hand was inserted in the slings of an orthosis and
patients were instructed to try to open their hand after an
auditory trigger signal for 5 s even if the fingers did not actu-
ally follow their intention. Similar to previous arm sessions,
ERD of the ipsilesional SMR under a certain threshold opened
the hand in the orthotic device for 5 s. In the experimental
group, SMR activity was linked to active reaching and grasp-
ing movements and finger extension and flexion (or attempt to

move) (contingent feedback), whereas in the control group,
randommovements not linked to brain rhythms controlled the
orthoses (see Ramos-Murguialday et al. [15] for an exhaustive
description of the EEG-BMI training and results). A demo-
graphic summary of the experimental and control groups can
be found in Table 1. A comprehensive battery of motor func-
tion assessment instruments, including the Fugl–Meyer
Assessment (FMA) Scale, the Ashworth Scale, the Motor
Activity Log (MAL) [35], and a Goal Attainment Scale
(GAS) [36], was given twice, before (8 weeks (Pre1) and
1 day (Pre2) before BMI training), and once immediately after
treatment (Post). The modified upper limb combined arm and
hand motor scores from the Fugl–Meyer Assessment Scale
was used as the primary behavioral outcome measure [15].
The combined FMA (cFMA) score is obtained by adding
FMA hand/finger score (24 points) and FMA arm score (30
points) [37].

MRI Data Acquisition

The MRI recordings were performed with a 3-T Magnetom
(Tim Trio, Siemens, Erlangen) whole-body scanner using a
standard 12-channel head coil. Each patient participated in
multiple MRI measurements: 8 weeks before training (Pre1),
1 day before training (Pre2), and few days after training (Post).
AT1-weighted anatomical MR image was acquired using a 1-
mm isotropic MPRAGE sequence with the following param-
eters: TR = 2300ms, TE = 3.03 ms, TI = 1100 ms, flip angle =
8°, FOV = 256 × 256, matrix size = 256 × 256, number of
slices = 176, slice thickness = 1 mm, bandwidth = 130 Hz/

Fig . 1 BMI setup. Pat ients were required to learn SMR
desynchronization, measured with a 16-channel EEG system overlying
the ipsilesional motor cortex. The EEG system was coupled with either
hand or arm orthosis that supported reaching and grasping movements
during BMI training. BMI training aimed to improve upper arm extension
and flexion when using arm orthosis (reaching) and finger extension and
flexion when using hand orthosis (grasping). The sensorimotor rhythm
(SMR) power recorded from the ipsilesional electrodes was translated
into movement of the orthosis. A threshold calculated as the point of
equal distance to the mean of the power distribution during rest and

motor intention calculated over the last 15 s defined rest and motor
intention classification areas. When the SMR power was continuously
in the motor intention classification area for 200 ms, the orthosis
moved; the orthosis stopped when returned to the rest classification area
for 200 ms and maintained the previous state otherwise. The same BMI
principle was applied when training reaching movements with the arm
orthosis. The experimental group received contingent feedback, linking
SMR activity with movement execution supported by hand and arm
orthoses; the control group received sham feedback, in which random
movement of hand and arm orthoses was not linked to brain rhythms
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Px. Diffusion tensor imaging (DTI) data were acquired using a
single echo planar imaging (EPI) sequence; 30 diffusion-
weighted images (b = 800 s/mm2) and a reference T2-
weighted image with no diffusion weighting (b = 0 s/
mm2) were obtained with the following acquisition pa-
rameters: voxel size = 1.86 × 1.86 × 2.5 mm, gap =
2.5 mm, TR = 7900 msec, TE = 89 ms, FOV = 240 × 240
mm, flip angle = 90°, matrix size = 128 × 128, slices = 60
transversal. The acquisition scheme was repeated 3 times
to improve the signal-to-noise ratio. Functional MR im-
ages, aligned in axial orientation, were acquired using EPI
technique: TR = 2000 ms, TE = 30 ms, flip angle = 90°,
FOV = 210 mm, matrix size = 64 × 64, interslice gap =
0.75 mm, slices = 28, slice thickness = 3 mm. Each fMRI
session consisted of 4 runs (190 volumes × run) of visu-
ally and auditory-cued attempted/executed (12 s) and
imagined (12 s) flexion–extension of the fingers, with
either the affected or the unaffected hand, alternated with
rest (12 s). Healthy and paretic hand movements were
monitored during each condition by simultaneous EMG
measurement via 3 pairs (bipolar) MR compatible surface
EMG electrodes placed over the biceps and the extensor
digitorum and extensor radialis muscles. In order to min-
imize head movements, 2 foam cushions were positioned
around participant’s head.

DTI Data Analysis

In our study, changes in structural connectivity after BMI
training were explored by assessing longitudinal variations
of fractional anisotropy (FA) and mean diffusivity (MD)
[38]. FA reflecting the diffusion signal directional dependence
of the brain tissue structure in relation to the degree of anisot-
ropy (represented as an ellipsoid) ranges from 0 (isotropic) to
1 (anisotropic) for increasingly highly oriented fibers. Mean
diffusivity describes the magnitude of water diffusion and is
the average of the eigenvalues representing the amount of
diffusivity along the 3 main orthogonal directions ([λ1 +
λ2 + λ3] / 3). FA is sensitive to changes of several white
matter properties such as axonal myelination, diameter, den-
sity, and orientation of fibers [39, 40], and it has been

extensively used to describe brain remodeling after stroke
and during functional recovery [41–45], also mediated by
BCI training [10, 31]. However, both MD and FA do not
completely describe full tensor distribution being rotationally
invariant scalar indices that can be equally associated with
different eigenvalue combinations. Thus, differences of diffu-
sion metrics such as axial (parallel) diffusivity (AD = λ1) and
radial (perpendicular) diffusivity (RD = [λ2 + λ3] / 2) [38]
were also assessed comparing mean values in white matter
regions using bootstrap analysis (5000 bootstrap samples,
95% bias-corrected and accelerated confidence interval) as
implemented in SPSS (Release 24.0.0.0). Previous studies
showed changes of RD in relation to fiber myelination, where-
as AD appears to be sensitive to axonal degeneration associ-
ated with changes in axonal density or caliber [42]. FA in-
creases have been typically observed as a result of augmented
axial diffusivity and/or diminished radial diffusivity [43, 44].

DTI Data Preprocessing

Diffusion data were analyzed using the DTI & Fiber Tools
toolbox (Freiburg, Germany) (https://www.uniklinik-
freiburg.de/mr-en/research-groups/diffperf/fibertools.html).

Skull striping was first applied to delete non-brain tissue
from the image. Eddy currents and head motion correction
were performed using affine registration to the b0 image.
The diffusion gradient directions were adjusted. A voxel-
wise calculation of the tensor matrix and FA and MD maps
were then obtained for each subject. All resulting images were
visually inspected to verify proper pre-processing results.
Before normalization, stroke lesions were masked by using
individual lesion masks created manually on axial slices of a
T1-weighted images using the MRIcron software package
(see supplementary figure 2). Normalization to standard space
was accomplished using the SPM8 normalization function.
Co-registration of the International Consortium for Brain
Mapping (ICBM)-template [45] image with the realigned FA
andMD images separately using normalized cross-correlation
was followed by application of the deformations estimated for
the normalization of that co-registered ICBM-DTI template
back to standard space to the realigned FA and MD images.

Table 1 Means and standard deviations of demographic data and
functional scores of the 2 patients groups at the time of enrolment in the
study. In the experimental group, brain activity moved the orthoses; the
control group received random orthosis movements not linked to control
of oscillatory brain activity. Lesion side indicates damaged hemisphere.
Motor part of the modified upper limb cFMA (hand and arm parts

combined having a maximum score of 54 points) and Goal Attainment
Scale (GAS) scores are presented for both groups. Training duration
indicates the number of runs during BMI training. One run contains 11
trials of 5 s in which the patients were able to move the orthosis using the
brain–machine interface system. None of the differences of baseline
measures between the experimental and control groups was significant

Group Age (years) Months since stroke Lesion side cFMA GAS Training duration

Experimental 49.3 ± 12.5 69 ± 43 8 R/8 L 11.16 ± 1.73 0.88 ± 0.67 275 ± 25 (runs)

Control 50.3 ± 12.2 64 ± 68 8 L/6 R 13.29 ± 2.86 0.63 ± 0.51 291 ± 17 (runs)
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A three-dimensional Gaussian smoothing kernel (2 mm
FWHM) was applied to the resulting images. Images were
left–right flipped when necessary using the reorient function
of SPM8 so that the right side of the image always
corresponded to the ipsilesional hemisphere.

DTI Data Classification

The aim of DTI data analysis was to evaluate a classifier’s per-
formance in discriminating experimental group from sham con-
trol group based on changes of DTI metrics (FA and MD) after
BMI training. Analysis of DTI data was based on a support
vector machine [46] (linear SVM classifier available on
MATLAB Statistics Toolbox) classification of DTI measures,
as this approach, that considers the inherent multivariate relation-
ships and spatial dependency of white matter fiber bundles [47],
proved to increase sensitivity in detecting morphological alter-
ations associated with several neurological conditions including
stroke [48–52]. For instance, changes of DTI measures in the
corticospinal tract (CST) and periventricular white matter associ-
ated with stroke outcome were detected with multivariate analy-
sis but not with univariate methods [48]. SVM-based classifica-
tion included the following steps: feature selection, classifier
training and testing, and evaluation of classification performance.

Feature Selection

Feature selection is a technique that by reducing data dimen-
sionality through the identification of a subset of relevant fea-
tures and the exclusion of redundant or irrelevant features
permits to reduce overfitting and to increase signal-to-noise
ratio. Feature selection was performed through a leave-one-
out cross-validation approach repeated n times, in which n is
the number of patients in the experimental and control groups.
Feature selection was performed for each cross-validation-
fold by extracting the Fisher score Si of each voxel, calculated
as ∑ nj(μij − μi)

2 / ∑nj∗ρ2ij in which μij and ρij represent the
mean and the variance of the ith feature in the jth class, re-
spectively, nj is the number of instances in the jth class, and μi
is the mean of the ith feature, and applying them to a search-
light approach [53] using cubes with a side-length equal to 3
voxels [54, 55]. Feature selection based on the Fisher score
aims at potentiating classification on the basis of high inter-
class deviations and low intraclass variations. A good feature
has in fact large separation between classes and high unifor-
mity within each class. This process resulted in an output
classification label for each patient, which could be either
positive (+ 1, sham control group) or negative (− 1, experi-
mental group). The output was then compared to the input
label, and in the case of correct matching the classification
was considered successful. This process identified voxels
(out of 983,040 voxels) that increased classification accuracy
between the experimental and control groups.

Classifier Training and Testing and Performance
Evaluation

Robustness of the classifier was assessed by separating train-
ing and testing data sets using leave-one-out cross-validation
approach. Training and data classification were performed
using a SVM classifier with linear kernel available on
MATLAB Statistics Toolbox. The linear SVM is represented
by the weighted sum of the input features plus a bias term:

f xð Þ ¼ wTxþ b;

in which x is the input feature’s vector, w is the weight vector,
and b is the bias value. C parameters estimation were n/(2*n1)
for the data points of the experimental group and n/(2*n2) for
the data points of the control group, in which n1 is the number
of elements of the experimental group, n2 is the number of
elements of the control group, and n = n1 + n2. Positive
weights indicated higher values for the sham control group,
whereas negative weights indicated higher values for the ex-
perimental group.

Classification of Pre2–Pre1 difference images and Post–
Pre2 difference images with all possible label permutations
was also performed to ensure results against spurious out-
comes. The final analysis of Post–Pre2 difference images
was executed with 30 samples (experimental group = 16,
sham group = 14). Classification of images capturing within-
subject FA or MD changes into treatment groups constitutes a
data-driven method to identify differences between the effects
of treatment-group membership based on differences of white
matter metrics using robust machine learning methods.
Evaluation of classifier’s performance was then based on con-
fusion matrix indicators including accuracy, sensitivity, and
specificity. Classification accuracy corresponded to the per-
centage of correct experimental group classification, sensitiv-
ity to the percentage of correct experimental group classifica-
tion, and specificity to the percentage of correct sham control
group classification. A binomial test was used to assess sig-
nificance of classification accuracy.

fMRI Data Preprocessing and Analysis

fMRI data analysis was performed using SPM12. EPI vol-
umes of the pre- and post-intervention fMRI sessions were
realigned, slice time corrected, and anatomically co-regis-
tered. Before spatial normalization (MNI template) and
smoothing (6-mm FWHM Gaussian kernel), stroke lesions
were masked using individual ROIs [56] (see supplementary
figure 1). Images of right-hemispheric stroke patients were
flipped to the left hemisphere so that all right images
corresponded to the ipsilesional hemisphere. Patients with le-
sions in primary sensorimotor regions were excluded from
group analysis. Hemodynamic response amplitudes were
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estimated using standard regressors, constructed by convolv-
ing a boxcar function, for each of the 3 different conditions
(executed/attempted movement, imagined movement, and
rest), with a canonical hemodynamic response function using
standard SPM12 parameters. The time series in each voxel
were high-pass filtered at 1/128 s to remove low-frequency
drifts. First-level contrast images of executed and imagined
movement conditions compared with those of rest were creat-
ed for each session and group. Movement parameters were
also included into the general linear model (GLM) as covari-
ates to account for head motion artifacts. These images were
then entered into a second-level random effects analysis and
post hoc t test analysis to allow inferences across participants
that generalize to the population. A flexible factorial design
with 2 factors, Time (Pre1, Pre2, and Post) and Group (exper-
imental and control), considering movement execution condi-
tionwas adopted. In our random effects model, we allowed for
violations of sphericity by modeling non-independence across
images from the same subject and unequal variances between
conditions and subjects as implemented in SPM12. The
resulting statistical maps were thresholded at p < 0.005 (t >
2.92) [57–59] corrected for multiple comparison using prob-
abilistic threshold-free cluster enhancement [60, 61], an ap-
proach that integrates cluster information into voxel-wise sta-
tistical inference to enhance detectability of neuroimaging sig-
nal. All brain coordinates are reported in MNI atlas space. A
lateralization index (LI) expressed as the normalized differ-
ence between the number of active voxels in the ipsilesional
and contralesional hemispheres [62] was calculated for the
paretic and healthy hand before and after BMI training ses-
sions. LI was calculated by selecting an inclusive mask of
primary motor cortex (BA4), premotor cortex (including
SMA, BA6), and primary somatosensory cortex (BA3),
masking out the midline (± 5 mm), and by using a combina-
tion of clustering (smoothing = 2 × voxel size) and variance
weighting approaches to determine reliability of activations
and remove outliers [62]. LI yields a value of 1 or − 1 when
the activity was purely contralesional or ipsilesional respec-
tively. The differences of LI calculated individually were cor-
related with FA changes.

Functional Connectivity Analysis

Motor network functional connectivity was assessed in order to
elucidate and possibly support the convergent BMI training–
related differences in FA and BOLD activity. Connectivity anal-
ysis was performed using the CONN functional connectivity
toolbox (Release 18.a, http://www.nitrc.org/projects/conn) [63].
Functional connectivity was estimated using a weighted GLM
for weighted temporal correlation measures (weighted seed–
based connectivity) between BOLD time series in a defined
seed area andwhole brain voxels during paretic limbmovement
execution. This data-driven approach permits exploration of

functional relationships among all nodes of brain motor net-
work, being not dependent of priori assumptions and arbitrary
selection of limited number of regions that are instead necessary
inmodel-based effective connectivitymethods such as dynamic
causal modeling.

Before computing connectivity analysis, denoising was ap-
plied to reduce motion and physiological and additional artifac-
tual effect from the BOLD signal. Noise reduction was per-
formed based on the available CompCor method that includes
the principal components (5 each) of WM and CSF time series
as nuisance covariates; WM and CSF were identified via seg-
mentation of the anatomical images with SPM12. Subject-
specific lesion masks were included as additional covariates
to regress out. The 6 head motion parameters derived from
spatial motion correction were also added as confounds.
Band-pass filtering with a frequency window of 0.008 to
0.09 Hz was applied. Seed-to-voxel maps were then created
for each participant. Two different seeds, represented by two
9-mm spherical regions in the parietal cortex (x, y, z = − 23, −
56, 51) and supplementary motor area (x, y, z = − 13, 10, 63) in
the contralesional hemisphere, were considered. These regions,
masked with subject-specific estimated gray matter mask, were
defined based on the observed between-group training effect
activation maps during paretic hand movement execution (see
the “Results” section). In addition, functional connectivity of
the contralesional primary motor area (M1, x, y, z = − 30, − 16,
54, 9-mm radius—coordinates corresponding to the main
BOLD cluster during healthy hand movement) was also ex-
plored as previous studies showed inhibitory influences from
contralesional to ipsilesional M1 during paretic hand move-
ments [22, 64–66]. Separate bivariate–correlation analyses
were used to determine the linear association of the BOLD time
series between each of the 3 “seed” regions separately and
whole brain areas on each participant. Individual seed-to-
voxel maps were then entered into a second-level analysis.
Between-group temporal correlations were analyzed consider-
ing paretic hand movement condition during Post vs Pre2 and
Pre2 vs Pre1. The resulting connectivity maps were thresholded
at p < 0.005 (t > 2.92), corrected for multiple comparison using
probabilistic threshold-free cluster enhancement [60, 61].
Assessment of resulting changes in positive or negative corre-
lations was performed by creating a mask of the resulting sig-
nificant clusters of interest of the interaction effect and then by
exploring connectivity values for each cluster of each session.

Results

Clinical Outcome

No significant differences were measured for upper limb mo-
tor functions between experimental and control groups at
baseline. A 2-way mixed model ANOVA (with independent
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measures on group and repeated measures on time) showed a
significant Time (Pre2 and Post) × Group (F1,28 = 6.294, p =
0.018) interaction and a significant effect of time (F1, 28 =
9.588, p = 0.004) on cFMA scores. There was no main effect
of group (F1,28 = 0.034, p = 0.855). A significant improve-
ment of the cFMA was observed in the experimental group
(mean ± SE Pre2 = 11.16 ± 1.73, Post = 14.56 ± 1.95, t1,15 =
6.049, p < 0.001) but not in the sham control group (mean ±
SE, Pre2 = 13.29 ± 2.86, Post = 13.64 ± 2.91, t1,13 = 0.316,
p = 0.757). None of the other behavioral measures showed
any differences between groups (see Ramos-Murguialday
et al. [15] for a complete description of clinical outcome). In
addition, motor function outcomes 6 months after the inter-
vention (Post2) indicated long-lasting improvements [67]. In
fact, in the experimental group, only cFMA scores were sig-
nificantly higher in Post2 (13.44 ± 1.96) as compared with
Pre2 (p = 0.015) session and no significant difference was
measured between Post and Post2 sessions.

DTI Data Classification

DTI data analysis showed successful classification of the ex-
perimental and control groups based on individual FA images
representing Pre and Post-training difference (2-sided binomi-
al test, p = 0.0002), with an average accuracy of 82.8% (sen-
sitivity, 75% positive effect of treatment, i.e., experimental
group correctly identified; specificity, 92.3% negative effect
of treatment, i.e. control group correctly identified). Sixteen
label permutations were performed to compute a chance level
of classification and ensure that the classifier would not clas-
sify any arbitrary distinction into classes with equal accuracy
merely due to the high number of available features and low
number of patients. The computed chance level resulting in an
average accuracy of 48.9% (± SD 8.8%; average sensitivity,
57.8%, ± 22.4%; average specificity, 37.9%, ± 20.7%) indicat-
ed that the successful classification of Post–Pre2 FA change
images into the experimental group does not occur due to an
imbalance of available features and random variations.

Classification accuracy of the experimental and control
groups based on individual MD images representing Pre and
Post-training did not reach significance level indicating no
specific treatment effect on white matter mean diffusivity (2-
sided binomial test, p > 0.05). All FA and MD classification
results are displayed in Fig. 2.

FA-related spatial analysis of the selected voxels discrimi-
native for the treatment effect revealed that voxels were locat-
ed in subcortical white matter tracts within posterior and main-
ly contralesional brain regions. Specifically, the experimental
group showed FA decrease whereas the control group showed
FA increase in the same sites (see supplementary figure 1).
The most significant decreases of FA were observed in the
splenium (SPL) and body of corpus callosum (BCC) (subre-
gions corresponding to transcallosal fibers interconnecting

parietal cortex—SPL—and dorsal premotor cortex, pre- and
supplementary motor areas—BCC [68, 69]), and in the
contralesional hemisphere in the posterior limb of the internal
capsule (PLIC), posterior thalamic radiation (PTR), and supe-
rior corona radiata (SCR) (Fig. 3). Classification analysis of
individual Pre2–Pre1 FA and MD images into the experimen-
tal and control groups did not show significant effects with an
average accuracy of 65.2% (FA) and 56% (MD), indicating
that identification of treatment group membership was per-
formed close to chance level.

Additional univariate analysis of DTI metrics showed no
significant training-related differences (p > 0.05, Fig. 4 top) of
FA, MD, AD, and RD within each of the white matter regions
differentiating experimental and control groups. A significant
FA decrease (p = 0.039) and a tendency of RD increase (p =
0.054) was observed considering all the abovementioned
white matter regions together (Fig. 4 bottom).

FA Relationship to Clinical Outcome

A negative correlation was measured between increased
motor functions as evidenced by increased cFMA and
FA decrease in the splenium (Pearson’s r = − 0.775, df =
13, p < 0.01, 2-tailed) and in the contralesional posterior
thalamic radiation (Pearson’s r = − 0.718, df = 13, p < 0.01,
2-tailed) in the experimental group. No significant correla-
tion between cFMA and FA changes was measured in the
control group.

fMRI Data

Weobserved a significant interaction effect betweenGroup and
Time on brain activation for paretic hand movement execution
as compared with rest, thereby showing a differential training
effect between experimental and control groups. This interac-
tion was investigated using separate t-contrasts. The experi-
mental group as compared with the control group showed de-
creased BOLD activity in the contralesional superior parietal
cortex (SPC: x, y, z = − 23, − 56, 51; k = 52) and the supple-
mentary motor area (SMA: x, y, z = − 13, 10, 63; k = 11) during
paretic hand motor execution after training (Post > Pre2,
Fig. 5). The experimental group showed predominant unilateral
brain activity when the task was performed with the healthy
hand in Pre1, Pre2, and Post, with maximum peaks in the
sensorimotor regions contralateral to the movement (Pre1:
MNI x, y, z = − 42, − 33, 61; Pre2: x, y, z = − 30, − 16, 54;
Post: x, y, z = − 39, − 26, 57); no significant differences were
measured over sessions. Bilateral brain activity was observed
during the affected hand task with maximum peaks in the
contralateral/ipsilesional primary sensorimotor areas before
and after BMI training (Pre1: x, y, z = 25, − 16, 73; Pre2,
MNI x, y, z = 30, − 23, 72; Post: x, y, z = 26, − 23, 69). No
movemen t s we r e ob s e r ved and r eco rded w i t h
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electromyography (EMG) during motor imagery and rest con-
dition and no mirror movements or involuntary co-contraction

was observed or measured during the actual movement condi-
tion in both the experimental and control groups.

Fig. 2 FA and MD changes in classification performance. Left, Post–
Pre2 classification (red). Center, label permutations of the treatment
effect classification (green). Test statistic was compared with the
distribution of permutation values, which are computed similarly to the
test statistic but under a random rearrangement of the labels of the data

set. Right, Pre2–Pre1 classification (blue). The dotted black line indicates
the 50% chance level; the dotted blue line indicates the level in which
classification accuracy is considered statistically significant based on
binomial test. Y-axis, percentage of correct classification

Fig. 3 SVM weight vector for each voxel selected as feature. A linear
SVM is the weighted sum of the input features plus a bias term: f(x) =
wTx + b, in which x is the input feature’s vector, w is the weight vector,
and b is the bias value. Heatmap color-coding indicates voxel-weight;
maximal weights were located in posterior and middle midline corpus
callosum structures (right) as well as parts of the geniculate fibers and

internal capsule (left and middle). Analysis of the within-group white
matter changes reveals that patients in the experimental group showed a
decrease of FA in the splenium and body of the corpus callosum, posterior
limb of the internal capsule (contralesional), posterior thalamic radiation
(contralesional), and superior corona radiata. LS = lesional side
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Functional Connectivity

In the experimental group with respect to the control group,
the contralesional SMA showed decreased positive coupling
(Fig. 6 top, warm colors) with contralesional cerebellum (−
26, −50, 8), bilateral lingual gyrus (− 26, − 10, 70; 18, − 46, −
4), and contralesional premotor cortex (− 30, − 14, − 70) and
decreased negative coupling (Fig. 6 top, cool colors) with the
ipsilesional premotor/motor cortex (58, 0, 26), the putamen
(28, − 4, 12), and the ventromedial prefrontal cortex (6, 22,
− 16) during paretic hand movement, after BMI training
(Pre2 > Post) (Fig. 6, cool colors).

The contralesional M1 of the experimental group as com-
pared with the control group showed decreased negative cou-
pling (Fig. 6 bottom, cool colors) with ipsilesional premotor
cortex (42, 2, 44), primary motor cortex (46, − 14, 54), cingu-
late cortex (2, 30, 30), and parietal cortex (40, − 36, 48) and
decreased positive coupling (Fig. 6 bottom, warm colors) with
contralesional (− 6, − 30, − 12; − 40, − 54, − 6) and
ipsilesional (22, − 74, − 34; 44, − 60, 34) cerebellum, after
BMI training. Connectivity value exploration in the experi-
mental group over sessions revealed that for both
contralesional SMA and M1, decreased positive coupling
corresponded to changes of correlation from positive (Pre2)

Fig. 4 Top, Pre- and post-training
values of FA, MD, AD, and RD
(mean ± SD) in the splenium and
body of the corpus callosum and
in the contralesional posterior
limb of the internal capsule,
posterior thalamic radiation, and
superior corona radiata. Bottom,
FA, MD, AD, and RD values
(mean ± SD) averaged over all the
regions

Fig. 5 Between-group (experimental > control) SPM t-maps during hand
movement execution during Pre2 with respect to Post (Pre2 > Post). A
significant decrease of BOLD activity was observed in the superior

parietal cortex and supplementary motor area, in the contralesional hemi-
sphere. Axial images are oriented according to neurological convention.
LS = lesional side
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to negative (Post), whereas decreased negative coupling
corresponded to changes of correlation and from negative
(Pre2) to positive (Post). No significant between-group corre-
lation differences were observed considering the
contralesional SPC as seed. The comparison between Pre1
and Pre2 sessions did not reveal any significant difference
for any of the selected seed.

Structure–Function Relationship

Correlation analysis between LI and FA changes explored the
relationship between structural and functional changes after
BMI training. A positive correlation was measured between
Post–Pre2 LI changes and Post–Pre2 FA changes in the
splenium (Pearson’s r = 0.51, df = 13, p < 0.05, 1-tailed) and

in the contralesional posterior thalamic radiation (Pearson’s
r = 0.56, df = 13, p < 0.05, 1-tailed).

Discussion

In this study, we investigated structural and functional motor
network reorganization in severely impaired chronic stroke
patients that underwent EEG-BMI-based treatment reinforc-
ing sensorimotor contingency of ipsilesional motor com-
mands. SVM-based classification of DTI metrics revealed sig-
nificant white matter fractional anisotropy changes in the ex-
perimental group only. Specifically, FA decreased in several
subcortical contralesional sensorimotor pathways and in the
corpus callosum. Functional data analyses showed decreased

Fig. 6 Top, between-group
differences (experimental >
control) of contralesional SMA
functional connectivity with
whole brain (weighted seed-to-
voxel analysis) during paretic
hand movement after BMI
training (Pre1 > Post). The
contralesional SMA showed
decreased positive correlation
(warm colors) with contralesional
cerebellum and contralesional
premotor cortex, and decreased
negative correlation (cool colors),
with the ipsilesional premotor/
motor cortex, the putamen, and
the ventromedial prefrontal
cortex. Bottom, between-group
differences (experimental >
control) of contralesional M1
functional connectivity with
whole brain (weighted seed-to-
voxel analysis) during paretic
hand movement after BMI
training (Pre1 > Post). The
contralesional M1 showed
decreased negative correlation
with ipsilesional premotor cortex,
primary motor cortex, cingulate
cortex, and parietal cortex (cool
colors) and decreased positive
correlation (warm colors) with
contra- and ipsilesional
cerebellum. Axial images are
oriented according to
neurological convention. LS =
lesional side
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BOLD activity in the contralesional supplementary motor ar-
ea, superior parietal cortex, in the experimental group with
respect to the control group. Furthermore, functional connec-
tivity analyses corroborated these results by revealing de-
creased negative interhemispheric coupling between
contralesional and ipsilesional sensorimotor regions, and de-
creased positive intrahemispheric coupling among
contralesional sensorimotor regions, during paretic hand
movement after training.

Whereas fMRI results are in line with longitudinal studies
showing shifted activity towards the ipsilesional/contralateral
sensorimotor regions during successful recovery after stroke
[27, 70–72], the reduction of FA of white matter fiber tracts in
the unaffected hemisphere as well as in the body and splenium
of the corpus callosum is noteworthy. Most previous studies
on recovery after stroke reported higher FA in contralesional
white matter structures during acute to sub-acute phases of
subcortical infarction [73], as well as in chronic patients, cor-
relating with motor skill recovery [74], and thus proposing FA
increase as index of a possible compensatory contribution of
the ipsilateral/contralesional motor network [75].
Accordingly, reduced contralesional CST integrity, assessed
with FA metrics as well as with motor evoked responses to
TMS, was observed in chronic patients with poorer motor
recovery as compared with patients with better motor skills
and with control subjects [19, 74, 76]. A cross-sectional study
investigating the relationship between FA and motor skills of
the affected hand in chronic stroke demonstrated that patients
with poor motor skills had reduced FA of bilateral
corticospinal tract compared with healthy controls, whereas
patients with better motor skills had increased FA of bilateral
CST compared with controls [74]. However, in this case, it
was unclear whether FA changes were due to the effects of
ischemic damage, to secondary degeneration, or to positive
remodeling of the tracts during recovery [77]. On the other
hand, lower FA can also result from (re-)learning-related white
matter modifications such as axon diameter increase and in-
creased number of crossing fibers [78].

At present, the interpretation of FA variations remains un-
clear mainly because of its susceptibility to a combination of
different tissue properties such as fiber arrangements, degree
of myelination, and axonal integrity. Some evidences indicate
that the main factor influencing FA might be axonal mem-
branes more than myelin, although the latter can also partici-
pate in its modulation [79]. In our study, although clear infer-
ences about the specific microstructural changes cannot be
drawn, we observed that FA decrease was associated with a
tendential increment of radial diffusivity. However, heteroge-
neity of AD and RD variations among patients suggest that
multiple factors might have differentially contributed to the
observed FA decrease in the white matter regions [44].

Nevertheless, it is conceivable that re-learning of motor
acts through a treatment stimulating ipsilesional motor activity

reduced the recruitment of contralesional hemisphere that in
turn resulted in structural motor network modifications. For
instance, a previous study reported contralesional decrease
and ipsilesional increase of gray matter density in the primary
sensorimotor cortex in chronic stroke patients showing shift of
cortical activity from the healthy to the paretic hemisphere
after intervention [80]. In line with our observation, a longi-
tudinal study examining white matter changes in the
contralesional hemisphere of chronic patients who recovered
well from ischemic stroke observed a significant decrease of
FA in the contralesional mirror region [81], suggesting that a
possible degeneration of interhemispheric connections be-
tween homologous areas might facilitate recovery after stroke
[23]. FA reduction in contralesional white matter regions was
also observed in chronic stroke patients with Broca’s aphasia
showing improvements in speech production after intensive
intonation-based speech therapy [82]. In addition, reduced FA
and increased RD were measured in the corpus callosum of
motor-impaired patients following amputation [83].
Interestingly, we observed a correlation between FA decrease
in the splenium, and in the contralesional posterior thalamic
radiation, the former encompassing somatosensory interhemi-
spheric connections and the latter including thalamo-cortical
fibers projecting to the sensorimotor cortex, with motor im-
provement and with increased lateralization towards the
ipsilesional hemisphere. The concurrent FA decrease in the
corpus callosum, and in the contralesional white matter fiber
tracts, with decreased contralesional parietal activity might
further indicate reduced contribution of the unaffected
hemisphere.

CST damage after stroke often implies that proprioceptive
input of the affected hand is additionally processed by
contralesional somatosensory and parietal cortex, and in some
cases ipsilesional somatosensory regions are completely inac-
tive [84]. A meta-analysis of neuroimaging studies of hand
motor task execution in stroke patients consistently showed
the engagement of several contralesional areas such as M1,
premotor, and supplementary motor areas [85]. Studies in ma-
caques revealed concurrent primary motor and cerebellar ac-
tivity in the contralesional hemisphere after corticospinal le-
sion in macaques and that pharmacological inactivation of
contralateral M1 deteriorated hand motor functions only dur-
ing early period of recovery and not during later stages, sug-
gesting time-dependent adaptive contribution of the
contralesional motor regions [72]. Accordingly, several stud-
ies confirmed this early observation showing reduced
contralesional activations in successful motor recovery [86].

Increased exploitation of preserved ipsilesional motor con-
nections and reduced engagement of the unaffected sensori-
motor cortex might be also consistent with the observed re-
duction of FA in the contralesional posterior limb of the inter-
nal capsule, a portion of the corticospinal tract conducting
motor efferences, as well as in the superior corona radiata, that
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includes somatomotor cortico-thalamic and cortico-pontine
projections. The posterior limb of the internal capsule does
not only contain corticofugal projections but also ascending
axons to somatosensory cortex, and after stroke, the contralat-
eral ascending sensory pathway might be partially or entirely
disrupted. It is thus plausible that contralesional FA decrease
might be also ascribable to the reduced exploitation of ipsilat-
eral pathways for sensory afferences after training.

To date, the functional relevance of unaffected sensorimo-
tor areas is still largely debated. The controversial evidences
on the role of the contralesional hemisphere after stroke gen-
erated 2 alternative models describing possible neural mech-
anisms after brain damage: the “vicariation model” and the
“interhemispheric competition model” [87]. The former mod-
el assumes that residual motor networks replace the activity in
affected regions, and activity in the unaffected hemisphere
would compensate for damaged or disconnected regions [88,
89] and contribute to recovery. On the other hand, the involve-
ment of the non-lesioned hemisphere may be maladaptive and
prevent motor functional improvement, in particular in the
chronic stage [90–92]. Increased contralesional sensorimotor
cortex responses have been observed in patients with poor
functional outcomes [93, 94]. Moreover, an association be-
tween increased FA of the contralesional corticospinal tract
and poor motor function has been also reported [10], indicat-
ing maladaptive structural reorganization of the contralesional
hemisphere in non-treated stroke patients.

According to the “interhemispheric competition model,”
after brain infarct, the balanced inhibition between hemi-
spheres is disrupted so increased inhibition of the damaged
hemisphere from the healthy hemisphere is induced by de-
creased inhibition in the opposite direction. This reciprocal
mechanism known as interhemispheric inhibition (IHI) in
healthy subjects prevents the occurrence of mirror activity in
the ipsilateral primary motor cortex [95, 96], whereas in pa-
tients after stroke, it would inhibit appropriate motor execu-
tion [23, 97, 98]. The IHI is mostly mediated by the corpus
callosum [66, 99, 100] and although M1 plays a major role,
the interhemispheric inhibitory network includes secondary
sensorimotor regions such as the SMA and pre-SMA [64,
101], the dorsal premotor cortex [102, 103], and the somato-
sensory cortex [104]. In addition, the cerebellum can also
influence the inhibitory motor network at the cortical level
[105]. On the other hand, it has been suggested that after
stroke, mirror movements might be mediated by subcortical
instead of cortical networks, suggesting involvement of
rubrospinal and reticulospinal pathways [106, 107].

Previous functional connectivity studies in stroke patients
reported that movements of the paretic hand are characterized
by abnormal interhemispheric interactions from contralesional
to ipsilesional primary motor cortex and SMA [22, 64].
Notably, the degree of motor impairment was associated with
the level of inhibitory influence from the contralesional M1 to

the ipsilesional M1 [64]. Our functional connectivity analyses
revealed large interhemispheric and intrahemispheric interac-
tions in the contralesional hemisphere before training.
Contralesional M1 positively correlated with bilateral cerebel-
lum and negatively with ipsilesional premotor, primary motor,
and parietal cortices; contralesional SMA positively correlated
with contralesional and ipsilateral cerebellum and
contralesional premotor cortex, and negatively with
ipsilesional sensorimotor regions. These results confirm pre-
vious observations of bilateral sensorimotor region recruit-
ment and increased intrahemispheric coupling among
contralesional motor network nodes [108]. In particular, they
are in line with studies indicating that ipsilateral premotor
cortex, in addition toM1, would support handmovement after
stroke [88, 109].

In addition, we observed positive cerebellar coupling with
contralesional M1 and SMA before training. Increasing evi-
dence indicates that the cerebellum, a region essential for mo-
tor coordination and learning with no direct projections to
peripheral motor neurons, might also participate to stroke re-
covery [110, 111]. Though, there is still no consensus on its
role: on the one hand, some studies showed motor function
enhancement after cerebellar stimulation [110], suggesting a
beneficial role for motor impairment compensation after
stroke, and on the other hand, other studies suggest a possible
association with interhemispheric inhibition [105].

Remarkably, after training, in the experimental group, as
compared with the control group, both contralesional M1 and
SMA showed reduced positive coupling with contralesional
sensorimotor regions and reduced negative coupling with
ipsilesional sensorimotor network. The reduced contralesional
intrahemispheric connectivity involving M1 and SMA, criti-
cal nodes of the interhemispheric inhibitory network along
with decreased negative interhemispheric sensorimotor inter-
actions, might here suggest a detrimental role of the unaffected
hemisphere, potentially exerted through abnormal IHI.

Previous studies showed a positive correlation between mi-
crostructural integrity of the corpus callosum (FA-based) and
strength of interhemispheric inhibition in adults [100, 112] and
in the course of motor development [113]. In particular, it has
been shown that increased FA predicts interhemispheric inhib-
itory capacity [69]. In our study, the measured FA decrease in
the body and splenium of the corpus callosum, including
premotor and somatosensory interhemispheric fibers, and in
the posterior limb of the internal capsule and superior corona
radiata in the contralesional hemisphere, which conduct
hemisphere-crossing tracts mostly from pre- and supplementary
motor regions, might result from reduced contralesional activ-
ity, and potentially decreasedmaladaptive transcallosal commu-
nication. Furthermore, the decreased negative coupling of M1
with the cerebellum along with reduced FA in the contralateral
superior corona radiata, a region that includes cortico-pontine
fibers interconnecting the cerebral cortex with the cerebellum
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via pontocerebellar fibers, might indicate remodeling of the
inhibitory motor network at different brain levels mediating
motor execution and coordination improvement.

In short, independent of the functional relevance of the
contralesional activity, either beneficial or detrimental, alto-
gether, our functional data indicate a reduced contribution of
the ipsilateral hemisphere as well as modifications of inter-
hemispheric interactions after EEG-BMI training. As
transcallosal pathways contain both inhibitory and facilitatory
fibers with a number of synapses, it is not possible here to
clearly interpret the nature of interhemispheric communica-
tions [69, 114], and further studies addressing the effects of
BMI-based intervention on interhemispheric interactions
should be specifically tailored.

Overall, although sample size is limited, our findings indi-
cate that BMI training reinforcing ipsilesional brain activity
and enhancing proprioceptive function of the affected hand
elicits intra- and inter-hemispheric reorganization of somato-
sensory and motor-assemblies as well as afferent and efferent
connection–related motor circuits [115] that support the partial
re-establishment of the original neurophysiology of the motor
system. Notably, whereas functional reorganization involved
both hemispheres, white matter FA changes were mainly re-
lated to interhemispheric connections and the contralesional
hemisphere. This observation suggests that recovery in se-
verely impaired chronic stroke patients may be possibly
achieved through reorganization of the unaffected hemisphere
and exploitation of the remaining preserved motor circuits in
the affected hemisphere.

The chronic stage has long been assumed a phase in which
the adaptive processes of regeneration cease completely and,
consequently, the range of treatment options has been very
narrow and the focus of the clinical community has centered
on palliative and assistive interventions. On the contrary, our
results highlight the significant role of non-invasive BMI ap-
proach for stimulating preserved brain systems, otherwise not
reachable in patients with severe motor network disruptions
that can elicit functionally adaptive mechanisms fostering mo-
tor recovery.
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