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A B S T R A C T   

Head motion remains a challenging confound in functional magnetic resonance imaging (fMRI) studies of both 
children and adults. Most pediatric neuroimaging labs have developed experience-based, child-friendly standards 
concerning e.g. the maximum length of a session or the time between mock scanner training and actual scanning. 
However, it is unclear which factors of child-friendly neuroimaging approaches are effective in reducing head 
motion. Here, we investigate three main factors including (i) time lag of mock scanner training to the actual scan, 
(ii) prior scan time, and (iii) task engagement in a dataset of 77 children (aged 6–13) and 64 adults (aged 18–35) 
using a multilevel modeling approach. In children, distributing fMRI data acquisition across multiple same-day 
sessions reduces head motion. In adults, motion is reduced after inside-scanner breaks. Despite these positive 
effects of splitting up data acquisition, motion increases over the course of a study as well as over the course of a 
run in both children and adults. Our results suggest that splitting up fMRI data acquisition is an effective tool to 
reduce head motion in general. At the same time, different ways of splitting up data acquisition benefit children 
and adults.   

1. Introduction 

“Please remember: Relax and try not to move. Here we go.” In 
functional magnetic resonance imaging (fMRI) experiments, this is often 
the last thing the researcher says before starting the scanner and the 
experiment. What is left to do is hoping for good quality data. As MRI is 
very susceptible to head motion during the scan (Friston et al., 1996), 
hoping for good quality data is often equivalent to hoping for data with 
low head motion. The importance of reducing head motion during data 
acquisition has been impressively documented in several studies 
showing that head motion can lead to misleading results (in some cases, 
even after retrospective motion correction; Power et al., 2012; Sat
terthwaite et al., 2012; van Dijk et al., 2012). 

In pediatric neuroimaging studies, the general problem of head 
motion is especially challenging. Despite children’s high motivation to 
lie still, in most studies children still move more than adults. This poses a 

problem for data quality in pediatric neuroimaging especially for group 
comparisons between children and adults. Even with retrospective head 
motion correction (which is limited in its ability to correct for motion 
Field et al., 2000; Freire and Mangin, 2001; Friston et al., 1996), group 
differences in head motion often persist. This usually leads to the 
exclusion of motion-affected runs or participants from data analysis (e.g. 
Meissner et al., 2019; Nordt et al., 2018; Walbrin et al., 2020), hence 
requiring additional time and research funds to achieve an adequately 
powered study design. 

To minimize motion during data acquisition, various solutions have 
been developed. For structural MRI scans in clinical settings, sedation is 
often used. However, this is not an option for fMRI studies in research 
settings due to the need for attentive participants as well as the unac
ceptable risk of health-related side effects (de Bie et al., 2010). One set of 
solutions for fMRI studies aims at restraining head motion physically. 
Restrictive approaches including bite bars (Menon et al., 1997) or 
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thermoplastic face masks (Green et al., 1994), are considered effective 
for short scan durations. However, they reduce comfort and are there
fore seldomly accepted in pediatric neuroimaging. In contrast to the 
desired outcome, the discomfort of these methods can also lead to more 
fidgeting and wiggling in search of comfort (Zeffiro, 1996), especially 
for longer scans. Approaches that use individually 3D-printed styrofoam 
head molds are effective and said to be comfortable (Power et al., 2019), 
but require additional time and research funds for each participant. A 
less resource-intensive, yet effective and accepted solution, is to provide 
tactile feedback about participant’s head motion by applying a tape or 
ribbon across the head coil that touches the participant’s forehead 
(Krause et al., 2019). 

Aside from physical constraints, pediatric neuroimaging groups often 
adapt the study procedure to reduce children’s motion during data 
acquisition. The most prominent tool is to precede the actual MRI ses
sion(s) with a scanner training session (Raschle et al., 2009; Slifer et al., 
1993). Scanner training sessions are usually performed in a mock 
scanner, a custom-built or purchased facsimile of a real MRI, which lacks 
the technical capability to acquire actual data, but can play scanner 
sounds and has a similar setup to the real scanner (e.g. head 
coil-mounted mirror, response buttons, etc.). During these sessions, 
behavioral training is used to teach lying still in the scanner bore and 
responding to the task. There is a general consensus that a scanner 
training session is beneficial for fMRI data acquisition as it reduces 
children’s anxiety (Durston et al., 2009; Raschle et al., 2009; Rosenberg 
et al., 1997). While a reducing effect on head motion is also assumed, the 
current literature has not been able to show this (due to a lack of control 
groups that did not receive scanner training; but see Barnea-Goraly 
et al., 2014; de Bie et al., 2010; Epstein et al., 2007 for success rates and 
reduced motion after scanner training). 

Similarly, many pediatric neuroimaging groups have established 
experience-based guidelines for child-friendly study designs in terms of 
the scanning procedure. These usually include keeping runs short, 
interspersing anatomical scans as task-free inside-scanner breaks while 
presenting entertaining video clips, and limiting the total scanning 
session time. Moreover, based on findings in adults (Huijbers et al., 
2017), tasks are designed in an engaging and interactive way rather than 
just requiring passive perception of stimuli. In consequence, a small 
body of literature has developed that recommends scanning procedures 
for pediatric neuroimaging (e.g. Greene et al., 2016; Habibi et al., 2015; 
Raschle et al., 2009). However, as for scanner training, the contribution 
of presumably child-friendly adaptations in scanning procedures on 
minimizing head motion has not been investigated so far. 

The present study set out to identify which fMRI study procedures 
contribute to reduced head motion in fMRI studies. Our aim was to 
generate data-driven suggestions to optimize study procedures for 
children and adults separately. To this end we utilized head motion 
estimates derived from a standard motion correction pipeline applied to 
77 children and 64 adults from three fMRI studies at two sites, and notes 
that yielded demographic data, the date of scanner training, and the 
sequence of data acquisition. Using separate multilevel linear models for 
children and adults, we investigated the effect of splitting up data 
acquisition into several days or sessions, the effect of interspersing 
functional data acquisition with structural runs and video clip breaks, 
the effect of time between scanner training and the actual scan, and the 
effect of task engagement. 

2. Methods 

2.1. Definition of session, run, and functional segment 

In this article, we make important distinctions between “session”, 
“run”, and “functional segment”. Session corresponds to a continuous 
period of time spent inside the scanner. A session begins upon entering 
the scanner and ends as a participant leaves the scanner. For example, if 
a participant enters the scanner, takes a break outside the scanner and 

re-enters the scanner, this would constitute two sessions. Run corre
sponds to a continuous image acquisition sequence. For example, a 
participant could complete an experiment with four fMRI runs within a 
single session. Functional segment corresponds to a period of consecu
tive acquisition of functional runs inside the scanner. For example, if a 
scan procedure involves an anatomical T1-scan, three fMRI runs, two 
diffusion-weighed imaging (DWI) sequences, and finally four more fMRI 
runs, this participant has completed two functional segments. 

2.2. Participants 

Our study included data from two neuroimaging centers (see 2.3, 
Neuroimaging) and three developmental cognitive neuroimaging 
studies, a total 680 runs from 77 children and 624 runs from 64 adults. 
Some of the data has been used to answer questions concerning the 
neurocognitive visual and social development in children and adults 
previously (Meissner et al., 2019; Nordt et al., 2018; Walbrin et al., 
2020). The final analyzed data set was reduced to 626 runs from 77 
children and 470 runs from 54 adults due to several exclusion criteria 
(see 2.5, Data exclusion). In children, the number of runs per participant 
ranged from 1 to 14 (M ¼ 8.13, SD ¼ 3.21), in adults, the number of runs 
per participant ranged from 4 to 14 (M ¼ 8.70, SD ¼ 3.33). Children’s 
age ranged from 6.78 to 13.01 years (M ¼ 9.52, SD ¼ 1.68), adult’s age 
ranged from 18.41 to 35.02 years (M ¼ 21.76, SD ¼ 2.67). All partici
pants were healthy, had normal or corrected-to-normal vision, and had 
been born at term. No participant reported past or current neurological 
or psychiatric conditions, or had structural brain abnormalities. All 
participants as well as children’s parents gave informed and written 
consent to participate voluntarily. 

2.3. Neuroimaging 

fMRI took place at the Neuroimaging Centre of the Research 
Department of Neuroscience at Ruhr University Bochum and the Bangor 
Imaging Centre at Bangor University. At Bochum, a total of 338 runs in 
50 children and 346 runs in 40 adults were acquired—at Bangor, a total 
of 188 runs in 27 children and 123 runs in 14 adults were acquired. At 
both sites, 3.0 T Achieva scanners (Philips, Amsterdam, The 
Netherlands) and 32-channel head coils were used (Supplementary 
Fig. S1). For all fMRI, we used blood oxygen level dependent (BOLD) 
sensitive T2*-weighted sequences. Across sites and experiments, the 
following fMRI acquisition parameters were constant: 
FOV ¼ 240 mm � 240 mm, matrix size ¼ 80 � 80, voxel 
size ¼ 3 mm � 3 mm � 3 mm, TR ¼2000 ms, TE ¼30 ms. However, slice 
gap (Bangor: 0 mm, Bochum: 0.4 mm), number of slices (Bangor: 32, 
Bochum: 33), slice scan order (Bangor: ascending, Bochum: ascending 
interleaved), and flip angle (Bangor: 83�, Bochum: 90�) differed be
tween sites. Visual stimuli were presented via a VisuaStim Digital goggle 
system (FOV: 30� � 24�, 800 � 600 pixel, Resonance Technology Inc., 
CA, USA) in Bochum and via a MR-safe monitor and mirror system (FOV: 
25.92� � 16.90�, 1920 � 1200 pixel; Cambridge Research Systems, UK) 
in Bangor. Due to the visual isolation inherent with the goggle system, a 
researcher was present next to the scanner bore opening at all times for 
immediate verbal contact and motion feedback in Bochum, but not in 
Bangor. 

For each study, a certain number of functional runs and structural 
scans were planned. Details on the experiments that were done during 
the functional runs as well as the number of participants and runs for 
each of the tasks are given in the Supplementary Text S1 and Supple
mentary Table S1. In adults, experimenters followed this protocol, 
checking in with participants after the completion of each experiment (i. 
e. after multiple runs) to explain what would happen next and only 
stopped or diverted from protocol if participants actively reported 
feeling unwell. In contrast, in children, we checked in with participants 
after each run to actively inquire about their well-being. Moreover, 
nearing the end of a session, we also actively asked if they still felt good 
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and ready to do another run. This was done in order to give children the 
opportunity to express any signs of discomfort, which to our experience 
children do not necessarily utter spontaneously but sometimes only after 
encouraging them to be open about it or giving them an explicit op
portunity. Thus, we dynamically decided when to break up acquisition 
into sessions or days, when to intersperse tasks with a structural scan 
accompanied by an entertaining video, or when to end the study. 

2.4. Scanner training 

All children underwent a scanner training in order to familiarize 
them with the scanner environment and achieve high-quality scans with 
as little motion as possible (Supplementary Fig. S1). At both scanner 
sites, pre-recorded audio of MRI acquisition sequences was played 
during scanner training to simulate the real scanner environment and 
visual stimulation was achieved through a mirror system targeted at a 
monitor outside of the mock scanner bore. 

In other aspects, training sessions differed between sites. In Bangor, 
scanner training was conducted right before scanning and entailed lying 
inside a mock scanner with a motion sensitive electrode placed on the 
forehead to measure movement across three translation and three 
rotation axes (MoTrak Head Motion Tracking System; Psychology Soft
ware Tools, 2017). Children received visual motion feedback via an on- 
screen cursor that was controlled by children’s head movements. Chil
dren were instructed to lie still and keep the cursor in the middle of a 
target circle, whose diameter allowed for 3 mm head translations in any 
direction. Once children were able to keep the cursor within this target 
region for a timed period of 30 s, children watched a short animated 
video. When movement exceeded 3 mm translation, video playback was 
paused, providing immediate feedback that they had moved too much. 
Once children were able to watch the video for a period of 2 min without 
a video pause, scanner training was completed. 

In Bochum, scanner training was conducted between one to ten days 
before the MRI study for the majority of participants (n ¼ 48). A mi
nority was trained on the same day as the first scan (n ¼ 1) or between 
12 and 35 days before the first scan (n ¼ 7). Training began with sitting 
on the extended mock scanner bed, watching a short animated video 
that introduced a cover-story explaining the tasks to be performed inside 
the scanner, and practicing these tasks (button-press). This was followed 
by explaining and demonstrating the procedure of entering an MRI 
scanner with a large puppet. Next, children entered the mock scanner 
bore, watched a short animated video and performed several practice 
trials of the tasks presented on a screen that was visible via a mirror 
system. The researchers gave feedback with respect to the level of 
movement and task performance throughout the scanner training ses
sion. It was established that a researcher would gently touch the chil
dren’s shin in case of excessive motion as a means of motion feedback. 
Verbal feedback was gradually decreased throughout the session. As 
head motion during the mock scanner session in Bochum was not 
quantified, feedback was based on the experimenter’s observation of 
children’s head motion. Once the researcher decided that motion levels 
were acceptable and the tasks were understood, scanner training was 
completed. 

2.5. Data exclusion 

Our initial dataset encompassed all completed fMRI runs of two 
developmental cognitive neuroscience studies conducted in Bochum and 
one in Bangor. Aborted runs (e.g. due to technical errors) were not 
included, as they were not retrieved from the MRI-controlling computer 
and not reliably recorded in handwritten notes. To ensure that our re
sults are valid and interpretable, we excluded data that would have 
biased our analyses (Fig. 1). 

In a first step, we excluded ten participants (110 runs) from Bangor 
that were recorded with different acquisition parameters, i.e. with a slice 
thickness of 3.5 mm instead of 3.0 mm. This difference in voxel size 

along the z-axis would affect three out of the six motion estimation 
parameters (rotation around the y-axis, rotation around the x-axis, and 
translation along the z-axis) during motion correction, leading to sys
tematically larger motion estimates. In a second step, we excluded 56 
runs that did not reflect first-time fMRI experience. Four participants 
had participated in both Bochum fMRI studies that are included in our 
analysis. Participation in both studies was separated by 2–18 months. To 
control for possible confounding effects of prior scanning experience on 
motion, we excluded all runs of their second fMRI study participation. 
Implementing this control step ensured that we report on the rather 
typical case—at least for children—of a first-time MRI study participant. 
Note that we could not rule out the possibility that participants took part 
in an MRI study of a different lab before, although this is highly unlikely 
for children and most adults at our neuroimaging centers. In a last step, 
we excluded 42 resting-state runs. Resting-state runs were only acquired 
in one of the three studies, only once per participant, and in the majority 
of cases the run was acquired at the end of a session. Moreover, resting- 
state runs were the only runs in which participants had their eyes closed 
during acquisition. This unique set of circumstances makes resting-state 
runs very likely to bias our results, as there is not enough data to effi
ciently model this set of circumstances, e.g. as an independent variable. 

2.6. Head motion estimation 

To estimate head motion during fMRI scans, we used the neuro
imaging software package BrainVoyager (Version 20.2 for 64bit Win
dows, RRID: SCR_013057). First, fMRI run series in DICOM format were 
converted to the proprietary STC and FMR format using BrainVoyager 
scripts. Then, we applied BrainVoyager fMRI data preprocessing tools in 
their default settings. That is, for slice scan time correction, we used 
cubic spline interpolation. For 3D motion correction, we used a trilinear 
detection and sinc interpolation approach with a maximum of 100 it
erations to fit a volume to the reference volume. Resulting motion log 
files contained six timeseries representing the estimated volume-wise 
instantaneous translation and rotation for axes x, y, and z in reference 
to the first volume of the respective experiment. 

For each of the six motion parameters, we calculated a timeseries of 
volume-to-volume motion, i.e. the difference between each volume’s 
motion parameter and the previous volume’s motion parameter. Rota
tional motion was converted from degree to millimeter by calculating 
displacement on the surface of a sphere of 50 mm radius (approximating 
the distance from the center of the head to the cortex; Power et al., 
2012). The framewise displacement of the head position (FD) was 

Fig. 1. Data exclusion steps and resulting sample sizes for children (left, dark 
gray) and adults (right, light gray). Main box widths are in relation to the 
original total number of runs. Box segmentation mirrors the relative distribu
tion of adult vs. child participants or runs, respectively. 

T.W. Meissner et al.                                                                                                                                                                                                                            



Developmental Cognitive Neuroscience 44 (2020) 100803

4

calculated as the sum of the absolute volume-to-volume motion values 
(Power et al., 2012). FD was shown to have a strong association with 
motion-induced artifacts (Ciric et al., 2017). For each run, we calculated 
the mean FD. 

Moreover, for discrete one-minute-intervals (i.e. 30 volumes) within 
runs, we calculated the percentage of high-motion volumes with FD 
above the threshold of 0.3 mm (volume-to-volume). This threshold for 
high-motion volumes was determined by extensive exploration of our 
data before any statistical analysis, and aimed at capturing motion 
“spikes” without impacting the motion “floor” volumes as done previ
ously (Power et al., 2019, 2012) and resulted in plausible ratios of 
high-motion volumes for children (M ¼ 12.80%, SD ¼ 20.89%) and 
adults (M ¼ 4.48%, SD ¼ 12.10%). For a visualization of the 
high-motion volume threshold, see Fig. 2. Note that the motion “floor” is 
often below 0.1 mm FD. Thus, our threshold of 0.3 mm allowed for some 
motion that is not categorized as a high motion “spike” (e.g. Fig. 2, 
bottom right panel) and might have been even stricter. The two head 
motion measures—mean FD per run and frequency of high-motion 
volumes per minute of a run—were investigated in separate analyses. 

2.7. Predictor variables 

Our study did not aim to examine age group differences between 
children and adults, but to provide guidelines for practitioners and re
searchers who conduct pediatric neuroimaging examinations and/or 
experiments that might also include adult control groups. Thus, we 
report separate analyses for children and adults. This approach enabled 
us to include two more predictor variables (PVs) for children, as adults 
did not perform scanner training and we did not expect age effects in our 
range of 18� 35-year-old adults. For each age group, we assessed two 
head motion measures with up to eight possible predictors. 

2.7.1. Mean FD 
In our first analysis, we asked which factors would influence the 

mean motion during a run. Seven PVs were evaluated: 

� PVs 1–4) Prior scan time encoded the time in minutes that a partici
pant had been in the scanner already. That is, the summed scan time 
of all functional as well as structural runs that had been administered 

1) since the beginning of the functional segment, 2) since the begin
ning of the session, 3) since the beginning of the day, or 4) since the 
beginning of the study. For definitions of session and functional 
segment, please refer to Section 2.1, Definition of session, run, and 
functional segment. Note that prior scan time since the beginning of the 
day was only analyzed in children, because while children were 
scanned on either one (n ¼ 45), two (n ¼ 31) or three days (n ¼ 1), 
only 2 out of 54 adults were scanned on multiple (here: two) days. 
Therefore, our adult data did not have the required distribution to 
allow any inferences on breaking up fMRI data acquisition between 
days in adults. 
For example, imagine the complex case of a participant that comes in 
for a second day of fMRI scanning (after 60 min of scanning on the 
first day), takes a bathroom break after the completion of the day’s 
first fMRI experiment (after 15 min), re-enters the scanner, com
pletes the second fMRI experiment (15 min), and is now scheduled 
for an inside-scanner break, during which a diffusion-weighed im
aging sequence is being acquired while a video clip is presented 
(5 min.). The next fMRI run that is acquired would have different 
values for each of the prior scan time variables, e.g. a) prior functional 
segment scan time ¼0 min, b) prior session scan time ¼20 min, c) prior 
day scan time ¼35 min, and d) prior study scan time ¼95 min. 
In general, we hypothesized that participants’ motion would in
crease with time spent in the scanner, but could be “reset” to lower 
motion by breaks. Thus, we tested the effect of four different prior 
scan time variables to determine which—if any—way of breaking up 
data acquisition reduces subsequent motion. Fig. 3 visualizes the 
possible main effects of prior scan time variables. To determine the 
prior scan time variables values, we evaluated structured handwritten 
MRI session notes that stated the sequence of acquired functional and 
structural runs and breaks between sessions and days for each 
participant. Then, the duration of each run was retrieved from its 
DICOM file header. This DICOM header duration always exceeded 
the product of repetition time and number of volumes, i.e. it included 
scanner- and sequence-specific preparation time. We did not include 
potential breaks between runs that occur due to normal operation 
time that is required to start a new paradigm on the stimulation 
computer or to start the scanner, how-do-you-feel-inquiries, or minor 
technical issues, because we did not log these events. Further, we did 
not include aborted runs, because we did not save this data nor took 

Fig. 2. Framewise displacement (FD) of the head in mm in three example 
children and adults (gray writing ¼ participant IDs). For each participants, one 
representative run was chosen to show the high-motion volume threshold (red 
horizontal dashed line). Gray vertical lines indicate the one-minute-intervals, 
for which the percentage of high-motion-volumes was calculated. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 3. Visualization of the effect of prior scan time with hypothetical data. 
Each row shows the effect of a different kind of prior scan time. Each column 
shows a single session, consisting of four fMRI runs. The dotted vertical line and 
points on the vertical line denote inside scanner breaks during which structural 
scans were acquired and video clips were presented. 
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reliable notes, rendering a determination of the duration of these 
scans impossible.  
� PV 5) Age was defined in years at the first day of scanning and was 

only investigated for children. This variable was included to explore 
possible interactions with the other PVs, not for main effects of age, 
as main effects of age are well established in the field and would only 
lead to an unnecessarily complex model with less power to detect 
effects of interest.  
� PV 6) Scanner training date was recorded as the number of days that 

passed since the scanner training for children only. We hypothesized 
that a greater time interval between scanner training and actual MRI 
scan would result in higher motion.  
� PV 7) Task engagement encoded how much active engagement a given 

fMRI run required. We distinguished if participants just had to 
passively watch the display, or if participants had to perform a task 
that included button-pressing. We expected that an active task 
engagement would result in reduced motion due to enhanced 
attention and less awareness of a possibly uncomfortable situation, 
itching, or other distractions. 

In addition to these main effects, we investigated the possible in
teractions between the prior scan time variables and the other variables. 
Other two-way or three-way interactions were not investigated to avoid 
overly complex and highly computation-intensive models and as the 
detection of high-order effects would require a more powerful study 
design (Simonsohn, 2014). 

2.7.2. High-motion volumes 
In our second analysis we asked which variables would influence 

head motion over the course of a run. As decisions on retaining or dis
carding runs for further analysis are often informed by high-motion 
volumes within a run rather than a run’s mean motion, instead of 
mean FD, we investigated the percentage of high-motion volumes for 
each minute of a run (i.e. FDvolume > 0.3 mm; see 2.6, Head motion 
estimation). Consequently, eight PVs were evaluated:  

� PVs 1–7) All previous PVs, i.e. prior functional segment scan time, prior 
session scan time, prior day scan time, prior study scan time, age, scanner 
training date, task engagement  
� PV 8) Minute of run coded discrete one-minute-intervals within runs, 

allowing us to investigate the course of high-volume motion occur
rence across the course of a run. 

In addition to main effects, we investigated the possible interactions 
between minute of run and the other variables. Again, we did not 
investigate other two- or three-way interactions (see 2.7.1, Mean FD) 

2.8. Statistical model 

2.8.1. Hierarchical data structure 
We analyzed our data using multilevel linear models (MLMs) due to 

the hierarchical four- or five-level grouping structure inherent in our 
data (cf. Engelhardt et al., 2017; Fig. 4): Motion estimations for mean FD 
per run are nested within sessions (level 4), sessions are nested within 
days (level 3), days are nested within participants (level 2), and par
ticipants are nested within studies (level 1). Motion estimations for 
percentage of high-motion volumes per minute of a run are nested 
within runs, establishing a fifth level. This hierarchical data structure is 
likely to introduce dependency of observations within a grouping vari
able. For example, motion from two randomly selected runs from the 
same participant is likely to be much more similar than motion from 
different participants. In technical terms, the residuals within a grouping 
variable are likely to be correlated. Thus, the assumption of independent 
residuals, crucial for parametric tests, is violated. While dependent ob
servations for one level, e.g. within participants, could be handled easily 
by a conventional repeated-measures ANOVA, this case is a complex 

nested multilevel dependency structure that cannot be adequately and 
validly handled by a repeated-measures ANOVA—but can be by an 
MLM. 

2.8.2. MLM creation step 1: identifying relevant grouping structures 
MLMs were created in a data-driven process. First, we assessed the 

possibility that the grouping variables would introduce dependencies in 
the data—and thus confirm the need for an MLM. To this end, we 
calculated the intraclass correlation (ICC, i.e. the proportion of the total 
variance that is explained by the respective grouping factor) for each 
grouping level of the model and liberally incorporated all grouping 
levels into our model that would explain at least 1% of the total variance 
(i.e. ICC � 0.01, Supplementary Text S2). Next, we used the chi-square 
likelihood ratio test and Akaike’s information criterion (AIC) to test if 
the model that incorporated the grouping structure actually had a better 
fit to our data than the model without the grouping structure and 
included or ignored the grouping structure in all subsequent models 
accordingly (Supplementary Text S3). 

ICC analysis for mean FD over the course of a study indicated that in 
both children and adults, the grouping factors participant (children: 
0.487, adults: 0.376) and session (children: 0.229, adults: 0.021) 
explained a substantial amount of variance in the data, while the 
grouping factors study and day did not (both age groups <0.001). In both 
children and adults, models that allowed random intercepts for partici
pant and session fit the data significantly better than a model with fixed 
intercepts (children: Supplementary Table S4, adults: Supplementary 
Table S5). Thus, the MLMs were built with random intercepts for 
participant and session. 

ICCs for the percentage of high-motion volumes across the course of 
a run in both children and adults revealed substantial dependency 
within the grouping levels participant (children: 0.136, adults: 0.292), 
session (children: 0.275, adults: 0.037), and run (children: 0.143, adults: 
0.309), but not within the grouping levels study (both age groups: 
<0.001) and day (children: <0.001, adults: 0.004). A random intercept 
model for participant, session, and run fit our data better that a fixed 
intercept model (children: Supplementary Table S6, adults: Supple
mentary Table S7). Consequentially, the MLMs were built with random 
intercepts for participant, session and run. 

2.8.3. MLM creation step 2: stepwise inclusion of relevant predictors 
Second, we introduced the PVs, i.e. main effects and selected in

teractions (fixed effects), into the model stepwise, to test if they 
improved the model fit significantly. The order of introduction for mean 
FD and high-motion volumes MLMs is listed in Supplementary Tables S2 
and S3, respectively. If a model including a fixed predictor led to a better 
model fit than the previous model without it, the predictor was included 

Fig. 4. Hierarchical data structure with four levels. For visualization purposes, 
only one fictional subject is displayed for each study. 
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in all subsequent models, otherwise it was left out of subsequent models. 
For children’s mean FD MLM main effects of prior functional segment 

time, prior session time, prior day time, and scanner training date, as well as 
the interaction effects of age � prior session time and age � prior study time 
were included in the model (Supplementary Table S4). For children’s 
high-motion volumes MLM, main effects of minute of run, prior segment 
time, prior session time, prior day time, and scanner training date were 
added to the model (Supplementary Table S6). For adult’s mean FD 
MLM, main effects of prior functional segment time, prior study time, and a 
prior functional segment time � task engagement interaction were added to 
the model (Supplementary Table S5). For adult’s high-motion volumes 
MLM main effects of minute of run, prior segment time, and prior session 
time, were added to the model (Supplementary Table S7). 

2.8.4. MLM creation step 3: assessing the need for participant-specific 
predictor effects 

Third, we tested if the model fit improved further if we let the effect 
of each included main effect predictor vary over participants (random 
slopes) and added significant random effects to the model accordingly. 
Predictors scanner training date and age were not considered as they are 
constant for each participant’s run. Further, we did not fit random slopes 
for interaction terms as this prevented the MLMs to converge—possibly 
because our data did not have enough power to fit a model of such high 
level of complexity. 

Adding random slopes across participants for all main effects further 
improved model fit in all MLMs and thus was incorporated in the final 
models (Supplementary Tables S4–S7). 

2.9. Software 

Data handling and statistical data analysis was performed using R 
(version 3.6.0, RRID: SCR_001905, R Core Team, 2019) in RStudio 
(version 1.2.1335; RRID: SCR_000432). For MLMs, we used the nlme 
package (version 3.1–140, RRID:SCR_015655, Pinheiro et al., 2019). 
Figures were created using the ggplot2 package (version 3.2.0, RRID: 
SCR_014601, Wickham, 2016). Regression lines and confidence interval 
bands for fixed effects visualizations, i.e. predictor effect plots, were 
created using the effects package (version 4.1-1, Fox and Weisberg, 
2018). Marginal R2 (for fixed effects) and conditional R2 (for fixed ef
fects and random effects combined) goodness-of-fit was estimated using 
the r.squaredGLMM function of the MuMIn package (version 1.43.6, 
Barton, 2019), which is based on methods by Nakagawa and Schielzeth 
(2013), Johnson (2014), and Nakagawa et al. (2017). 

3. Results 

We evaluated which variables would predict head motion during 
fMRI in children and adults. We assessed two measures of head motion 
in separate analyses: First, we investigated the course of head motion 
across an fMRI study in terms of mean framewise displacement per run. 
Then, we investigated the course of head motion over the course of a run 
in terms of the frequency of high-motion volumes per minute. Each 
analysis was performed separately for children and adults. Regression 
coefficients for all main and interaction effects included in the MLMs 
were tested against zero using one-sample t-tests with a significance 
threshold of α ¼ 0.05. 

3.1. Splitting up data acquisition reduces motion 

3.1.1. Children 
Evaluation of fixed effects predictors in the final mean FD MLM 

revealed that prior session scan time and a prior study scan time � age 
interaction significantly predicted FD in children (Fig. 5, Table 1). 
Children showed greater motion with ongoing session length (Fig. 5, 
left). Note that the total number of sessions in children ranged from 1 to 
4 (16 children did only one session, 55 children did two sessions, four 
children did three sessions, and two children did four sessions). In 
addition, motion increased with study length in older children, but not 
as much in younger children (Fig. 5, right). As our data in children shows 
one obvious outlier, a participant whose mean FD is around 2 mm or all 
of her/his five runs, we tested if this case would influence the observed 
effects. However, a reanalysis without this participant only slightly 
increased the effect of prior session scan time and did not change the age 
� prior study scan time interaction notably. Thus, here, we report the full 
data set. 

3.1.2. Adults 
For adults, evaluation of fixed effects predictors in the final model 

revealed that prior functional segment scan time and prior study scan time 
significantly predicted motion (Fig. 6, Table 2). Adults’ motion 
increased with ongoing study scan time (note that in 52/54 adults study 
scan time is equal to day scan time). Moreover, the longer functional scans 
are acquired without an inside-scanner break (e.g. through a structural 
scan with relaxing video), the more adults moved. Originally, we also 
found that a task engagement � prior functional segment scan time inter
action significantly predicted motion, i.e. for passive tasks, adults 
showed a steeper increase in motion than for active tasks (Fig. 6, middle, 
thick black dashed line). However, as it seemed possible that this task 
engagement � prior functional segment scan time interaction was driven by 
an extreme increase in motion at the end of a functional segment in 

Fig. 5. Predictor effect plots for chil
dren’s head motion across the course of 
a study.Thick magenta lines are fitted 
linear regression lines for the fixed ef
fects predictors denoted on the x-axes. 
Shaded magenta areas show the 95% 
confidence band for the regression lines. 
Each gray circle represents one run. Left: 
Head motion across the course of a ses
sion. Each circle-connecting line repre
sents a participant‘s session. Participants 
that were scanned in multiple sessions 
are represented by multiple lines. Right: 
Head motion across the course of a study 
for 6-9-year-old and 10-13-year old 
children. Age bins were chosen arbi
trarily to visualize the age � prior study 
scan time interaction. Each circle- 
connecting line represents one 
participant.   
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passive tasks in a single participant only (Fig. 6, thin black dashed lines 
and squares), we reanalyzed the MLM without data from this partici
pant. While all other effects remained stable (Fig. 6, see overlapping 
green solid and black dashed lines), the task engagement � prior func
tional segment scan time interaction was rendered insignificant by the 
exclusion of the participant (Fig. 6, see black dashed line outside of 
green confidence band, Supplementary Table S8). 

3.1.3. Summary 
Our results demonstrate that head motion in children and adults can 

be reduced by splitting up data acquisition. However, depending on the 
age group, different strategies seem to be effective. For children, our 
data suggests a benefit of splitting up data acquisition into multiple, 
short sessions on the same day and keeping the overall study length as 
short as possible. In contrast, adults benefited from interspersing 
experimental runs with inside-scanner breaks. 

3.2. High-motion event occurrence increases with run length 

3.2.1. Children 
Minute of run significantly predicted motion in children, i.e. chil

dren’s motion increased with increasing run length (Fig. 7, Table 3). For 
example, in the third minute of a run, the average risk of a high-motion 
volume was at 16.5%, while it increased to 18.3% in the sixth minute of 
a run. Prior day scan time was also a significant predictor of motion. 
However, each value of this run-wise predictor affects each minute of a 
run equally and therefore does not contribute to explaining how motion 
develops over the course of a run. For example, minute of run 1, 2, and 3 
always have the same values of prior day time. Thus, as the run-wise prior 
day scan time did not interact with minute of run, its effect is not of in
terest in this analysis. 

3.2.2. Adults 
Minute of run significantly predicted motion in adults, i.e. adult’s 

Table 1 
Fixed effects parameter estimates of final model for children’s mean motion across the course of a study.  

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.04895 0.01800 0.07990 0.01584 509 3.090 0.002 
Prior functional segment scan time 0.00147 � 0.00170 0.00464 0.00162 509 0.904 0.366 
Prior session scan time 0.01564 0.00307 0.02821 0.00644 509 2.430 0.015 
Prior day scan time 0.00212 � 0.00043 0.00467 0.00130 509 1.627 0.104 
Scanner training date 0.00560 � 0.01790 0.02909 0.01203 509 0.465 0.642 
Age � prior session scan time � 0.00121 � 0.00245 0.00003 0.00063 509 � 1.905 0.057 
Age � prior study scan time 0.00016 0.00005 0.00028 0.00006 509 2.721 0.007 

Note: CI ¼ confidence interval, SE ¼ standard error, df ¼ degrees of freedom. 

Fig. 6. Predictor effect plots for adult’s 
head motion across the course of a 
study. Thick green lines are fitted linear 
regression lines for the fixed effects 
predictors denoted on the x-axes. 
Shaded green areas show the 95% con
fidence band for the regression lines. 
Each gray circle represents one run. Left: 
Head motion across the course of a 
study. Each circle-connecting line rep
resents a participant‘s study. Right: 
Head motion across the course of a 
functional segment for passive and 
active fMRI tasks. Each circle- 
connecting line represents one partici
pant’s functional segment data acquisi
tion course. Participants that were 
scanned on multiple days, on multiple 
sessions, or with multiple functional 
segments are represented by multiple 
lines. Black dashed lines and squares 
show the participant that drove the task 
engagement � prior functional segment 
time interaction. (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   

Table 2 
Fixed effects parameter estimates of final model for adult’s mean motion across the course of a study.  

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.05030 0.03328 0.06732 0.00869 377 5.787 < .001 
Prior functional segment scan time 0.00250 0.00098 0.00401 0.00077 377 3.230 0.001 
Prior study scan time 0.00087 0.00030 0.00144 0.00029 377 2.990 0.003 
Task engagement � Prior functional segment scan time 0.00185 � 0.00058 0.00428 0.00124 377 1.491 0.137 

Note: CI ¼ confidence interval, SE ¼ standard error, df ¼ degrees of freedom. 
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motion increased with increasing run length (Fig. 8, Table 4). For 
example, in the third minute of a run, the average risk of a high-motion 
volume was at 5.3%, while it increased to 6.5% in the sixth minute of a 
run. Prior functional segment scan time and prior session scan time were 
also significant predictors of motion. However, as in children, these run- 
wise predictors did not contribute to explaining how motion develops 
over the course of a run as they did not interact with minute of run and 
thus are not of interest in this analysis. 

3.2.3. Summary 
Our results indicate that long runs have a negative impact on data 

quality: The frequency of high-motion events increases with ongoing run 
length for both children and adults. 

3.3. Control analysis: Age—but not motion—influenced the data 
acquisition procedure in children 

Data acquisition in terms of which task was acquired when, the po
sitions of structural scans, i.e. inside-scanner breaks, and the number of 
total runs was largely predetermined for each study and participant. 
However, we adapted our planning to the requirements of the given 
participant—mainly for children and only seldomly for adults. Specif
ically, participants were able to terminate the study, day or session at 
any moment. Most of the time, termination of a session was done after 
active inquiring about the well-being by the researchers. Here, chil
dren’s age might have influenced researchers’ sensitivity towards well- 
being reports and researchers’ decision to terminate. Crucially, subjec
tive well-being (or boredom) might be associated with motion in the 
scanner. Thus, irrespective of reported well-being of the child, observed 
motion by the researchers (visible from the control room in Bangor and 
from standing next to the scanner bore in Bochum) might have 

influenced the decision to terminate the study, day, session, or func
tional segment early. 

To investigate the possible effect of age and motion on the procedure, 
we ran separate multiple regression analyses for the total study length as 
well as the total number of acquired runs, sessions, and days using 
participants’ age and their mean percentage of high-motion-volumes as 
predictors. We chose the latter predictor over mean FD because only 
high-motion events would be visible for the researcher and act as a 
possible indicator to change the predefined study protocol. 

The number of completed runs, sessions, or days was neither 
significantly predicted by age, nor by high-motion volumes (all ps for 
age > .0664; all ps for high-motion volumes > .1676). However, 
age—but not the mean percentage of high-motion volumes—was a 
significant predictor of total study length (age: β (SE) ¼ 2.91 (1.29), 
t ¼ 2.26, p ¼ .027; high-motion volumes: β (SE) ¼ � 0.17 (0.16), 
t ¼ � 1.10, p ¼ .275). Thus, it is unlikely that observable motion during 
fMRI scans was factored into the decision to deviate from our predefined 
study protocol, while young age might have been a factor. 

4. Discussion 

We identified factors that predict participant’s head motion in three 
neurodevelopmental fMRI studies including data of 77 children and 64 
adults. Using MLMs, we investigated the effect of scanner training date, 
task engagement, as well as prior scan time since the beginning of the 
study, day, session, or functional segment. In children, splitting fMRI data 
acquisition into multiple sessions reduced motion. However, motion still 
increased across the course of a study, especially in older children. In 
adults, motion was reduced after task-free inside-scanner breaks but—as 

Fig. 7. Children’s head motion across the course of a run. Each gray circle 
represents one minute bin. Each circle-connecting line represents a participant‘s 
run. Participants that were scanned for more than one functional run are rep
resented by multiple lines. Thick magenta line shows the fitted linear regression 
line for the minute of run effect. Shaded magenta area show the 95% confidence 
band for the regression line. 

Table 3 
Fixed effects parameter estimates of final model for children’s frequency of motion peaks across the course of a run.  

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 1.12857 � 2.87326 5.13041 2.04301 2290 0.552 0.581 
Minute of run 0.60187 0.15491 1.04884 0.22818 2290 2.638 0.008 
Prior functional segment scan time 0.22521 � 0.01436 0.46478 0.12231 2290 1.841 0.066 
Prior session scan time 0.08717 � 0.18705 0.36138 0.13999 2290 0.623 0.534 
Prior day scan time 0.41294 0.22250 0.60339 0.09722 2290 4.247 < .001 
Scanner training date 0.81829 � 0.71812 2.35470 0.78436 2290 1.043 0.297 

Note: CI ¼ confidence interval, SE ¼ standard error, df ¼ degrees of freedom. 

Fig. 8. Adult’s head motion across the course of a run. Each gray circle rep
resents a one minute bin. Each circle-connecting line represents a participant‘s 
run. Participants that were scanned for more than one functional run are rep
resented by multiple lines. Thick green line shows the fitted linear regression 
line for the minute of run effect. Shaded green area show the 95% confidence 
band for the regression line. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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in children—motion still increased across the course of a study. In both 
children and adults, motion increased with run length. 

4.1. Splitting up data acquisition reduces motion 

4.1.1. Children 
Children’s head motion seems to increase across the course of a 

study, as prior study scan time predicted head motion, especially for older 
children. At the same time, we did not find that prior day scan time 
predicted head motion, suggesting that children do not seem to benefit 
from splitting up studies into several days. Alternatively, a possible ef
fect of splitting up studies into several days was too small to be detected 
with the power of our study. To speculate on possible explanations, for 
children, the initial excitement of participating in an fMRI study and the 
commitment to do everything right might be less pronounced after the 
first day. On the second day, they might be less motivated to lie still, e.g. 
due to the lacking novelty of the situation (similar visual appearance or 
task demands). 

Older children showed a larger increase in motion with increasing 
study length. Initially, this seems unexpected. Intuition would suggest 
that older children are better at lying still for extended periods of time. 
However, it seems that this age � prior study scan time interaction could 
be driven by a higher baseline motion of young children at the beginning 
of the study, which then does not change as much over time. In contrast, 
older children seem to be able to suppress the urge to move at the 
beginning of a study quite well, and then gradually relax into motion 
levels similar to that of younger children. Thus, we caution against 
overinterpreting this interaction as a cause to plan shorter studies just 
because older children are scanned, as predicted motion values at 
maximum study length were comparable and few studies will plan 
studies with more than 80 min of pure scan time. 

Our results indicate that pediatric neuroimaging studies may benefit 
from breaking up data acquisition into several sessions on the same day, 
as children’s head motion increases with ongoing session length. So far, 
no other studies have investigated motion across multiple sessions on 
the same day. Nevertheless, single-session studies in children have found 
that motion increases with increasing session length in children (Ach
terberg and van der Meulen, 2019; Engelhardt et al., 2017). Our study 
points to an important distinction regarding the kind of breaks that re
searchers can schedule in children’s fMRI scanning protocols. While 
motion can be effectively reduced by allowing children to exit the 
scanner, inside-scanner breaks in fMRI data acquisition during which 
children cannot exit the scanner, but instead watch a video while a 
structural scan is acquired, do not seem to reduce motion after the break. 
Possibly, it is important for children to be able to move freely, get 
face-to-face social interactions, or just relieve the desire to void their 
bladder—none of which are possible without exiting the scanner. 
Alternatively, showing a video might have effects opposite to those 
desired: Because the video is highly engaging, it may lead to reduced 
motion during the break (Cantlon and Li, 2013; Vanderwal et al., 2015), 
but any subsequent normal fMRI task might be perceived as boring due 
to a contrast effect, leading to higher motion in turn. 

In our experience, implementing outside-scanner breaks (i.e. split
ting data acquisition into multiple sessions) is very feasible. In our three 
studies, breaks were designed to last 5 min outside of the scanner and we 
did not experience any problems with upholding this time limit. If a 

cover story for children is used, the break can be incorporated in that 
story (e.g. in a space journey theme there might be limited time for a 
space walk, maintenance, planet visit, etc.). Our 5-minute breaks usually 
prolonged the total study by 15 min due to getting participants out of 
and back inside the scanner, and running another survey scan. In 
contrast to longer breaks, such as 20 min or 2 h, these short breaks limit 
the additional scanner costs and avoid both unfeasible study date ar
rangements with participants and parents as well as complicated scan
ner reservation arrangements. Thus, for studies with more than 30 min 
of total raw scan time, implementing a split into two sessions seems to be 
a feasible and effective way of reducing motion in children. Another 
approach is to schedule two or more children back to back, who then 
take turns in being in the scanner and taking breaks. It should be noted 
though that this approach might require additional staff to supervise 
children during scanning and breaks in parallel. 

In our study, we did not find an effect of task engagement on head 
motion in children. This contradicts previous findings, which showed 
that children show less motion in engaging tasks in contrast to less 
engaging tasks or resting state (Engelhardt et al., 2017). This disparity 
might be due to different definitions and aims of the studies. In our 
analysis, we defined tasks as engaging if participants had to perform a 
task that included button-pressing, and we defined tasks as 
non-engaging if participants just had to passively watch the display. We 
chose this definition as our aim was to identify aspects in fMRI study 
designs that can be actively manipulated by the researcher. Engelhardt 
et al. (2017) defined engaging tasks as fast-paced, cognitively 
demanding, or socially engaging. These aspects are often inherent in a 
task and cannot be changed without changing the research question. For 
example, experiments on social development in children will need to 
have a socially engaging component. However, while researchers can 
decide if a given task will require a manual response or not, this choice 
alone does not seem to affect head motion. Possibly, motion-reducing 
effects due to engaging tasks that require button-pressing or high 
attention are also cancelled out by motion-increasing effects due to 
excitement or button-press-related motion. 

The time between scanner training and the actual scan does not seem 
to be a major influence on children’s head motion during fMRI scans. 
Although scanner training timing improved (and thus was added to) the 
MLM, it did not emerge as a significant predictor in the final model. This 
assumption fits with the observed intraclass correlation for the grouping 
factor study. As all children in study C were trained on the same day as 
the actual fMRI scan but all children (except for one) in study A and B 
were trained between 1 and 28 (mean ¼ 4.30) days before the actual 
fMRI scans, a high intraclass correlation for the grouping factor study 
would have indicated differences between studies (and thus sites) such 
as the scanner training procedure or the scanner training date. However, 
we observed an extremely low interclass correlation for the grouping 
factor study. Thus, planning scanner training as close to the actual scan 
as possible for strong recency effects, or planning scanner training some 
days before the actual scan to let it “sink in” seem to be equally effective 
(but also see 4.4, Future directions). 

4.1.2. Adults 
For adults, we found that head motion seems to increase across the 

course of a study, as prior study scan time predicted head motion. While 
this result seems to mirror our findings in children, note that all but two 

Table 4 
Fixed effects parameter estimates of final model for adult’s frequency of motion peaks across the course of a run.  

parameter β Lower 95% CI Upper 95% CI SE df t p 

Intercept 0.80019 � 1.46836 3.06874 1.15779 1642 0.691 0.490 
Minute of run 0.42562 0.10116 0.75008 0.16559 1642 2.570 0.010 
Prior functional segment scan time 0.18341 0.00516 0.36165 0.09097 1642 2.016 0.044 
Prior session scan time 0.11631 0.04504 0.18757 0.03637 1642 3.198 0.001 

Note: CI ¼ confidence interval, SE ¼ standard error, df ¼ degrees of freedom. 
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adults were scanned on one day only—thus prior study scan time is 
equivalent to prior day scan time and our study cannot inform about 
possible benefits of splitting up data acquisition across days in adults. 
Interestingly, prior functional segment scan time predicted head motion in 
adults, while the prior session scan time did not contribute enough to the 
MLM to be included in the analysis. As motion across the day/study 
increased, this suggests that motion was reduced by inside-scanner 
breaks and that motion was seemingly constant across sessions. Conse
quently, the observed increasing motion across the course of a day is 
presumably due to a higher mean motion for the second session of the 
day. Thus, adults seem to be able to restrain their head motion across 
relatively long sessions, but are more likely to increase head motion in a 
second session on the same day. Therefore, in contrast to children, long 
studies in adults might best be acquired in one long session interspersed 
with inside-scanner breaks (possibly with short videos during anatom
ical scans). We are not aware of studies that investigated motion in 
adults across multiple sessions within the same day. However, our 
findings connect with the existing literature in so far as the number of 
completed runs in a single-session study with five runs did not have any 
effect on motion (Huijbers et al., 2017). 

Regarding task engagement, we only found a very unstable interac
tion with prior functional segment scan time that was driven by on extreme 
outlier. Thus, it is doubtful that motion during passive tasks increased at 
a steeper rate with ongoing time after breaks. Moreover, we cannot 
complement previous findings that showed higher motion for passive 
tasks or resting state and lower motion for active tasks (Cantlon and Li, 
2013; Huijbers et al., 2017; Vanderwal et al., 2015). 

4.2. High-motion event occurrence increases with run length 

We found that the frequency of motion peaks within a run increases 
with run length in both children and adults. This suggests that in gen
eral, it is preferable to plan rather short runs instead of longer runs. 
However, aside from statistically significance, our data also show that 
the increase per minute is moderate (0.60% for children and 0.43% for 
adults). Consequently, high-motion volumes do not just start to occur 
after a certain amount of time—they already occur in the first minute of 
the scan. In addition, most experimental paradigms will require a min
imum duration of some sorts, e.g. to acquire a necessary number of 
volumes in order to have sufficient detection power or to have enough 
time for the hemodynamic response function to fully unfold a certain 
number of times (e.g. localizers), to achieve sufficient reliability (e.g. 
resting-state), or to map brain responses to stimuli of a certain length 
(movie segments). Thus, keeping runs as short as possible and acquiring 
high quality fMRI data should not compromise the quality of the 
experimental design. However, researchers are often free to choose if 
they plan to acquire the desired amount of data in a few long runs or in 
many short runs. For example, if 18 min of data should be acquired, 
instead of planning three 6-min runs, we would suggest to plan five 3.6- 
minute runs. Based on our experience, while run durations around three 
minutes are still practicable in terms of scanner and experimental 
paradigm operation, we would not encourage run durations below 
2 min. 

Interestingly, we did not find interactions of run minute with any of 
the prior scan time variables. So, a common expectation—that motion 
peaks are especially evident at the beginning of the first run of a study or 
day—cannot be confirmed by our data. In a previous study that inves
tigated the association between total run length and mean run motion in 
up to 6� 7 min long runs, results were mixed, i.e. a positive relationship 
in one sample and a negative relationship in the other sample (Engel
hardt et al., 2017). 

4.3. Limitations 

While our study marks an important contribution towards under
standing which factors are effective in obtaining good quality data from 

fMRI experiments, some limitations of our methodology should be 
considered. While the data acquisition procedure was predetermined for 
each study, participants were able to influence the prior study time fac
tors and their head motion. Consider a child that shows increasingly 
observable motion and whose well-being reports indicate an increasing 
lack of interest after short periods of time. In consequence, we might 
have decided to implement more outside-scanner breaks than usual. 
This reaction would increase the number of sessions in this child and 
would also drive the effect of prior session scan time on motion. 

However, our control analyses showed that observable motion dur
ing scans or children’s age did not influence the total number of 
completed runs, sessions, or days in children. Thus, while participants 
might have had influence on the exact timing of inside- or outside 
scanner breaks or the termination of a session, or day, the overall 
numbers of breaks was not biased. The only possible bias that our con
trol analysis was able to reveal was that we might have been more 
attentive to the subjective well-being reports of younger children, more 
inclined to terminate young children’s studies’ early, or that younger 
children might have uttered the desire to terminate the study earlier, as 
age was a significant predictor of total study length. 

With 626 runs from 77 children and 469 runs from 54 adults, our 
sample size is substantial. However, recent collaborative efforts such as 
the NCANDA, PING, or ABCD studies (Brown et al., 2015; Casey et al., 
2018; Jernigan et al., 2016) have made larger pediatric neuroimaging 
datasets available. If detailed notes on inside- vs outside-scanner breaks 
are available in digital form, large open datasets could provide a 
powerful way of answering questions on how to prevent head motion. 
However, one downside of the highly standardized scanning protocols 
usually used in these large-scale multi-site studies is the lack of vari
ability in scanning procedures (timing of breaks, number of runs, etc.) 
and the limited amount of fMRI data collected (if any non-resting-state 
data is collected at all). 

4.4. Future directions 

It remains unclear which contribution scanner training has on chil
dren’s head motion. Considering that a simple toy tunnel and a com
mercial mock scanner resulted in comparable success rates for high- 
quality structural images (Barnea-Goraly et al., 2014), it might be 
interesting to see if these results generalize onto strict motion thresholds 
during longer fMRI studies. Here, future studies should experimentally 
manipulate the kind of training for children, e.g. mock scanner training 
vs. toy tunnel training vs. no training. Also, these studies could inves
tigate if short version trainings have comparable effects to extensive 
trainings sessions and at which age children cease to benefit from 
scanner training. 

Aside from the investigated and discussed procedures, technical so
lutions might help to reduce motion. Recent developments have made 
real-time motion detection available that can be used to provide im
mediate feedback to participants and researchers (Dosenbach et al., 
2017). In children younger than 10 years, providing immediate feed
back has been successful in reducing motion using this technology 
(Greene et al., 2018). Thus, age effects in motion could occur not due to 
an inability to lie still in younger children, but possibly due to a lower 
awareness of their own movements. Even if motion is not reduced, this 
technology provides the possibility to adapt a common fMRI study 
protocol—based on group-average recommendations like those in this 
study—to the individual participant’s behavior. 

This possibility might lead to a considerable reduction in cost and 
improvement of data quality, as our ICC analysis showed that motion 
differs substantially between participants and is relatively similar within 
participants. This finding agrees a previous studies finding that motion 
during fMRI tasks is a very stable neurobiological trait in children and 
adults that seems to be heritable, i.e. under strong genetic control 
(Achterberg and van der Meulen, 2019; Couvy-Duchesne et al., 2014; 
Engelhardt et al., 2017; van Dijk et al., 2012; Zeng et al., 2014). 
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4.5. Conclusion 

The best way of dealing with head motion in fMRI is to prevent it in 
the first place. Our study shows that motion can be reduced by careful 
planning of the data acquisition procedure. Breaking up data acquisition 
into several sessions with the opportunity to leave the scanner is effec
tive in reducing motion in children, while introducing inside-scanner 
breaks with continued acquisition of structural data is not effective. 
For adults, inside-scanner breaks during which further structural data 
can be acquired are a useful tool for preventing motion. Both children 
and adults benefit from short runs. To corroborate our findings of how 
study design can reduce and prevent motion in children and adults, 
future studies with an experimental approach are needed. 
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